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Quantifying anomalous chemical diffusion
through disordered porous rock materials†

Ashish Rajyaguru, *ab Ralf Metzler, cd Andrey G. Cherstvy c and
Brian Berkowitz b

Fickian (normal) diffusion models show limitations in quantifying diffusion-controlled migration of solute

species through porous rock structures, as observed in experiments. Anomalous diffusion prevails and

can be interpreted using a Continuous Time Random Walk (CTRW) framework with a clear mechanistic

underpinning. From the associated fractional diffusion equation we derive solutions over a broad range

of anomalous diffusion behaviours, from highly anomalous to nearly Fickian, that yield temporal

breakthrough curves and spatial concentration profiles of diffusing solutes. We illustrate that these

solutions can be tailored to match realistic experimental conditions and resulting measurements that

display anomalous diffusion. In particular, our analysis enables clear differentiation between early-time

Fickian and anomalous diffusion, which becomes more pronounced over longer durations. It is shown

that recent measurements of diffusion in natural rocks display distinct anomalous behaviour, with

significant implications for critical assessment of solute migration in diverse geological and engineering

applications.

1 Introduction

Mass transport of dissolved solutes is crucial in geological,
biological, and engineering contexts. Mass transport that is sub-
ject to advection in a host liquid—chemical transport—is evident
in scenarios such as contaminant release during aquifer recharge,
drainage, or discharge cycles,1–5 and in the displacement of
hydrocarbons from fractured rock networks.6 Conversely, in the
absence of a velocity, diffusion governs the migration dynamics of
dissolved solutes. Studies have shown that diffusion-dominated
processes play a pivotal role in systems that involve molecular
transport in microorganisms and dense liquids,7 the dispersion of
contaminants in freshwater systems,8 nutrient migration in soils
and root uptake,9 long-term performance of solid electrolytes
and fuel cells,10,11 subsurface radioactive waste disposal,12 CO2

sequestration,13 biomineralisation,14 the weathering of heritage
sites,15 and hydrogen storage.16,17

A common denominator in these studies is that the intricate
interactions between the properties of porous materials and

solute species dictate the nature of chemical diffusion in a
porous medium.18 Disordered porous media can induce
complex local dynamics, such as heterogeneous travel times
within the pore network, solute entrapment in dead-end pores,
surface adsorption on pore walls, and/or consumption via sink
terms. These localised phenomena significantly affect the
initial solute distribution within the porous matrix, the local
residence times, and the subsequent temporal release.

In the past two decades, biophysical research has provided
compelling evidence that the interaction of solutes with hetero-
geneous porous media leads to ‘‘anomalous diffusion’’ behaviours
that deviate from classical Fickian diffusion. Deviations from
Fickian diffusion are exhibited during subdiffusion of mRNA
within densely packed cytoplasmic membranes of E. coli, macro-
molecule dynamics in cell membranes and gels, and pathways for
drug delivery in cerebral extracellular spaces.19–24 And yet, in
contrast, chemical diffusion in geological studies has been—and
generally continues to be—assumed to adhere to classical Fickian
principles. Simulation studies demonstrating anomalous diffusion
in porous media are typically hampered by the multiple scales
necessary for its description. Concretely, molecular dynamics
simulations demonstrate that anomalous diffusion arises for Ag+

ions and doxorubicin drug molecules interacting with silica
surfaces.25,26 How to bridge scales in simulation approaches is
discussed in Bousige et al.,27 albeit without the occurrence of
anomalous diffusion—this would likely emerge for more pro-
nounced tracer–surface interactions as shown in the above cita-
tions. With Monte Carlo simulations, anomalous diffusion is
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known to persist in effective models for porous structures based
on random fractal structures of percolation clusters;28,29 see also
NMR experiments using such structures.30 A recent experimental
study presented high-resolution datasets that examined bromide
diffusion through several natural chalk and dolomite rock sam-
ples, revealing that the long-time pattern of bromide diffusion
exhibited distinctly non-Fickian, anomalous, behaviour.31

Measurements to assess and quantify diffusion-controlled
solute migration in (generally water-saturated) porous materi-
als, particularly in naturally heterogeneous rock samples, typi-
cally rely on a constant concentration inlet source to induce
diffusive migration through an effectively (macroscopically)
one-dimensional domain, with measurements of concentration
at the outlet over time, known as ‘‘breakthrough curves
(BTCs)’’. In this context, Metzler et al. (2022)32 proposed that
the Continuous Time Random Walk (CTRW) framework can be
used to derive anomalous diffusion solutions and corres-
ponding BTCs. The CTRW accounts for solute spreading with
immobilisation times t distributed according to a power-law
probability density function (PDF) that, at long times, scales as
c(t) C t�1�b.‡ Here the scaling exponent 0 o b r 1 controls
the degree of deviation from Fickian diffusion (b = 1). Metzler
et al. (2022)32 outlined a mathematical approach to evaluate
BTC and flux solutions for anomalous diffusion across a range
of b values, developing asymptotic solutions for long-time
behaviour, and a full BTC solution for the special case of
b ¼ 1=2.

The present study focuses on (i) developing semi-analytical
solutions that yield full BTC and spatial concentration profiles
over the range 0 o b r 1, and then (ii) applying these
quantitative tools to fully quantify and interpret measurements
of diffusion in unique rock core experiments.31 To illustrate
the differences between anomalous and Fickian diffusion, we
present the BTC and flux solutions representing solute diffusion
through macroscopically one-dimensional porous domains
under constant inlet and semi-infinite outlet boundary condi-
tions. We demonstrate the ability of the CTRW-based solutions
to quantify the experimental measurements and show how b
controls both the initial arrival times and long-time tailing of the
BTC and flux solutions, distinct from Fickian diffusion beha-
viour. Finally, we highlight the disparity between large-scale
chemical diffusion described by Fickian and anomalous models,
emphasising the significance of considering anomalous diffu-
sion in geological systems and its implications for critical
interpretation of diffusion-driven processes in subsurface zones.

2 Anomalous diffusion model

In a seminal 1905 paper, Einstein investigated the physical
mechanisms that cause the random motion of particles sus-
pended in fluids, also known as Brownian motion;33 he postu-
lated that these erratic movements arise from the continuous
bombardments by thermalised water molecules.34 Drawing on

the principles of the central limit theorem, he proposed the
existence of a finite correlation time beyond which the displace-
ment of particles becomes statistically independent and identi-
cally distributed. Einstein introduced the concept of the mean
squared displacement (MSD) to describe the average distance a
particle can travel freely before encountering neighbouring
particles. Further insight into diffusion and their connection
to chemical reactions was provided by Smoluchowski.35

Building on these foundational concepts, Einstein arrived at
the famous diffusion equation and thereby linked Brownian
motion to the macroscopic spreading of particles:

@P1ðx; tÞ
@t

¼ K1
@2P1ðx; tÞ

@x2
(1)

where K1 is the diffusion coefficient (physical dimensions:
length2/time) and P1(x,t) the PDF for finding the particle at
location x and time t. If the particle is released from its origin
(x = 0) in an unbounded space, then the solution of eqn (1),
essentially the Green’s function of eqn (1), is the scaled
Gaussian of the form

P1ðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pK1t
p exp � x2

4K1t

� �
: (2)

Eqn (2) can be integrated using the relationship hx2ðtÞi ¼Ð1
�1x

2P1ðx; tÞdx ¼ 2K1t to obtain the MSD.19 In this case, the
MSD shows that particle spreading via Brownian motion
evolves linearly with time.

The theory of anomalous diffusion is based on a large variety of
different stochastic models, depending on the physical mechan-
isms underlying the observed dynamics.19 One of the most impor-
tant anomalous diffusion models is the CTRW framework, that
models subdiffusion processes with anomalous diffusion exponent
0 o b r 1 for a scale-free immobilisation time PDF of the form
c(t) C t�1�b.19,36 Unlike Brownian motion, the spreading of
particles in a fixed lattice, under anomalous diffusion, is charac-
terised by a power-law relationship between the MSD and time
given by hx2(t)iC tb. For example, power law waiting time densities
and power law MSDs were measured in porous media using a
single-particle tracking approach.37 Mathematically, the behaviour
of the PDF for such scale-free CTRWs in the hydrodynamic limit is
governed by the time-fractional diffusion equation36

@Pðx; tÞ
@t

¼ 0D
1�b
t Kb

@2

@x2
Pðx; tÞ; (3)

where Kb (physical dimensions: length2/timeb) is the generalised

diffusion coefficient, and the time-fractional derivative 0D
1�b
t is

defined in the Riemann–Liouville sense as

0D
1�b
t Pðx; tÞ ¼ 1

GðbÞ
@

@t

ðt
0

Pðx; t 0Þ
ðt� t 0Þ1�bdt

0: (4)

Based on the fractional diffusion eqn (3) the PDF P(x,t) can
be obtained via the subordination method, translating the
‘‘operational time’’ s into the laboratory time t,§ that can be

‡ We use C to describe the long-time behaviour ignoring proportionality con-
stants, while B denotes asymptotic equality.

§ In the CTRW picture s corresponds to the number of jumps, and the sub-
ordination method introduces the long-tailed immobilisation times.38
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phrased as an integral relation of the form32,36,39

Pðx; tÞ ¼
ð1
0

Ebðs; tÞP1ðx; sÞds: (5)

Here P1(x,s) represents the Gaussian PDF (2) for normal diffu-
sion, and the subordination kernel Eb is given by the modified
one-sided Lévy-stable PDF36

Eb ¼
1

s

X1
n¼0

ð�1Þn
n!Gð1� b� bnÞ

s

kbtb

� �
1þn; (6)

where the coefficient kb = Kb/K1 has the dimension time1�b. For
b ¼ 1=2, b assumes the simple Lévy-Smirnov form32,36

E1
2
ðs; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

pk2
1=2t

q exp � s2

4k2
1=2t

 !
: (7)

On this basis, the PDF P(x,t) for b ¼ 1=2 was presented in
Metzler et al. (2022).32

Fig. 1 compares the particle spreading from a point source
into an unbounded space due to Brownian and anomalous
diffusion. These solutions were derived by setting t = 5 and
allowing x to vary between �5 and 5 for the Brownian PDF
P1(x,t) in eqn (2) and for the anomalous PDF P(x,t), eqn (A4) in
the ESI† for b ¼ 1=2. Fig. 1 illustrates the Gaussian form (b = 1)
with its smooth spreading from a point source. In contrast, in
the anomalous case the shape for b ¼ 1=2 exhibits a notable
cusp at the origin, reflecting the slow decay of the probability of

not moving fðtÞ ¼
Ð1
t cðtÞdt ’ t�b up to time t. This cusp

becomes more prominent for smaller anomalous diffusion
exponents. In fact, this cusp behaviour stems from terms such
as |x| in the PDF (eqn (A4) in the ESI†). We note that instead of
the Gaussian tails for b = 1, in the anomalous diffusion case the
tails are governed by a stretched Gaussian of the leading form
P(x,t) p t�b/2[|x|/tb/2]�(1�b)/(2�b)exp(const[|x|/tb/2]1/(1 �b/2)).36

The deviations of the PDF for b a 1 from classical Brownian
motion indicate the need for further investigation into the char-
acteristics of anomalous diffusion. To explore how variations in
the value of b influence the localisation of particles near the origin
and their subsequent release away from the origin, we performed
the subordination integration and derived the PDF across seven
distinct b values: b ¼ 4=5; 3=4; 2=4; 2=5; 1=3; 1=5; and 1=9. The
shapes of the subordination kernel Eb for the selected b values are
reported as eqn (S-1) to (S-7) in the ESI.† The PDFs for these b
values were evaluated by performing the subordination integration
(5) based on eqn (2) and each of the newly derived Eb forms. The
resulting PDFs from this integration are reported as eqn (A1)–(A8)
in the ESI.† These eight representative cases illustrate that the
subordination integration can, in principle, yield analytical solu-
tions for any rational b value within the interval 0 o b r 1.

The PDFs for the selected anomalous diffusion cases
reported in Fig. 1a and b demonstrate that all anomalous
diffusion solutions exhibit a pronounced cusp near the origin.
Notably, as the b values decrease, the relative height of the cusp
increases, and the spreading away from the origin decreases at
the shown intermediate x. For instance, in Fig. 1a, the peak
heights and spreading behaviour for the cases b ¼ 4=5 and b ¼
3=4 rather closely resemble (apart from the cusp) the particle
spreading observed for the Brownian PDF. In contrast, in
Fig. 1b, the peak heights for b ¼ 1=5 and b ¼ 1=9 are signifi-
cantly higher than the Brownian solution, leading to a more
pronounced localisation of the PDF at the origin. Thus, the
anomalous diffusion solutions indicate that the decrease in b
values results in the release of particles at pronouncedly longer
times, leading to particle clustering near the origin. In the next
section, we will see how this particle spreading is reflected in
the diffusion dynamics through an effectively one-dimensional
disordered porous material.

We note that it is also possible to derive the flux solutions
from the analytical solutions of the Brownian and anomalous
diffusion cases. For the Brownian case, differentiating eqn (2)
with respect to x yields the flux

F1ðx; tÞ ¼ �
x

4
ffiffiffi
p
p
ðK1tÞ3=2

exp � x2

4K1t

� �
: (8)

Replacing P1(x,s) with F1(x,s) in eqn (5) and repeating the
subordination integration produces the analytical flux solu-
tions for anomalous diffusion.

For anomalous diffusion, the flux solutions for the eight b
values are reported in eqn (B1)–(B8) in the ESI.† Note that the
diffusion coefficient K1 in eqn (2) is set to 1 during the
subordination integration. For Eb in eqn (7) and eqn. (S-1)–(S-7),
kb is also set to unity. Because both coefficients have generalised

Fig. 1 The spreading of particles from a point source into an unbounded
one-dimensional space at t = 5 for Brownian and eight distinct anomalous
cases with 0 o bo 1. For the Brownian case (b = 1), the black curve shows
smooth particle spreading behaviour from the origin. Anomalous diffusion
plots show the increase in localisation of particles near the origin in the
form of a cusp and the concomitant slower release away from the origin
with a decrease in b values. In the plots we set K1 = Kb = 1.
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length and time units, the resulting PDFs are dimensionless in this
non-dimensional choice. The next section revisits the diffusion
coefficients to dimensionalise the BTCs to physical time and
space units.

3 Results and discussion
3.1 Breakthrough curves and flux

In 1855, Fick combined the continuity equation with a constitutive
equation (Fick’s first law), according to which the flux is propor-
tional to the chemical gradient and the mass transport of solute
species occurs from higher to lower concentration regions. This
produces the diffusion equation (Fick’s second law) for the
chemical concentration field C(x,t),40

@Cðx; tÞ
@t

¼ D1
@2Cðx; tÞ
@x2

: (9)

Eqn (9) is analogous to eqn (1) except that the PDF P1(x,t) is
replaced by the chemical concentration field C(x,t).41 In this
formulation, the diffusion coefficient K1 is replaced by the ‘‘mass’’
diffusion coefficient D1 (cm2 d�1),¶, which describes the rate at
which solute species spread in a fluid domain.42–46

Experimental campaigns typically study solute diffusion, effec-
tively (macroscopically) one-dimensional, from a constant-concen-
tration inlet source through a porous material.18,47–50 The resulting
datasets are often presented as BTCs that illustrate the temporal
change in relative concentration C(x,t)/C0 measured at the point
x away from the inlet source of the sample. For these specific
boundary conditions, the analytical solution to eqn (9) reads

Cðx; tÞ
C0

¼ erfc
xffiffiffiffiffiffiffiffiffiffi
4D1t
p
� �

; (10)

where erfc is the complementary error function.51 The value of
D1 can be optimised in eqn (10) to obtain a numerical BTC that fits
the experimental BTC. Given that the diffusion coefficient is
measured in cm2 d�1, the resulting BTC is ‘‘dimensionalised’’ to
align with experimental space and time units of centimetres and
days, respectively.

The subordination integration method based on relation (5)
and explained in Section 2 can be repeated to obtain the BTCs
for the anomalous diffusion case under constant-concentration
inlet and semi-infinite boundary conditions, corresponding to
subordinating the Fickian expression (10) with Eb for different b.
Metzler et al. (2022)32 reported the BTC for the analytically
tractable case of b ¼ 1=2, for which the result in eqn (7) is used.
Consequently, the resulting BTC illustrates concentration
spreading from a constant-concentration inlet source through
effectively one-dimensional porous material under the influence
of anomalous diffusion. The study utilised the NIntegrate com-
mand in Mathematica to perform the subordination integral.
The resulting BTCs for both the Fickian case and the anomalous
case with b ¼ 1=2 (along with other b values) are presented in

Fig. 2. It is important to note that the value of the diffusivity D1 in
eqn (10) was set to 1 cm2 d�1 when performing the subordina-
tion integral. Similarly, the anomalous scaling coefficient k1/2 in
eqn (7) was set to 1 d1/2. These coefficients dimensionalise the
resulting breakthrough curves into physical space and time units

Fig. 2 Normalised BTCs (a and b) and residual BTCs (c and d) for both the
Fickian and anomalous models. These solutions are based on diffusion through
a 1 cm thick, porous material, i.e., x = 1 in our units. The linear plots illustrate
that a decrease in the b value results in a sharper initial arrival of solute species
compared to the Fickian case. The residual plots demonstrate that the long-
time tails for the Fickian model decay strictly with a slope of �1=2. Conversely,
the long-time tails for b ¼ 4=5; 3=4; 2=3; 1=2; 2=5; 1=3; 1=5; and 1=9 decay
with slopes of �2=5; �3=8; �1=3; �1=4; �1=5; �1=6; �1=10 and � 1=18,
respectively.

¶ Lab-scale diffusion experiments are typically conducted through centimetre
scale samples and the BTCs are obtained in time scales of days. Therefore, the
unit of cm2 d�1 is typically used for the resulting mass diffusion coefficient.
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of centimetres and days, respectively. Throughout Section 3.1,
the normal diffusion coefficient and anomalous anomalous
scaling coefficients are set equal to 1 in the corresponding units
while deriving the BTCs using the subordination integration
for different b values. They are converted to their specific
dimensional values in the following section when adjusted to
experimental data.

Fig. 2 illustrates the normalised BTCs for Fickian diffusion
and anomalous diffusion with b a 1. The BTCs Cb(x,t)/C0 are
plotted on linear scales, while the residual BTCs (1 �Cb(x,t)/C0)
are depicted on log10–log10 scale, to highlight the power-law
asymptote. The two top panels (a and b) in this figure depict the
BTCs and the two bottom panels (c and d) depict the residual
BTCs. Let us first discuss the particular cases b = 1 versus
b ¼ 1=2. Fig. 2a shows that the BTC for anomalous diffusion
with b ¼ 1=2 has a steeper initial increase in C/C0 than Fickian
diffusion. The long-time diffusion behaviour can be assessed by
examining the tails36

1 � Cb(x,t)/C0 B x/[G(1 � b/2)tb/2] (11)

of the residual BTCs. Fig. 2c indicates that the slope of the long-
time tail for the Fickian BTC is �1=2. Utilising the relationship
b = 2|slope| we find that b = 1 for Fickian diffusion, as it should
be. Fig. 2c also presents the residual BTC for anomalous
diffusion for the case b ¼ 1=2. Notably, the slope of the long-
time tail for this residual BTC is �1=4, which is strictly less than
the value�1=2 observed in the Fickian diffusion case. Thus, it can
be concluded that anomalous diffusion results in a slower release
of solutes over time compared to Fickian diffusion, as expected.
Throughout the ensuing discussion and data presentation, the
sharp increase of C/C0 at initial time intervals in the BTCs and the
slope of the tails of the residual BTCs will be referred to as initial
arrival times and long-time tailing, respectively.

The numerical subordination integration approach intro-
duced by Metzler et al. (2022)32 for the specific case b ¼ 1=2 can
be extended to scenarios when b is a rational number, and the
time kernel then can be shown to consist of, e.g., simple
exponential, Airy, or lower-order Fox H-functions. In that study,
kernels for b ¼ 3=4; 2=3 and 1=3 were constructed using these
relatively simple functions. The BTCs and the residual BTCs for
the three anomalous diffusion cases were obtained by perform-
ing the subordination integration between the time kernel of
each b value (eqn (S-2), (S-3), and (S-5)) and the solution to
Fickian diffusion (eqn (10)). Fig. 2 we show the BTCs and
residual BTCs for these and several other b values along with
the Fickian case. As can be seen in panels (a) and (b) of Fig. 2 the
linear BTCs increasingly deviate from the Fickian case b = 1 for
decreasing b values, with steeper behaviour at short times and
slower increase of Cb(x,t)/C0 at longer times. We note that any
real-valued b can be well approximated by a rational number.

The residual BTCs depicted in panels (c) and (d) of Fig. 2
show the crossover from the initial value 1 � Cb(x,0)/C0 = 1 to
the long time inverse power-law behaviour 1 � Cb(x,t)/C0 B x/
[G(1 � b/2)tb/2]. For instance, for anomalous diffusion with b ¼
3=4; 2=3; and 1=3 the slopes of the long-time tails are
�3=8; �1=3; and � 1=6, respectively. These slopes indicate that

Fig. 3 The flux J(x,t) vs. t (a and b) and log10(J(x,t)) vs. log10(t) (c and d)
for both Fickian and anomalous models. These plots represent the
solutes crossing the point x = 1 cm of a semi-infinite porous material.
The linear plots illustrate that a decrease in the b value results in a sharper
initial flux rise compared to the more gradual rise in the Fickian case. The
log–log plots demonstrate that the decrease in b values causes a slight
decrease in the maximum flux compared to the Fickian model. Once the
maximum flux is attained, the long-time tails of the Fickian model strictly
decay with the slope �1=2, while the long-time tails for b a 1 corresponds
to �b/2.
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a decrease in the value of b results in a slower release of solutes
from the outlet sample boundary in anomalous diffusion,
relative to Fickian diffusion. The experimental data presented
below in Fig. 4 clearly demonstrate a relevant power-law beha-
viour with b a 1 supporting the CTRW approach.

On a more technical note, for the cases b ¼ 4=5; 2=5;

1=5; and 1=9, the calculation of BTCs using the NIntegrate method

between eqn (10) and each of eqn (S-1), (S-4), (S-6), and (S-7)
is limited by oscillating terms in the higher-order H-functions.
To resolve this issue, we incorporated a ‘‘stability term’’ m(s,t)
with an exponential decay into the subordination integral in the
form Cbðx; tÞ ¼

Ð1
0 Ebðs; tÞCðx; sÞmðs; tÞds, to enforce the conver-

gence. The exact form of the individual stability terms for b ¼
4=5; 2=5; 1=5; and 1=9 are detailed in the ESI† along with

Fig. 4 Fickian (black line) and anomalous (red line) solutions represented as (left panels) BTCs and (right panels) residual BTCs. The numerical BTCs/
residual BTCs are plotted against the experimental data (black points) obtained from bromide diffusion experiments31 through three porous rock samples.
The red lines correspond to (a and b) b ¼ 1=2 for DP, (c and d) b ¼ 2=3 for EY, and (e and f) b ¼ 1=5 for SL, respectively. The solutions are calculated for
solute diffusion through an effectively one-dimensional, semi-infinite porous medium with sampling point x = 1 cm. The residual BTCs show that the
long-time tails of anomalous diffusion always decay with a slope shallower than �1=2 (the slope for the Fickian case). The measured data interpolate
between a short-time Fickian behaviour and clear anomalous diffusion with b a 1 are intermediate- to long-times.
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numerical proof that this trick does not significantly change the
behaviour of the resulting BTCs in the relevant time window. As
shown in Fig. 2 the results for these smaller b values for both the
linear BTCs and the residual BTCs continue the discussed trends
away from the Fickian case for decreasing b.

Alternatively, the datasets can be represented in terms of the
flux J(x,t), describing the number of particles crossing the point
x as function of time.52–54 The flux for Fickian diffusion can be
evaluated by differentiating eqn (10) with respect to x, yielding

Jðx; tÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffi
pD1t
p exp � x2

4D1t

� �
: (12)

At short times, the flux is exponentially suppressed, reflecting the
finite time it needs the diffusing substance to reach the location x.
At long times the flux has a t�1/2 power-law decay. At intermediate
times the flux has a maximum, as can be seen in Fig. 3. The flux
decays for increasing times because the gradient around finite x
decreases slowly when more solute material passes this point. For
anomalous diffusion the flux for all values of time can be evaluated
using the subordination approach relating Jb with eqn (12) via the
subordination kernel Eb. At long times the flux has the inverse
power-law behaviour Jb(x,t) B C0/[G(1 � b/2)tb/2].32 The resulting
flux curves for various b are displayed in Fig. 3.

The rapid increase in flux suggests that pore solution equili-
bration with the solutes due to anomalous diffusion occurs more
rapidly than for the Fickian case. The long time shapes also
indicate that solutes with anomalous diffusion are released at
slower rates over extended periods than those for Fickian diffu-
sion. Thus, these differences can result in variations in the initial
spreading of solutes, mean residence and trapping times of
solutes in pore spaces, and the long-term release of solutes from
the porous material.

3.2 Modelling diffusion experiments

The BTCs and flux solutions can be dimensionalised to experi-
mental conditions to quantify experimental diffusion results. This
section will examine the datasets from a recent experimental
study conducted by Rajyaguru et al. in 2024,31 which investigated
the diffusion of bromide through porous rock samples composed
of chalk and dolomite. We focus on three specific experimental
datasets from this research: Desert Pink PL, Edwards Yellow PL,
and Silurian Dolomite PL, referred to as DP, EY, and SL, respec-
tively. These diffusion datasets were obtained under a constant
concentration at the inlet and a semi-infinite outlet boundary and
reported in Fig. 4, respectively. The associated b values for the
long-time tails were estimated from the residual BTCs using the
relationship b = 2� |slope|. Table 1 presents these experimental b
values, which are clearly less than the Fickian diffusion exponent
of 1. Furthermore, the experimental datasets presented in
Rajyaguru et al. (2024)31 were compared with asymptotic
curves derived under the Fickian case, using the relationship
1� Cbðx; tÞ=C0 � x=

ffiffiffiffiffiffiffiffi
D1t
p

, and for the anomalous case, repre-

sented by 1� Cbðx; tÞ=C0 � x= Gð1� b=2Þ
ffiffiffiffiffiffiffiffiffiffi
Dbtb

p� �
. By optimis-

ing the standard diffusion coefficient (D1, in cm2 d�1) in the
Fickian case and the anomalous diffusion coefficient (Db, in cm2

d�b) in the anomalous case, these asymptotic solutions were
tailored to align with the experimental conditions. Rajyaguru et al.
(2024)31 found notable correlations between the asymptotic anom-
alous plots and the long-time tails observed in the experimental
data. As a result, the study concluded that the long-time concen-
tration tails exhibited anomalous behaviour.

In an initial effort to quantify the results, the Fickian
diffusion-based BTCs were plotted against experimental data-
sets, as shown in Fig. 4. These BTCs were derived by dimensio-
nalising eqn (10) with normal diffusion coefficients of 0.04 for
DP, 0.09 for EY, and 0.17 for SL. These values were chosen as
they generally represent anionic diffusion into carbonate
rocks.47,55,56 Fig. 4 demonstrates that the dimensionalised
BTCs effectively model the experimental datasets for all three
samples during the initial 4, 8, and 10 days. However, as the
long-time tails of Fickian diffusion decay with a slope of �1=2,
notable divergences are visible between the long-time experi-
mental and numerical BTCs. Thus, to comprehensively quan-
tify the experimental BTCs for the three rock samples, it is
necessary to dimensionalise the anomalous BTCs from Section
2 to integrate the characteristics of early-time Fickian and
intermediate-to-long-time anomalous diffusion behaviour.

The experimental datasets presented in Fig. 4 were quanti-
fied using the solutions for b values of 1=2 for DP, 2=3 for EY,
and 1=5 for SL. In the initial step, the optimised normal
diffusion coefficients detailed in Table 1 were employed to
dimensionalise the Fickian diffusion solution (10) to the
experimental conditions. Next, the optimised anomalous scal-
ing coefficient kb values from Table 1 were inserted in each of
the corresponding time kernels to dimensionalise them with
the experimental conditions. Finally, we performed the sub-
ordination integration between the dimensionalised Fickian
diffusion eqn (10) and the corresponding time kernels (7) for
DP, (S-3, ESI†) for EY, and (S-6, ESI†) for SL to derive the BTCs.
The resulting BTCs for each case are plotted in Fig. 4. Interest-
ingly, the normal diffusion coefficient values used for dimen-
sionalising the Fickian part in the subordination integration
differs from those used for dimensionalising the full Fickian
diffusion-based BTCs in Fig. 4. The Fickian contribution is
relevant only at short times, before the solute explores the
environment fully and immobilisation effects described by c(t),
and therefore anomalous diffusion, become dominant.

Fig. 4a–f shows the BTCs and residual BTCs for experiments,
plotted against the corresponding dimensionalised curves for
anomalous and Fickian diffusion. Fig. 4 shows that the three

Table 1 Experimental b values and the anomalous scaling coefficient kb
(d1�b) for the Desert Pink PL (DP), Edwards Yellow PL (EY) and Silurian
Dolomite PL (SL) sample obtained from Rajyaguru et al. 2024.31 The
optimised normal diffusion coefficient D1 (cm2 d�1) is used in the Fickian
solution in the subordination integration to account for the initial, early-
time Fickian diffusion observed in the experimental BTCs

b kb (d1�b) D1 (cm2 d�1)

Desert Pink 0.26 0.65 0.105
Edwards Yellow 0.49 0.60 0.225
Silurian Dolomite 0.08 1.5 0.285
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distinct anomalous diffusion exponents match the data for the
BTCs/residual BTCs for the three rock samples. Specifically, the
BTCs and residual BTCs in Fig. 4a and b show that the scaled
solution of b ¼ 1=2 matches the experimental datasets for the
DP sample at intermediate-to-longer times. Fig. 4c–f analogously
demonstrates that the scaled solutions for b ¼ 2=3 and b ¼ 1=5

match the intermediate-to-longer time behaviour of the EY and
SL experiments. Furthermore, Fig. 4 shows that the experimental
dataset for each rock sample interpolates between the early-time
Fickian and intermediate to long-time anomalous diffusion
regimes. As mentioned earlier, for each case, the scaled Fickian
BTCs can effectively model the experimental data points during
the initial 4, 8, and 10 days, respectively. This shows that when
data are sampled only at relatively short times after solute
release, the measured behaviour becomes indistinguishable
from Fickian behaviour. This initial behaviour can be physically
explained as follows: at early times, when the first solute arrive in
the sample, they are typically all mobile until an increasing
amount of the particles are eventually trapped. This observation
indicates that the immobilisation process in the CTRW model is
clearly exhibited only after some time. Thus, long-term diffusion
dynamics are increasingly dominated by the trapping effects of
solutes in the rock pore spaces. As the rock samples have distinct
pore structure heterogeneity, they can induce distinct trapping
dynamics and, thereby, distinct emergence of the long-time tails.
Indeed, the consistent emergence of the long-time tails in the
experimental datasets for three rock samples confirms these
observations.

To better illustrate the contrasting effects of anomalous and
Fickian diffusion on solutes spreading and their release over
time, we developed flux solutions tailored to the three different
rock sample conditions. The flux solutions accounting for pure
Fickian diffusion were dimensionalised using the same normal
diffusion coefficient values (D1 values equal to 0.04 for DP, 0.09
for EY, and 0.17 for SL (cm2 d�1)) used to dimensionalise the
Fickian BTCs reported in Fig. 4. These diffusion coefficient
values were inserted in eqn (12) and the resulting linear and
residual flux solutions are shown in Fig. 5. The anomalous
diffusion flux solutions were derived using the previously
explained NIntegrate method for deriving the BTCs dimensiona-
lised to experimental conditions. In the NIntegrate method, the
dimensionalised eqn (10) was replaced with eqn (12). The result-
ing linear and residual anomalous flux solutions are reported
against flux solutions in Fig. 5a, c, and e, for three samples, DP,
EY, and SL, respectively. During the initial, early-time phase of the
experiments, the (anomalous diffusion) solutions show a flux
increase like the Fickian flux solution. This observation is con-
sistent with the linear experimental BTCs depicted in Fig. 4a, c,
and d, where bromide diffusion appears to follow Fickian diffu-
sion for the first 10, 8, and 4 days in DP, EY, and SL, respectively.
The solution plots in Fig. 5b, d, and f indicate that the maximum
flux points for the anomalous cases are lower than those for the
Fickian cases. These observations align with the experimental
findings that demonstrate a lower Cb(x,t)/C0 point after
which long-time tails emerge, and the rate at which Cb(x,t)/C0

increases at the sample boundary is slower than Fickian

modelling. For instance, the Cb(x,t)/C0 for DP is 0.16 at 10 days,
after which the long-time tails emerge. At this point, the Cb(x,t)/C0

for the scaled Fickian solution is 0.49. Table 1 shows that the b
value of the long-time tails for the DP experiment is 0.26 com-
pared to 0.92 for the scaled Fickian model.

3.3 Implications of anomalous diffusion in natural systems

Laboratory-scale experiments are conducted in geosciences to
elucidate the impact of porous material properties on solute mass
transport under various controlled conditions (e.g., pH, ionic
strength, type of solute).47 For diffusion studies, laboratory-scale
experiments play an important role, for instance, in estimating
radionuclide diffusion through clay-rich lithologies and solute
transport mechanisms in carbonate environments.12,55–59 Such
studies are pivotal for designing and assessing deep geological
repositories, e.g., leveraging claystone as a natural containment
barrier,60 and for evaluating the spreading of solutes into coastal
or inland aquifers and through river, lake and marine sediments.

To underscore the significance of anomalous diffusion in
natural systems, we illustrate the normalised concentration
profiles Cb(x,t)/C0 based on pure Fickian and pure anomalous
diffusion at different times in Fig. 6. These solutions were
generated using the dimensionalised subordination approach
outlined in Section 3.2 to derive BTCs for the DP b ¼ 1=2ð Þ, EY
b ¼ 2=3ð Þ, and SL b ¼ 1=5ð Þ rock samples under conditions of

anomalous and Fickian diffusion. Fig. 6 shows the dimensio-
nalised profiles for Fickian and anomalous diffusion at five

Fig. 5 Flux as function of time corresponding to the BTC/residual BTC
data shown in Fig. 4. Black curves show the pure Fickian case while red
curves correspond to the pure anomalous diffusion case. Flux J(x,t) vs. t
(a, c and e) and log10(J(x,t)) vs. log10(t) (b, d and f). The flux is shown (left) on
linear scales and (right) in a log10–log10 plot. The anomalous diffusion
exponents are (a and b) b ¼ 1=2, (c and d) b ¼ 2=3, and (e and f) b ¼ 1=5.
The solutions are calculated for solute diffusion through an effectively
one-dimensional porous medium with sampling point at x = 1 cm. The
long-time tails have slope �1=2 for the Fickian case and �b=2 for the
anomalous diffusion cases.
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different times for bromide solute diffusion through a 100 cm thick
rock formation. Here, the profiles for Fickian diffusion indicate that
after 10 000 days, the solute penetrates 80 cm of the DP rock
formation and 100 cm of the EY and SL layers. Conversely, the
profiles for anomalous diffusion for the three rock samples are
significantly different even at relatively early times (100 d). After
10 000 days, anomalous diffusion allows bromide penetration of
only 20 cm, 40 cm, and 10 cm in the DP, EY, and SL rocks,
respectively. Clearly, the solutions shown here demonstrate that
the times and distances relevant for initial solute arrival, and for
diffusive leaching of solutes from contaminated rock formations, are
significantly longer than under the assumption of Fickian diffusion.

4 Conclusions

We work with the CTRW framework to model the anomalous
diffusion of solute species through disordered porous materials.
We develop solutions representing the full range of anomalous
diffusion, from highly anomalous to Fickian, yielding BTCs and
fluxes. The solution method demonstrates that this framework
can be applied to derive a solution for any fractional b value
within the interval 0 o b o 1. Furthermore, we show that the
solutions for various values of b can be dimensionalised to
experimental space and time units, by using the normal and
anomalous diffusion coefficients derived from the high-resolution
datasets.31 Our analysis of experimentally determined BTCs,
accounting for anomalous diffusion, reveals that anomalous
diffusion may appear indistinguishable from Fickian behaviour
within relatively short periods from the start of solute release into
a domain. However, at intermediate-to-longer times, anomalous
diffusion of solutes leads to significantly different patterns of
migration relative to Fickian diffusion.

What controls the occurrence of anomalous diffusion in porous
systems? A concrete answer depends upon the specific details of
the system under consideration, as well as on the measured length
and time scales. Several specific mechanisms that affect the
observed anomalous diffusion can be identified:37 (i) hindered
diffusion (due to the reduced available fraction of space): the
authors37 conclude that this is a minor effect in the considered
materials; (ii) hydrodynamic coupling effects: the authors37 con-
clude that this is mainly relevant in the presence of a drift, and
therefore not relevant for the current study; (iii) transient binding
to the rock matrix: this could be a potential effect for the current
system; (iv) pore accessibility: due to the finite size of the tracer, the
pore size appears to have a major effect on the pore structures,
with constrictions of the order of the size of the tracer. In general,
system parameters such as the compaction of the porous materials
and physical pore structure heterogeneity, possibly combined with
transient binding to the rock matrix, will thus control the crossover
from initial Fickian to long-time anomalous diffusion behaviour.
At much longer times, as addressed below, a crossover back to
Fickian transport is expected to eventually occur (whether measur-
able within the available experimental window or not).

The occurrence of anomalous diffusion has important impli-
cations mainly because it indicates significant differences in
the migration of solutes through porous rock structures com-
pared to universally assumed Fickian diffusion models. These
differences have a critical impact on both early and late-time
arrivals of solutes to a control plane, as well as the average
residence time of solute species in porous materials and their
overall release rate from these materials.

Apparent anomalous behaviour subject to advection, disper-
sion, and diffusion was previously studied for the fraction of
injected mass from the MADE-1 experiment, first in terms of a
general CTRW framework,61 and then in terms of a limit-case
‘‘fractal’’ mobile-immobile model with a fractional time
derivative.62,63 Apparent anomalous scaling of the MSD may
even arise in mobile-immobile diffusion of particles with Pois-
sonian switching between the mobile and immobile phases,

Fig. 6 Evolution of the normalised concentration profile Cb(x,t)/C0 for
bromide diffusion within 1 m of rock for 100 d, 500 d, 1000 d, 5000 d, and
10 000 d for a semi-infinite rock sample with constant-concentration inlet.
The dashed lines correspond to Fickian diffusion, the solid lines represent
anomalous diffusion. The plots in sequential order correspond to Desert
Pink PL, Edwards Yellow PL, and Silurian Dolomite PL, respectively.
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when the mean immobilisation time is significantly longer than
the mean mobile time.64 Moreover, clear evidence for anomalous
behaviour subject to advective-dispersive-diffusive transport was
also discussed in the context of contaminant transport in stream
catchments.65,66 Compared to these experiments, the method
introduce here focused on pure diffusion of solutes away from a
constant-concentration inlet. In this situation there arise distinct
inverse power-law shapes of the residual BTCs, from which the
anomalous diffusion exponent b can be directly assessed. The
measured data in three different rock samples discussed here
clearly support the power-law behaviour of the residual BTCs
with a single b in a given sample, thus providing unequivocal
support for the existence of anomalous diffusion in these
samples.

We note that anomalous diffusion-dominated transport
was already conclusively revealed for charge carrier motion
(‘‘Scher–Montroll transport’’) in amorphous and polymeric
semiconductors.67,68 In these types of experiments the electri-
cal current can be directly measured, demonstrating that the
current has two subsequent power-law regimes whose slopes, b
� 1 and �b �1 with 0 o b o 1, add up to �2.67 This behaviour
can be understood as a first-passage time process, even in the
case of ageing, when the charge carriers are first allowed to get
progressively trapped in the semiconductor, before the driving
electrical field is switched on.68–70

Finally we note that the anomalous diffusion modelling here
is based on the long-tailed waiting time PDF c(t) C t�1�b

introduced in the CTRW model. For 0 o b o 1 the mean
waiting time hti thus diverges. This model was shown here to
provide an appropriate quantitative description of our data.
However, at much longer times the waiting time PDF may have
a cutoff corresponding to the longest immobilisation time tmax

in the system (see Fig. 7). Possible causes for such a tempering
of c(t) may be due to the pore structure accessibility being
limited by a smallest, finite physical size and/or the existence of
a maximal bromide-pore surface binding time. In such cases, a
long-time, effectively Fickian behaviour at time t c tmax may be
recovered. However, this long-time ‘‘normal-diffusive’’ regime
would then be characterised by a significantly smaller value of
the effective diffusion coefficient, ‘‘dressed’’ by continuing
immobilisation events with waiting times t o tmax.71

Given the potential implications of such behaviour in geo-
logical, biological, and engineering settings, the observed
deviations between Fickian and anomalous diffusion models
underscore the need to reassess estimates of chemical diffusion
rates and patterns in systems where Fickian diffusion has been
universally assumed. In the future more elaborate diffusion
and transport models should be developed that combine early-
stage Fickian and intermediate- to long-time anomalous
motion, possibly with a ‘‘truncated’’ waiting time PDF cutting
off the power-law of the immobilisations. Moreover, improved
experiments of the type presented here for longer times and
different rock samples are desirable.
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