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Predicting intersystem crossing rate constants
of alkoxy-radical pairs with structure-based
descriptors and machine learning†

Rashid R. Valiev, *a Rinat T. Nasibullin,a Hilda Sandström,b Patrick Rinke, bcde

Kai Puolamäki f and Theo Kurten*a

Peroxy radicals (RO2) are ubiquitous intermediates in many oxidation processes, especially in the

atmospheric gas phase. The recombination reaction of two peroxy radicals (RO2 + R0O2) has been

demonstrated to lead, via several steps, to a triplet complex of two alkoxy radicals: 3(RO�� � �R0O�). The

different product channels of RO2 + R0O2 reactions thus correspond to different reactions of this triplet

complex. Of particular interest to atmospheric chemistry is the intersystem crossing (ISC) to the singlet

state, which enables the recombination of the two radicals to an ROOR0 peroxide with considerably

lower volatility than the original precursors. These peroxides are believed to be key contributors to the

formation of secondary organic aerosol (SOA) particles, which in turn contribute to both air pollution

and radiative forcing uncertainties. Developing reliable computational models for, e.g., RO2 + R0O2

branching ratios requires accurate estimates of the ISC rate constants, which can currently be obtained

only from computationally expensive quantum chemistry calculations. By contrast, machine learning

(ML) methods offer a faster alternative for estimating ISC rate constants. In the present work, we create

a dataset with 98 082 conformations of radical pairs and their corresponding rate constants. We apply

three ML models—random forest (RF), CatBoost (CB), and a neural network (NN)—to predict ISC rate

constants from triplet to singlet states. Specifically, the models predict kISC(T1 - Si) for i = 1–4 and the

cumulative kISC(T1 - Sn), in alkoxy radical pairs, using only molecular geometry descriptors as inputs. All

ML models achieved a mean absolute error (MAE) on our test set within one order of magnitude and a

coefficient of determination R2 4 0.82 for all rate constants. Overall, the ML prediction matches the

quantum chemical calculations within 1–2 orders of magnitude, providing a fast and scalable alternative

for quantum chemical methods for ISC rate estimation.

1. Introduction

Atmospheric oxidation of volatile organic compounds, emitted
from both biogenic and antropogenic sources, plays an impor-
tant role in climate change and air pollution. As the dominant
atmospheric oxidant, O2, is a triplet biradical, oxidation

proceeds through a cascade of radical intermediates. One of
the main classes of radicals in atmospheric chemistry are
organic peroxy radicals (RO2), which are formed whenever
carbon-centered radicals (R) created in the initial oxidation
steps react with O2. Due to their relative stability, RO2 can
accumulate to high concentrations compared to other radical
classes. The atmospheric chemistry of RO2 is extremely versa-
tile, as they can react via multiple uni- and bimolecular
channels. The branching between different RO2 reaction chan-
nels is one of the central parameters in atmospheric
chemistry.1 For example, bimolecular reactions of RO2 with
nitrogen monoxide (NO) leading to radical propagation are the
key driver of tropospheric ozone formation and photochemical
smog, while both unimolecular RO2 H-shifts, RO2 + HO2 reac-
tions and possibly also RO2 + alkene reactions2,3 often lead to
lower-volatility products forming secondary organic aerosol.

Recently, RO2 reactions with other RO2 have been identified
as sources of very efficiently aerosol-forming accretion
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products: compounds with more carbon atoms than in the
original reactant.4 Computational investigations of RO2 + R0O2

reactions have revealed that the mechanism for accretion
product formation involves an intersystem crossing (ISC;
spin–flip).5–17 While ISCs and other surface hoppings between
electronic states are known to play important roles in many
fields of chemistry and physics, their involvement in thermal
(non-photochemical) atmospheric gas-phase reactions was
somewhat surprising. Specifically, RO2 + R0O2 reactions inevi-
tably lead to a metastable tetroxide (RO4R0) intermediate,5–13

which then decomposes into two alkoxy radicals (RO and R0O)
and molecular oxygen (O2).9–17 For the reaction to be thermo-
dynamically feasible, the O2 must be formed in its triplet
ground state. Spin conservation then dictates that the alkoxy
radical pairs are also coupled as a triplet. For all but the
smallest (RQR0QCH3) system,9 the RO� � �R0O interaction is
stronger than the RO� � �O2 interaction, indicating that the O2

molecule will likely be ejected from the reaction system, leaving
a 3(RO� � �R0O) complex, where the upper index 3 indicates the
multiplicity. The reaction routes of this complex correspond to
different product channels of the overall RO2 + R0O2 reaction.
For example, dissociation leads to the radical propagating
(RO + R0O) channel, a hydrogen shift (H-shift) between the
two moieties leads to the molecular (alcohol + carbonyl) chan-
nel, while an ISC to the singlet state permits subsequent
recombination, leading to peroxide (ROOR0) accretion pro-
ducts. We note that ISCs do not guarantee the formation of a
peroxide, as both H-shifts and dissociation are possible also in
the singlet state. Furthermore, sufficiently complex (functiona-
lized) alkoxy radicals can undergo a variety of unimolecular
reactions within the 3(RO� � �R0O) cluster, potentially leading to
an even larger array of possible products.5,13,14 These reactions
can also be either preceded or followed by an ISC. Overall,
predictions of branching ratios of RO2 + R0O2 reactions, and
thus their contribution to, for example, SOA formation, are
currently limited by the available methods for estimating
ISC rates.

In general, the ISC rate constant (kISC) between two electro-
nic states (denoted here Si and Tf) depends on two parameters:
(1) the spin–orbital coupled interaction matrix elements
(SOCME) between the states (hc(Si)|ĤSO|c(Tf)i); (2) the
Franck–Condon (FC) factor or overlap between the nuclear
wavefunctions of the states.18–21 The FC factor also depends
on the energy gap between the states, which becomes especially
important in cases where the final state is higher in energy than
the initial state. Both SOCME and the FC factor may depend on
the relative orientation of the radical pair. As 3(RO� � �R0O)
complexes relevant to atmospheric chemistry are held together
by non-covalent interactions that are individually relatively
weak, thermal motion will allow them to explore a large variety
of orientations. Thus, kISC needs to be computed as an ensem-
ble average over all molecular conformations and relative
orientations of the radical pair.

A simplified model of ISC rates can be obtained for radical
pairs that are characterized by a small energy gap between the
S1 and T1 states,18–24 resulting in a dependence primarily on

SOCME rather than FC factors. Moreover, in these pairs, each
spin is localized on a single atom, making SOCME sensitive to
the distance and angular alignment between p-type atomic
orbitals (AOs) on these atoms.6,18–24 This effect was first
explained in the pioneering work of Salem and Rowland.23

Subsequent studies have further investigated SOCME’s depen-
dence on structural factors, proposing analytical solutions for
simplified cases with the fitting parameters.2,18–24 However, a
comprehensive universal analytical solution that can be applied
to radical pairs with any kind of substituents remains elusive.

Quantum chemical calculations have a broad applicability
and offer more accurate estimates of ISC rate constants within
1–2 orders of magnitude.6 For example, the kISC was calculated
from the T1 state to the S1 state for the first time for minimum-
energy geometries of several alkoxy radical pairs by Valiev et al.6

The computed rate displays strong variation depending on the
structures and the relative orientation of the two radicals. Also,
it was shown that the formation of ROOR0 is determined by the
total (overall) ISC process, which is more complicated than just
the ISC between S1 and T1 states, because there are four low-
energy singlet excited states with strong SOCME. Thus, the total
kISC is the sum of kISC (T1 - S1), kISC (T1 - S2), kISC (T1 - S3)
and kISC (T1 - S4) as seen in Fig. 1. Note that after the
transition into S2, S3, and S4 states, the internal conversion
(IC) process occurs at a high rate, and the final state of the
process is still S1.6 Thus, the transition from T1 to S1 can take
place either in one step (ISC directly to the S1 state) or through
two steps (involving an ISC to an intermediate state – S2, S3, or
S4 – followed by IC to S1). However, obtaining these ISC rate
constants is computationally expensive, and not feasible for the
vast number of systems of interest to atmospheric chemistry.10

Here, we explore, if and how machine learning (ML)24–26 can
be used as a tool to accelerate ISC rate constant estimations and
to gain chemical insight into the relationship between the
radical pair geometry and ISC formation rate. In particular,
we apply ML to relate the structural aspects of alkoxy radical
pair conformations, to the ISC rate constants for the alkoxy
radical clusters.

Fig. 1 The ISC (blue lines) between the T1 and S1–S4 electronic states for
3(CH3O� � �CH3O). The overall intersystem crossing rate includes transitions
between the triplet (T1) and four lowest lying singlet states. The IC
processes are shown in red arrows.
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2. Theory and computational details
2.1. Geometry generation and the ISC rate constant
calculations

We consider radical clusters consisting of the following alkoxy
radicals: CH3O�(MeO), CH3CH2O�(OEt), CH3(CO)CH2O�(OAce) and
HOCH2CH(O�)CH2CH3(HOBuO). The resulting ten cluster types are
denoted as 3(MeO)2, 3(OAce)2, 3(OEt)2, 3(HOBuO)2, 3(MeO� � �OAce),
3(MeO� � �OEt), 3(MeO� � �HOBuO), 3(OAce� � �OEt), 3(OAce� � �HOBuO),
3(OEt� � �HOBuO). We set up 50 000 conformations for each cluster
and optimize them. Generation and geometrical optimization of
clusters was performed using the semi-empirical GNF-xTB level of
theory27 in the ABCluster program.28,29 All structural optimizations
were performed with the system in only the triplet state, and not the
singlet. We filtered our final set of cluster conformation ensembles
to remove duplicates based if the radius of gyration (Rg) and
electronic energy (E) criteria less than 0.01 Å and 0.001 Hartree
respectively.6 These criteria are used to distinguish between unique
structures and remove duplicates.6 After removing duplicates, our
dataset consists of 98 082 radical pair cluster conformations.

We focus on computing and predicting kISC(T1 - Si), where
i = 1–4, and the total cumulative kISC. All five rate constants
associated with each radical pair conformation were computed
with quantum chemistry. Note that the four singlet and four
triplet electronic excited states of RO�� � ��OR0 are nearly degen-
erate (within 10 000 cm�1). In this case, the correct description
of energy gaps between them can be obtained using a multi-
reference level of theory accounting for both static and dynamic
electronic correlations.6,30 Therefore, we applied the extended
quasi-degenerate 2nd-order multireference perturbation theory
(XMC-QDPT2).30 These calculations were carried out using the
Firefly software.31 Like in our previous work,6 we chose an
active space consisting of 6 electrons in 4 p-type MOs, for the
complete active space self-consistent field (CASSCF) with the
stage average over four singlet and four triplet electronic states.
The included orbitals are shown in Fig. 2 for a 3(MeO)2 cluster.
The electronic states T1–T4 and S1–S4 are formed exclusively by
electron transitions between the 2p orbitals localized on the
oxygen atoms, where the electron spin is also localized. This
electronic configuration can be understood within the frame-
work of the topicity of radicals theory proposed by Minaev.16

For example, the CH3O radical and other alkoxy radicals are
classified as bitopic radicals, featuring two radical centers
(2px and 2py) with an energy splitting of 0.40 eV.22,32 Conse-
quently, they generate four pairs of singlet and triplet states
with similar energy in radical pairs.

The SOCME between S1–S4 and T1–T4 were calculated using
the CASSCF method, but with the XMC-QDPT2/6-311++G(d,p)
energies as the zero-order energies within perturbation theory.
GAMESS-US33 was used for the CASSCF calculations.

The ISC rate constant calculation from T1 to the S1, S2, S3, and S4

electronic states was conducted using the method described in
ref. 6 and 34. More details can be found in ref. 6, but here we give a
short description. The main expression is

kISC = 1.6 � 109hi|ĤSO|fi2FC, (1)

where hi|ĤSO|fi (in cm�1) is the matrix element of the spin–
orbital coupling interaction operator ĤSO between the initial
and final electronic states i and f (SOCME).6 The 1.6 � 109 pre-
factor has dimension s�1 cm�2. FC is the Franck–Condon factor
calculated according to exp(�y)�yn/n!, where y = 0.3 and
n = Eif/1400. Here Eif in cm�1 is the energy gap between the
electronic states. This expression (1) is valid for compounds
with different kinds of substituents.34–37 We note that since in
this study, the ground state of the studied clusters is a triplet,
the process considered here is in principle a thermally activated
ISC, as it occurs from the T1 ground state to S1 (or to higher
singlet states). In this case, the intersystem crossing rate
constant (k0ISC) is calculated using the formula:6

k0ISC ¼ kISC � exp �Eif=kTð Þ (2)

where k is the Boltzmann constant and Eif is energy gap
between the electronic states.

2.2. Dataset

The complete dataset of 98 082 clusters consists of ten different
cluster types in the following proportions: 7297 (7.96%) struc-
tures for 3(MeO)2, 7812 (7.96%) for 3(MeO� � �OAce), 8428
(8.59%) for 3(MeO� � �OEt), 14 281 (14.56%) for 3(MeO� � �
HOBuO), 6230 (6.35%) for 3(OAce)2, 8313 (8.48%) for
3(OAce� � �OEt), 14 945 (15.24%) for 3(OAce� � �HOBuO), 5805
(5.92%) for 3(OEt)2, 12 457 (12.70%) for 3(OEt� � �HOBuO),
12 514 (12.76%) for 3(HOBuO)2.

We compared the relative size of the four kISC(T1 - Si) to
identify those with largest impact on the overall kISC. which we
from here on refer to as kISC(T1 - Sn). The number of structures
in the full dataset where the T1 - S1 process dominates over
other ISC processes is 10 049 (10.25%); for T1 - S2, it is 85 163
(86.83%); for T1 - S3, it is 2866 (2.92%); and for T1 - S4, only 3
structures (0.00%). Thus, the rate constant for the T1 - Sn

process is primarily determined by the T1 - S1 and T1 - S2

transitions.

Fig. 2 Orbitals corresponding to the active space used for kISC rate
calculation in state-averaged CASSCF (6,4)/6-311++G(d,p) MOs for a
3(MeO)2 cluster.
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The rate constant log histograms for T1 - S1, T1 - S2 and
T1 - Sn transitions are shown in Fig. 3. We observe that the
distribution of the T1 - Sn rate constant order repeats the
distribution of the T1 - S2 rate constant order. This observa-
tion is expected since the number of structures where the
T1 - S2 process dominates over other ISC processes is larger
than T1 - S1. We note that there is a slight difference between
the shapes of the two distributions near zero values. This is
because structures where kISC(T1 - S2) is zero may have a
nonzero kISC(T1 - S1), and as a result, the cumulative rate
constant is mostly nonzero, as seen in the graph (Panel c).

2.3. Molecular descriptors

In our ML models, we represent the radical clusters using
molecular descriptors.38–44 For this study, we focus specifically
on structural descriptors rather than molecular properties or
electronic structure to link cluster geometries with rate con-
stants. While predictions based on electronic descriptors are
expected to be more accurate, predictions based on structural
descriptors do not require additional quantum-chemical calcu-
lations and are faster and more computationally cost-effective.
Moreover, they directly correlate the molecular structure with
the ISC rate constant as seen in Scheme 1.

As shown in Scheme 1, even for the simplest radical pair
without large substituents (CH3O�� � �CH3O�), there is a clear yet
quite complex dependence of electronic properties (SOCME
and the singlet–triplet energy gap) on the C–O�� � �C–O� angle,
with the angular dependence also varying with the O�� � �O�
distance. This demonstrates that the electronic parameters
governing kISC are sensitive to key structural features of the
radical pairs, hence kISC depends on those same geometric
parameters. Altogether, this again confirms the existence of a
nontrivial relationship between kISC and structural displace-
ments, that cannot be reduced to simple functions like sine,
cosine, or exponential functions, as suggested in some prior
works.2,18–24 At the same time, this dependence guarantees that
machine-learning methods can be applied effectively, provided
that a sufficiently large and diverse dataset is available.

We trained and tested our models using two types of
structural descriptors. The first is a custom descriptor we

developed, which combines selected angles and distances
within atoms in a cluster. We selected atoms with the localiza-
tion of MOs responsible for T1 - S1, T1 - S2, T1 - S3 and
T1 - S4. The second descriptor is the many body tensor
representation (MBTR), computed using DScribe v.2.1.0.38,39

MBTR is a large structural descriptor that captures three-
dimensional structures comprehensively. Compared to our
custom descriptor, MBTR is computationally intensive and less
interpretable. Here, we include MBTR to benchmark the per-
formance of our custom descriptor. Below, we provide further
details on the construction of both our custom descriptor
and MBTR.

Our optimal custom descriptor consists of 53 structural
features, which were constructed considering the atoms
denoted in Fig. 4 for one radical pair. The following atoms
were selected: spin-carrying oxygen atoms Ou1 and Ou2, the
carbon atoms connected to them (C1 and C2), the atoms
connected to C1 and C2 – carbon A1, A2, B1, B2, and hydrogens
H1 and H2, as well as oxygens Op1 and Op2 without spins and
the hydrogens attached to them (H12 and H22). The resulting
selected features include 31 distances, 12 angles, 3 torsional
angles, 4 minimum atomic distances between radical pair
atoms, and 2 hydrogen bond counts. The first hydrogen bond
count only includes the hydrogen bonds formed with Ou1 and
Ou2, while the second hydrogen bond count represents the
total number of hydrogen bonds in the cluster. Certain geo-
metric features were not applicable to all clusters due to
missing atom types. In those cases, the missing features were
then assigned �1.

Our second descriptor, MBTR, encodes the geometric prop-
erties of molecular structures through a continuous representa-
tion of pairwise and angular relationships between all atoms of
a molecule at different many-body levels. For level 1, atomic
species are represented by Gaussians corresponding to atomic
numbers along a designated axis. In level 2, inverse distances
between atom pairs are represented by Gaussians along a
distance axis, reflecting the geometric structure of the atomic
system. Level 3 encodes angular information by Gaussians on
an axis corresponding to the cosine of angles between
atom triples. To reduce memory requirements, all numerical

Fig. 3 Histograms of the logarithm of the calculated rate constant (in units of s�1) for T1 - S1 (a), T1 - S2 (b) and T1 - Sn (c) transitions.
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values in the MBTR computations were converted to float 32
data types.

In this study, we employed only the level 2 and level 3 MBTR
kernels to create a concatenated descriptor. For level 2, we used

inverse distances within an interval of [0, 1.5] (unit Å�1), while
for level 3, we represented interatomic angles by their cosine
values over an interval of [�1, 1]. No additional weighting was
applied to either kernel. We optimized two MBTR hyperpara-
meters with random search: the smoothing parameter (s),
which affects Gaussian localization, and the number of dis-
cretization points (n), which determines resolution. s was
sampled uniformly between 0.005 and 0.015, and n between
40 and 100, for both kernels independently.

2.4. Machine learning techniques

Our goal in this study is to test how accurate ML models can
become relative to quantum chemistry models. Such models
are known to be within one order of magnitude of true
experimental values. Here we focus on predicting quantum
chemistry estimates, as obtaining experimental values at large
scale is unfeasible (and direct experiments on ISC rates for the
specific case of alkoxy–alkoxy cluster are so far impossible). In
addition, we are able to explore conformer specific relationships

Fig. 4 Enumeration of atoms used to create custom geometric features.
Here is one example configuration of 3(HOBuO)2. The molecular descrip-
tors are also given in Tables 4 and 5.

Scheme 1 The dependence of SOCME values and energy gaps on the angle between C–O� bonds of CH3O� � �CH3O, at two different distance between
the radical O� atoms. (a) and (b) illustrate the dependence of SOCME values on the angle at distances of 3.0 Å and 4.5 Å between O� atoms, respectively.
(c) and (d) illustrate the dependence of the energy gaps on the angle at distances of 3.0 Å and 4.5 Å, respectively.
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between molecular structure and rate constants which is not
possible with experimental values representing the ensemble aver-
age. To this end, we tested three different regression models:
random forest (RF), CatBoost (CB), and a feed-forward neural
network (NN). The last two models, CB and NN, were used only
for training on our custom descriptors. We did not test MBTR with
the other models due to the computational expense required for
model training with MBTR. The three models are based on
different philosophies: the RF is easily interpretable, CB offers
high accuracy and handles categorical features efficiently, and the
NN is more complex but can capture intricate data patterns. To
train the models, the dataset was randomly split 80 : 20 into
training and testing sets, using five different random states, which
are defined in the code provided in the ESI.†

For model performance evaluation, we used a set of metrics
including RMSE, the coefficient of determination (R2) and the
mean absolute error (MAE). Model performance was evaluated
by averaging across five runs and calculating the standard
deviations of all performance metrics. All computed average
metrics for each model and each predicted feature are provided
in the Tables S1–S6 (ESI†). The predicted vs. actual plots
presented in the article are based on the identical train-test
splits with the random seed number is 339 087.

For each train/test split corresponding to a specific random
seed and for each model using the custom descriptor set,
hyperparameter optimization was performed using grid search
cross-validation on the training set with 3 folds, repeated
3 times. Instead of selecting the hyperparameters that yielded
the best metrics, one of the configurations with a MAE differing
by no more than 0.01 from the best-performing set was chosen
for further analysis. This approach ensures greater model
robustness and prevents overfitting to a specific dataset split
while maintaining nearly optimal performance, which is parti-
cularly important for future applications of the model to
molecules that were not included in the training dataset. The
hyperparameters that produced the best metrics, as well as
those with performance close to the best, along with the
corresponding metrics for the selected configuration, are presented
in Tables S1–S3 (ESI†) for the RF, NN and CB models, respectively.
In contrast, for the MBTR-based model, hyperparameter optimiza-
tion was conducted using randomized search combined with k-fold
cross-validation using 3 folds, sampling 10 parameter configura-
tions with the negative mean squared error as the loss function.
The corresponding code is provided in the ESI.†

The first model is a RF regressor from scikit-learn version
1.2.0.45 We used RF with both MBTR and our custom descriptor
to evaluate the relative performance of the custom descriptor.
For the custom descriptor, hyperparameter optimization of the
RF model was performed for the number of estimators, tested
at 1000, 1250, and 1500, and tree depth, tested at 10, 20, and 30.
The optimal values were 1250 estimators and a tree depth of 30.
The dependence of the evaluation metrics on hyperparameters
is presented in Table S1 (ESI†). For MBTR the RF hyperpar-
ameters—number of estimators (50 or 130) and maximum tree
depth (10 or 20)—were optimized using random search (MBTR)
combined with k-fold cross-validation. The optimal parameters, a

tree depth of 20 and 130 estimators, were determined through this
process. During model training with MBTR, the random search
sampled 10 parameter configurations within the specified intervals,
using negative mean squared error (�MSE) as the loss function.

The second model is a NN constructed using Keras.46 The
network architecture and hyperparameters were optimized for
one to four hidden layers, each containing 50, 100, 150, or
200 neurons, with ReLU activation functions and MSE loss
function. The output neuron uses a linear activation function to
predict the target variable. The batch size was varied between
16 and 32, the number of epochs was either 50 or 100 and
learning rate was 0.001, 0.01 and 0.1. The final selection of
hyperparameters is two hidden layers each containing
200 neurons with batch size 32, epochs 100 and learning rate
0.001. The hyperparameter optimization results for NN are
summarized in Table S2 (ESI†).

The third model is CB regressor,47 which is designed for
GPU training, enabling faster results. The optimal hyperpara-
meters for CB were found within the following values: the
number of trees 1000, 1250 and 1500, the learning rate from
0.05 to 0.25, and the tree depth from 8 to 10. The final
optimized values were 1250 trees, a learning rate of 0.1, and a
tree depth of 9. The hyperparameter optimization results for CB
are summarized in Table S3 (ESI†).

Also, CB was chosen for feature selection as it provided the
best performance metrics among the tested models. Feature
selection in combination with the CB model was performed
using the recursive feature elimination (RFE)48 algorithm
implemented in the scikit-learn library45 for each of considered
ISC rate constants. This method was applied exclusively to the
custom descriptor set. The RFE process was conducted within a
3-fold cross-validation repeated 3 times, ensuring robust fea-
ture ranking. Instead of a single RFE run, feature rankings were
obtained across all cross-validation folds, and the final ranking
score for each descriptor was determined by averaging the
rankings from all iterations.

Following feature ranking, an iterative descriptor evaluation was
performed to determine the optimal subset of descriptors to
predict any of the considered ISC rate constants. The descriptors
were ranked based on their RFE scores, and models were trained
sequentially with an increasing number of descriptors, starting
from the highest-ranked feature. Performance was assessed with
cross-validation performed using 3-fold repeated 3 times. The final
optimal descriptor set was obtained by eliminating descriptors that
were not informative across all considered ISC rate constants,
ensuring a more generalizable and efficient feature representation.
The final descriptor rankings are listed in Tables S4–S8 (ESI†) for
prediction of T1 - Sn, T1 - S1, T1 - S2, T1 - S3, T1 - S4

correspondingly. The corresponding implementation details and
code are provided in the ESI.†

3. Results and discussion

In this section, we present the performance of our trained
models for predicting the rate constants kISC(T1 - S1),

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
ge

as
se

m
án

nu
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

02
6-

01
-0

8 
04

:5
0:

52
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp01101a


14810 |  Phys. Chem. Chem. Phys., 2025, 27, 14804–14814 This journal is © the Owner Societies 2025

kISC(T1 - S2), kISC(T1 - S3) kISC(T1 - S4) and total
kISC(T1 - Sn). First, we focus on kISC(T1 - S1) and
kISC(T1 - S2), which have the largest overall impact on
kISC(T1 - Sn) (see Methods).

3.1. Comparison of RF, NN and CB models

Fig. 5 shows results for our RF, NN, and CB models for
kISC(T1 - S1), kISC(T1 - S2) and kISC(T1 - Sn). The plots for
kISC(T1 - S3) and kISC(T1 - S4) are shown in Fig. S1 (ESI†). The
averaged metrics are provided in the legends of Fig. 5 and
Fig. S1 (ESI†) and more detailed in Tables 1–3.

The RF model has R2 values of 0.89 and 0.82 for
kISC(T1 - S1) and total kISC(T1 - Sn), respectively. The best
results are obtained with CB, where the mean MAE across the
different runs is 0.90 and 0.86 for kISC(T1 - S1) and total
kISC(T1 - Sn). Also, CB predicts some zero values correctly,
unlike RF. This result can be explained by the fact that CB
belongs to the family of gradient boosting models. Such models
can better adapt to sparse data due to their flexibility and the
ability to fine-tune their loss functions. We note that the NN
model is also accurate (mean R2 = 0.81–0.88) for rate constant
predictions, although it is slightly less accurate than CB (mean
R2 = 0.86–0.90).

Fig. 5 Ab initio versus predicted kISC(T1 - Sn), kISC(T1 - S1), and kISC(T1- S2) rate constants, denoted as n, 1, and 2, respectively. The predicted values,
obtained using random forest, CatBoost, and neural network models, are labeled as a, b, and c, respectively. The solid black line represents y = x, while
the dashed line corresponds to the linear regression fit. The legend displays the mean and standard deviation of R2, RMSE, and MAE metrics across five
runs with different random seeds. The plots are based on the identical train-test splits. The random seed is 339 087.
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In this study, we assess the error of our ML models based on
their ability to predict quantum chemistry-derived rate con-
stants. This level of accuracy is comparable to that typically
observed in quantum chemical calculations when compared
to experimental data.49,50 The degree of precision is gene-
rally sufficient for predicting chemical reaction yields or

photophysical processes,49 at least in cases where the rates of
competing processes are substantially different.

We now consider the ISC from T1 to S2, S3, and S4. In Fig. 5,
Tables 1–3, the best predictions for kISC(T1 - S2), kISC(T1 - S3),
and kISC(T1 - S4) are achieved with CB, where the mean R2 is
0.87, 0.93 and 0.84, respectively. The prediction of zero values

Table 1 Root mean squared error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and the MAE for each of the 10 considered
dimers, comparing ab initio and predicted orders of the ISC rate constants (T1 - S1, T1 - S2, T1 - S3, T1 - S4, T1 - Sn) using Random Forest regressor.
The metrics were obtained using the optimal set of custom descriptors

T1 - S1 T1 - S2 T1 - S3 T1 - S4 T1 - Sn

MSE 0.99 � 0.010 0.47 � 0.015 0.80 � 0.017 1.46 � 0.023 0.38 � 0.009
RMSE 0.99 � 0.005 0.69 � 0.011 0.89 � 0.010 1.21 � 0.010 0.62 � 0.007
MAE 0.76 � 0.004 0.46 � 0.004 0.58 � 0.005 0.84 � 0.007 0.42 � 0.004
R2 0.89 � 0.002 0.83 � 0.007 0.91 � 0.002 0.77 � 0.003 0.83 � 0.006

Table 2 Root mean squared error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and the MAE for each of the 10 considered
dimers, comparing ab initio and predicted orders of the ISC rate constants (T1 - S1, T1 - S2, T1 - S3, T1 - S4, T1 - Sn) using CatBoost regressor. The
metrics were obtained using the optimal set of custom descriptors

T1 - S1 T1 - S2 T1 - S3 T1 - S4 T1 - Sn

MSE 0.89 � 0.008 0.38 � 0.010 0.63 � 0.009 1.04 � 0.010 0.31 � 0.005
RMSE 0.95 � 0.004 0.62 � 0.008 0.79 � 0.006 1.02 � 0.005 0.56 � 0.004
MAE 0.72 � 0.003 0.42 � 0.003 0.54 � 0.003 0.73 � 0.003 0.38 � 0.002
R2 0.90 � 0.001 0.87 � 0.005 0.93 � 0.002 0.84 � 0.001 0.86 � 0.004

Table 3 Root mean squared error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and the MAE for each of the 10 considered
dimers, comparing ab initio and predicted orders of the ISC rate constants (T1 - S1, T1 - S2, T1 - S3, T1 - S4, T1 - Sn) using feed forward neural network

T1 - S1 T1 - S2 T1 - S3 T1 - S4 T1 - Sn

MSE 1.11 � 0.013 0.52 � 0.018 0.91 � 0.019 1.52 � 0.028 0.42 � 0.005
RMSE 1.05 � 0.006 0.72 � 0.013 0.96 � 0.010 1.23 � 0.011 0.65 � 0.004
MAE 0.80 � 0.002 0.49 � 0.007 0.65 � 0.014 0.87 � 0.008 0.45 � 0.003
R2 0.88 � 0.002 0.82 � 0.009 0.90 � 0.002 0.76 � 0.003 0.81 � 0.004

Fig. 6 Ab initio versus predicted values of the kISC(S1 - T1) (a) and kISC(T1 - Sn) (b) obtained with RF model and MBTR descriptors in one run. The black
solid line is y = x, and the dashed line is the linear regression. Legend presents the mean and standard deviation of R2, RMSE, and MAE averaged over five
runs with different random seeds.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
ge

as
se

m
án

nu
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

02
6-

01
-0

8 
04

:5
0:

52
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp01101a


14812 |  Phys. Chem. Chem. Phys., 2025, 27, 14804–14814 This journal is © the Owner Societies 2025

for all rate constants is particularly problematic, as it contri-
butes to the large mean errors in overall predictive accuracy.
Additionally, the endothermic nature of the electronic transi-
tions from T1 to S2, S3, and S4 makes their rate constants highly
sensitive to temperature and the energy gap, in contrast to
kISC(T1 - S1).

3.2. The RF based on MBTR descriptors

We next evaluated the performance of our custom molecular
descriptor set. To do this, we have used the established MBTR
descriptor with RF to predict kISC(T1 - S1) and total kISC(T1 - Sn).
The result is shown in Fig. 6. The R2 values for the RF model
trained with MBTR are 0.82 and 0.73 for kISC(T1 - S1) and total
kISC(T1 - Sn), respectively. The MAE values are 0.97 and 0.53,
indicating that the average prediction errors for kISC(T1 - S1) and
total kISC(T1 - Sn) are within one order of magnitude. As with our
custom descriptor, large deviations are observed in regions where
either kISC(T1 - S1) or kISC(T1 - Sn) are zero or close to zero. The
results obtained with MBTR (R2 = 0.73–0.86) are slightly worse than
the simulated result gained by RF based on our custom descriptors
(R2 = 0.86–0.90). Thus, the MBTR result gives almost similar results
as in the case of our custom molecular descriptors. We can
conclude our custom molecular descriptor set is comprehensive
enough to match MBTR results.

3.3. Feature selection

The feature-selected molecular descriptors used with the CB
models are summarized in Tables 4 and 5. R2 indicates the
accuracy of the rate constant prediction as the number of
molecular descriptors increases. For example, using only the
C1–C2 descriptor for the kISC(T1 - S1) constant gives R2 = 0.66,
while using it together with the min_dist increases R2 to 0.755.

As shown in Table 4, the primary descriptors with a strong
correlation for kISC(T1 - S1) are the internuclear distances
between atoms associated with different radicals. Overall, the

most significant general correlated parameter is the internuc-
lear distance between radicals. Interestingly, the angles
between C–O� bonds with spins do not play an important role
here. At the same time, achieving R2 = 0.861 requires only 8
descriptors. In contrast, for kISC(T1 - S2), achieving R2 = 0.7112
requires 18 descriptors, most of which are intramolecular
distances within one radical. Similarly, for kISC(T1 - S3) and
kISC(T1 - S4), intramolecular distances serve as key molecular
descriptors. For kISC(T1 - Sn), the main descriptors are almost
the same as for kISC(T1 - S2), with the addition of the distance
between the radicals.

4. Summary and conclusion

The machine learning (ML) investigation of intersystem cross-
ing (ISC) rate constants of alkoxy radical pairs was conducted
using different methods such as CatBoost (CB), random forest
(RF), and neural networks (NN), with two different molecular

Table 4 Custom feature-selected descriptors in descending order of importance for predicting the order of kISC(T1 - S1), kISC(T1 - S2), kISC(T1 - S4),
kISC(T1 - S4) rate constants obtained with CatBoost model, and R2 values obtained by using the best ranked descriptors

kISC(T1 - S1) kISC(T1 - S2) kISC(T1 - S3) kISC(T1 - S4)

Parameter R2 Parameter R2 Parameter R2 Parameter R2

C1–C2 0.663 +(B1,C1,Ou1) 0.008 +(A1,C1,Ou1) 0.240 B1–C1 0.134
min_dist 0.755 +(B2,C2,Ou2) 0.031 +(B2,C2,Ou2) 0.459 +(B2,C2,Ou2) 0.289
Ou1–Ou2 0.802 +(A1,C1,Ou1) 0.066 +(A2,C2,Ou2) 0.608 +(A2,C2,Ou2) 0.394
min(C–C) 0.817 +(A1,C1,B1) 0.077 +(B1,C1,Ou1) 0.667 B2–C2 0.470
C1–Ou2 0.838 +(A2,C2,B2) 0.086 C2–Ou2 0.725 min_dist 0.533
C2–Ou1 0.846 C2–Ou2 0.091 +(Ou1,C1,H11) 0.768 +(B1,C1,Ou1) 0.577
B1–Ou2 0.855 Ou1–Op1 0.103 C1–Ou1 0.818 +(A1,C1,Ou1) 0.635
B2–Ou1 0.861 +(A2,C2,H12) 0.127 +(A2,C2,H12) 0.831 +(A1,C1,B1) 0.667

C1–Ou1 0.142 min_dist 0.850 +(Ou1,C1,H11) 0.683
+(Ou2,C2,H12) 0.397 min(O–O) 0.881 Ou1–Ou2 0.719
+(Ou1,C1,H11) 0.500 min(O–O) 0.729
+(A1,C1,H11) 0.559 +(Ou2,C2,H12) 0.744
min(O–O) 0.663 min(H–H) 0.759
+(A2,C2,Ou2) 0.692 C1–C2 0.772
A2–C2 0.690 Ou1–Op1 0.803
min_dist 0.711 Ou2–Op2 0.812
A1–C1 0.711
Ou2–Op2 0.712

Table 5 Custom feature-selected descriptors in descending order of
importance for predicting the order of kISC(T1 - Sn) rate constants
obtained with CatBoost model

kISC(T1 - Sn)

Parameter R2

+(A1,C1,Ou1) 0.132
+(B2,C2,Ou2) 0.402
+(B1,C1,Ou1) 0.526
C1–Ou1 0.583
B1–C1 0.628
+(A2,C2,Ou2) 0.693
C2–Ou2 0.715
+(A1,C1,B1) 0.743
+(A2,C2,B2) 0.764
Ou1–H21 0.787
+(B1,C1,H11) 0.795
+(B2,C2,H12) 0.803
B2–C2 0.808
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descriptors. The best results were obtained using CB, with R2

coefficients exceeding 0.85 and MAE values within one order of
magnitude for all rate constants. The absolute maximum error
can reach up to 2 orders of magnitude for rate constants at their
higher values. The worst results are obtained for the smallest
values. with errors of about 4 orders of magnitude. This level of
accuracy is typically sufficient for estimating the quantum yield
of photophysical processes or chemical reactions.42

Previous studies have shown that kISC(T1 - S1) mainly
depends on the distance between radicals and is only slightly
influenced by angles.24 Our ML results confirm this observa-
tion. However, the overall ISC rate kISC(T1 - Sn) is actually
dominated by kISC(T1 - S2), which depends on the relative
orientation of the two radicals in a more complex manner.
Furthermore, the rate constants kISC(T1 - S2), kISC(T1 - S3),
and kISC(T1 - S4) correspond to non-spontaneous (reverse)
ISCs, i.e., the final state is higher in energy than the initial
state. It is worth noting that calculating reverse ISC rate
constants is challenging even for quantum chemical
methods,49 as they strongly depend on the energy gap via the
Boltzmann factor. The typical accuracy of quantum chemical
calculations for energy gaps, around 0.1–0.3 eV, is often insuf-
ficient for rate constant calculations within one order of
magnitude, resulting in deviations of 2–3 orders of
magnitude.49,50 Therefore, the ML models give results compar-
able to quantum chemical calculations but much faster.
Although we investigated and confirmed this relationship for
alkoxy radical pairs, given the fundamental nature of this
dependence, it should also hold for any radical pairs – with
the caveat that specific descriptors may be needed to describe
ISCs to higher singlet states (e.g. S2� � �S4).

Although our ML models do not provide a comprehensive
analytical relationship between the ISC rate constant and
molecular structure, they can be used to identify important
structural features for rate constant prediction and thus
improve our understanding of the ISC process. The ML model
can also serve as a rapid estimation tool for kISC, without the
need for quantum chemical calculations, with its generaliz-
ability constrained only by the scope of its training data.

While the present model achieving average order-of-
magnitude accuracy will already be extremely useful for atmo-
spheric modelling purposes, we anticipate that ongoing ML
method development, for example within the SPAINN51 frame-
work where molecular dynamics is used for data generation,
will allow even greater predictive accuracy.
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J. Phys. Chem. A, 2019, 123, 6596–6604, DOI: 10.1021/
acs.jpca.9b02559.

7 G. Hasan, R. R. Valiev, V.-T. Salo and T. Kurtén, J. Phys. Chem.
A, 2021, 125, 10632–10639, DOI: 10.1021/acs.jpca.1c08969.

8 G. Hasan, V.-T. Salo, R. R. Valiev, J. Kubečka and T. Kurtén,
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