Issue 29, 2025

Metal–organic frameworks as advanced platforms for radionuclide detection

Abstract

The development of nuclear energy has significantly increased the prevalence of artificial radionuclides, mainly generated through nuclear fission processes, alongside naturally occurring radionuclides. These radionuclides, encompassing a wide array of elements, including 3H, 85Kr, 90Sr, 99Tc, 129/131I, 137Cs, 222Rn, 232Th, and 235/238U, exist in diverse chemical forms such as gases, ions, and molecular species, posing substantial risks to human health and environmental safety. Consequently, the precise detection and selective separation of these radionuclides are of paramount importance for the timely identification and mitigation of associated hazards. This review explores the application of metal–organic frameworks (MOFs) as advanced platforms for radionuclide detection, utilizing their structural tunability and versatile functionality. The discussion is systematically organized based on the chemical forms of radionuclides, categorizing them into gaseous, cationic, and anionic species. Key detection mechanisms employed by MOFs, including fluorescence sensing (via quenching, enhancement, and fluorochromism), scintillation techniques, colorimetric sensing, electrochemical sensing, and so on, are thoroughly examined. These approaches are analysed to elucidate their principles, practical implementations, and limitations.

Graphical abstract: Metal–organic frameworks as advanced platforms for radionuclide detection

Supplementary files

Article information

Article type
Feature Article
Submitted
10 guov 2025
Accepted
10 njuk 2025
First published
10 njuk 2025

Chem. Commun., 2025,61, 5395-5409

Metal–organic frameworks as advanced platforms for radionuclide detection

Y. Cui and J. Lin, Chem. Commun., 2025, 61, 5395 DOI: 10.1039/D5CC00711A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements