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The use of array micro-holes is becoming increasingly prevalent across a range of industries, including

the aerospace, automotive, electronics, medical and chemical industries. The utilization of advanced sus-

tainable machining technologies offers distinctive advantages and is pivotal for the sustainable manufac-

ture of array micro-holes. This paper examines the sustainable machining techniques commonly

employed in the production of array micro-holes, including electrical discharge machining, laser machin-

ing, electrochemical machining and composite machining technologies. The paper begins with an elab-

oration of the processing principles and characteristics of multiple non-traditional machining techniques.

The performance indicators of the most commonly used processing technologies in industrial production

are summarized from seven perspectives. Six significant avenues for the advancement of sustainable

manufacturing technology for array micro-holes have been identified and categorized. This article pro-

vides a summary and evaluation of the previous relevant literature, with the aim of offering guidance for

the development of array micro-hole processing technologies.

1. Introduction

Array micro-holes have been widely used in various fields,
including aerospace, automotive, electronics, medical, and
chemical engineering,1–6 as shown in Fig. 1. The demand for
high-quality processing of array micro-holes has significantly
increased because of the continuous expansion of their appli-
cation field.7 Meanwhile, the technology used for machining
micro-holes in arrays is also advancing. In recent years, there
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have been significant developments in the process of machin-
ing array micro-holes, as shown in Fig. 2.

The processing techniques commonly used can be divided
into two categories based on their processing principles: tra-
ditional processing techniques and non-traditional machining
techniques.8 Traditional processing techniques for array
micro-holes typically involve micro-drilling or micro-punching.
Micro-punching is advantageous due to its simplicity, low cost,
and high production capacity. Xu et al.9 developed new metal
foil punching equipment that could efficiently process arrays
of micro-holes with high dimensional accuracy. However, man-
ufacturing micro-scale dies was challenging, and the micro-
structure that could be produced through this process was
limited.10–12 To solve these problems, Xiao et al.13 introduced
ultrasonic vibration into the micro-punching process and used
molten plastic as a flexible micro-punch to process micro-hole

arrays on thin stainless steel plates. They found that the ultra-
sonic vibration time should be matched to the cylinder
pressure and ultrasonic power, otherwise it would lead to a
deterioration of the machining quality. Chou et al.14 used a
micro-punch to prepare an array of holes on Al5052 alloy. The
sample was secured onto the lower die using vacuum adsorp-
tion for punching, ensuring precise coaxiality between the
punches and the holes of the lower die. Chang et al.15 pro-
posed a sequential combination of micro-punching and laser
machining to reduce the tool setting error between the two
steps by using a specialized alignment device. The experi-
mental results showed that the array micro-holes prepared by
this combined machining process were better quality than
those obtained by punching and laser machining. Although
the above scholars have diminished the disadvantages of the
traditional punching process through the optimization of the
micro-punching process, its shortcomings cannot be eradi-
cated, and it is difficult for it to meet the requirements of
industrial applications in the short term. Although micro-dril-
ling technology has a high production efficiency and low pro-
cessing costs, it is not suitable for processing difficult-to-cut
materials16–18 because there are problems such as
vibration19–21 and difficulties in cooling and product
removal.22–24

The fundamental reason for the above phenomenon is
gradually increasing tool wear during the machining process.
Khattare et al. conducted continuous drilling of straight and
oblique holes on Inconel 718 high-temperature alloy with a
thermal barrier coating. They found that the tool wear gradu-
ally intensified as the number of machining holes increased,
leading to a gradual increase in cutting force. Specifically,
compared to machining straight holes, tool wear is more
severe during machining oblique holes.33 To reduce the
deterioration of machining quality caused by tool wear, Aamir
et al.22,34–36 conducted a series of studies on simultaneous dril-
ling with multiple tools. They studied the effects of machining
parameters on the multiple hole drilling process for different
materials. The results indicated that selecting appropriate
cutting tools and processing parameters based on different
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Fig. 1 Application of array micro-holes.
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materials was helpful for obtaining excellent machining
surface quality. Meanwhile, the machining efficiency could be
greatly improved during machining a group of holes with
multi-axis drill bits. Although multiple hole drilling has sig-
nificantly improved processing quality compared to that of tra-
ditional single hole drilling, its processing flexibility and stabi-
lity still need to be further improved.

Due to current problems with traditional processing
methods, they cannot meet the actual processing needs of
array micro-holes. Therefore, it is necessary to study non-tra-
ditional machining technologies suitable for processing array
micro-holes. As for non-traditional machining technology,

energy fields such as electricity, heat, sound, and light are uti-
lized to process samples.37,38 The commonly used non-tra-
ditional machining techniques for array micro-hole machining
include electrical discharge machining (EDM), laser machin-
ing (LBM), and electrochemical machining (ECM).39 This
paper mainly discusses the mainstream non-traditional
machining technologies and their composite processing
technologies for array micro-hole processing. The processing
principles, advantages and disadvantages, and existing pro-
blems of various processing technologies, are analyzed. The
future development directions for array micro-hole processing
technologies are discussed.

Jingtao Wang

Jingtao Wang is a researcher in
the School of Mechanical
Engineering, Jiangsu University.
His research interests include
electrochemical machining and
hybrid manufacturing. He
received his Ph.D. in Mechanical
Engineering from Nanjing
University of Aeronautics and
Astronautics.

Jinzhong Lu

Jinzhong Lu is a Professor and
Doctoral Supervisor in the
School of Mechanical
Engineering, Jiangsu University.
His research interests include
laser shock peening, additive
manufacturing, and multi-energy
manufacturing. He is a senior
member of the Chinese Society of
Mechanical Engineering. He
received his Ph.D. in Mechanical
Engineering from Jiangsu
University.

Fig. 2 Development of important processes for array micro-hole machining.14,22,25–32
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2. Sustainable non-traditional
machining technologies

2.1. Electrical discharge machining

Electrical discharge machining (EDM) is very important non-
traditional machining technology that utilizes the high heat
generated by instantaneous spark discharge to remove
material.40–42 The machining principle is shown in Fig. 3.
Compared with traditional machining methods, EDM has the
advantages of no cutting force and low processing costs. It is
one of the effective techniques for machining array micro-
holes on conductive materials.43 However, there are still many
problems in the machining of array micro-holes by EDM, such
as tool electrode wear and recasting layers.44–48 Solving these
problems has become the key to further applying EDM in the
processing of array micro-holes.

According to the number of machining electrodes, EDM
can be divided into single electrode machining and multi-elec-
trode simultaneous machining.49 The preparation accuracy of
micro-electrodes directly affects the machining quality of array
micro-holes. Numerous researchers explored the high-pre-
cision preparation of a single micro-electrode. Li et al.49 devel-
oped a new type of electrode wire grinding tool that effectively
solved the problem of electrode wire vibration in wire electrical
discharge machining, and a micro-electrode with a diameter of
40 μm was obtained. Subsequently, they used the prepared
electrode and RC mode pulse generator to machine an array of
micro-holes with a diameter of 50 μm on a stainless steel
plate. But its machining efficiency was low, which meant it was
unable to meet the requirements for the efficient preparation
of micro-electrodes.50 Jia et al.51 proposed the dual mirror tan-
gential feed WEDG method (TMTF-WEDG), which utilized

dual wire discharge grinding to improve the efficiency of elec-
trode preparation. And they produced tungsten micro-electro-
des with a length to diameter ratio of fifty. They obtained a
consistent array of small holes consisting of 800 holes on 304
stainless steel samples through EDM.

Simultaneous drilling with multiple electrodes resulted in
higher efficiency compared to that with a single electrode.
When machining with multiple electrodes, it was less affected
by tool wear and there was no repeated positioning error, so it
could meet the requirements for the efficient machining of
array micro-holes. However, the preparation of multiple elec-
trodes was more difficult than that of single electrodes.
Exploring effective array electrode preparation processes was
crucial for improving the EDM performance in array micro-
hole processing. Gong et al.52 used low-speed wire EDM with a
wire speed of 2.7 m s−1, and divided the preparation process
for the array electrode into rough cutting (RC), trimming
cutting (TC), and finishing trimming cutting (FTC). As proces-
sing progressed, the peak current, pulse conduction time, and
open circuit voltage gradually decreased within the ranges of
40–180 A, 4–10 μs, and 85–100 V, respectively. They success-
fully obtained square tungsten copper alloy array micro-electro-
des with small size errors, as shown in Fig. 4a. Compared to
the traditional constant speed feed mode, the preparation
efficiency of an array electrode prepared by new method was
improved by 36.4%. Sun et al.53 proposed a micro-array elec-
trode self-loss precision machining method based on the prin-
ciple of reverse EDM (R-EDM). They obtained square array elec-
trodes by employing low-speed wire cutting technology. The
inherent electrode wear was utilized to obtain an array of
shaped holes with a square inlet and a circular outlet, as
shown in Fig. 4b. They used the circular part of the irregular
hole for R-EDM to obtain a cylindrical array electrode. The

Fig. 3 Principle of electric discharge machining (EDM): (a) schematic diagram of the overall device; (b) schematic diagram of the processing area.
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experimental results showed that this method improved the
preparation efficiency and dimensional accuracy of cylindrical
array electrodes. Pal et al.54 obtained a square brass array elec-
trode by employing abrasive water jet technology (AWJM). The
micro-EDM experiments were carried out on Ti6Al4V, and a
large square blind hole array was obtained. The machining
strategy for AWJM is shown in Fig. 4c. It is worth noting that
the distance between the two scanning lines selected in the
AWJM process has a significant impact on the quality of
micro-hole machining, and a larger distance of 1.1–1.5 mm is
more conducive to ensuring geometric accuracy. However, the
array micro-electrodes had a shape error because of inherent
defects in abrasive running in during AWJM machining, which
caused a deviation between the array micro-holes and the tool
electrode.

In addition to the difficulty in preparing micro-electrodes,
inevitable electrode wear during the EDM process led to a
decrease in the formation accuracy and machining consistency
of the micro-holes.55,56 During the machining process, the tool
electrodes continuously experienced axial and radial wear,
which would affect the machining gap because of shortening
of the electrodes. The radial wear of the electrode gradually

transformed the shape of the electrode’s end face into an arc,
thereby affecting the shape accuracy of the hole,57,58 as shown
in Fig. 5(a and b). Therefore, minimizing the negative impact
of electrode wear on the machining process was the key to
improving the machining quality of array micro-holes.
Research on this issue mainly focused on optimizing electrode
wear compensation. Zou et al.59 adopted an online contact
measurement compensation strategy to reduce cumulative
compensation errors during the machining process, as shown
in Fig. 5(c). A radial compensation (Lr) of 6.7 μm, a fixed com-
pensation length (Lc) of 16 μm, and an initial distance (D0) of
20 μm were used to weaken the influence of electrode wear on
machining accuracy, and an array of micro-holes with high
machining accuracy was obtained.

Liu et al.60 established a two-dimensional geometric model
of electrode wear during machining of an array of holes. After
machining 75 micro-holes, the relative errors of the calculated
electrode wear length and axial electrode wear zone length
were 2.1% and 2.5%, respectively. Subsequently, based on the
electrode wear length calculated by the model, they applied a
distance compensation to the axial feed rate of the tool elec-
trode, thereby reducing the impact of electrode wear on

Fig. 4 (a1–a3) Array electrodes prepared by low-speed wire EDM: (a1) panorama; (a2) enlarged view; (a3) local morphology map.52 (b1–b3)
Cylindrical array electrodes prepared by self-loss precision machining: (b1) array micro-hole inlet; (b2) array micro-hole outlet; (b3) picture of array
electrodes.53 (c) Schematic diagram of the array electrode machining strategy.54
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machining accuracy. Liang et al.61 developed a numerical
model for predicting the wear shape of square electrodes after
multiple diffusion hole processing, and visualized the shape
data for the electrode bottom. Due to the uneven distribution
of electrode wear across the entire cross-section, they ensured
uniform wear of the electrode by rotating the tool electrode at
a specific angle based on the electrode wear results.
Meanwhile, the axial wear error of the tool electrode was elimi-
nated by controlling the axial feed rate of the tool electrode.
This method was only suitable for single electrode machining
of array micro-holes because of the difficulty of rotating the
array electrodes during the machining process.

In addition, many researchers have attempted different
methods to improve the machining quality and efficiency of
the EDM of array micro-holes. Zhu et al.62 explored the effect
of the working medium on the EDM of array micro-holes. They
found that deionized water was more suitable for machining
array micro-holes than kerosene. Tanjilul et al.63 developed a
new type of metadielectric that could be used for electrical dis-
charge drilling. Consistent array micro-holes were obtained on
Inconel 718 alloy by optimizing processing parameters.
Compared to deionized water, metadielectrics could improve
the processing efficiency and reduce tool electrode wear under
appropriate parameters. In addition, they also verified the
possibility of processing array micro-holes in metadielectrics.

Aruna et al.64 optimized the voltage, frequency, current, and
multi-electrode pitch to maximize the material removal rate
(MRR) and achieve the lowest possible tool wear rate (TWR).
They achieved an MRR of 813.48 μg min−1 and a TWR of
82.03 μg min−1 under the optimal parameter combination of a
voltage of 40 V, a current of 3 A, a frequency of 6 kHz, and a
pitch of 1.4 mm. Yu et al.65 used distributed group electrodes
and optimized parameters to machine a group of holes on
thin-walled titanium alloy parts with high inclination angles.
Under the optimal parameters, the processing efficiency
increased by 1.5 times. Liu et al.66 established a three-dimen-
sional model of EDM drilling and simulated the changes in
the gap flow field. The simulation results showed that the flow
velocity of the medium in the gap increased after the pene-
tration of micro-holes, which was conducive to the removal of
processed products. Based on this, they accurately identified
the perforation stage by detecting the changes in inter-elec-
trode voltage during processing. By adopting the traditional
variable feed rate servo control strategy (VFSC) before perfor-
ation and the indirect self-tuning control (ISTC) strategy after
perforation, the processing efficiency and accuracy improved.
Li et al.67 developed a new type of piezoelectric device that
could be used in the ultrasonic circumferential vibration
(UCV) EDM process. The machining principle is shown in
Fig. 6(a). By comparing it with synchronous rotating electrode

Fig. 5 (a1–a4) Schematic diagram of the electrode wear process: (a1) discharge start; (a2) electrode feed; (a3) partial enlarged view of the discharge
gap; (a4) perforation formation.57 (b1–b7) Evolution of electrode morphology during the array micro-hole machining process.57 (c) Schematic
diagram of the compensation strategy for online contact measurement.59
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EDM, they found that the UCV EDM process was beneficial for
improving the flow field. This technology improved the
efficiency of array micro-hole machining. The roundness error
of the obtained array micro-holes was slightly higher than that
of the rotating electrode. The surface quality and consistency at
the inlet and outlet of the micro-holes were higher than those
of rotating electrodes (Fig. 6b and c). Huang et al.68 developed a
multi-electrode multi-loop series capacitor pulse generator
(MEMLSC), which could achieve uniform discharge from mul-
tiple electrodes during a single charging process. This method
could improve the stability of the electrical discharge drilling
process. Comparative experimental results indicated that the
MRR was improved (Fig. 6d–f), and high-quality array micro-
holes were obtained on 45-steel with optimized parameters.

2.2. Laser beam machining

Laser beam machining (LBM) is a processing technique that
uses a high-energy-density laser beam to irradiate the surface
of the sample, causing the sample material in the irradiation
area to be heated, melted, evaporated, and then removed.69–71

LBM has good flexibility, high processing efficiency, and high
processing accuracy.72–77 But there were inevitably defects such
as a recast layer and a heat affected zone.78–80 In addition,
micro-holes machined by LBM followed a pattern of drilling
holes one by one, which would result in repeated positioning
errors.81 The taper of the laser machined micro-hole was rela-

tively large because of the Gaussian distribution of laser beam
energy in space.82

To improve the quality of laser processed array micro-holes,
researchers studied the effects of different processing para-
meters and then optimized the process of LBM. Rong et al.83

optimized the laser parameters for quantitative micro-hole
processing of PDMS thin films by using a UV nanosecond
laser in orthogonal experiments. Under the optimal combi-
nation of a pulse frequency of 180 kHz and a drilling speed of
0.015 mm min−1, the array micro-holes with the best round-
ness were obtained. The experimental results indicated that
thermally induced carbonization was the intrinsic mechanism
of the PDMS nanosecond laser micro-drilling process. Liao
et al.84 investigated the effect of different processing con-
ditions on nanosecond laser processing of array micro-holes
on CVD diamond films. The results indicated that the laser
pulse width and laser scanning frequency had no significant
effect on the hole entrance size. As the laser pulse width and
laser scanning frequency increased, the diameter of the hole
outlet increased, while the taper of the hole decreased. As the
laser scanning speed increased, the entrance size of the
machined hole slightly decreased, while the exit size and taper
remained basically unchanged. Meng et al.85 focused on
exploring the effects of laser average power and laser scanning
speed on blind array hole machining. They found that the
average laser power had a significant impact on the diameter

Fig. 6 (a) Schematic diagram of the UCV electrode machining principle. (b) SEM pictures of micro-holes processed by rotating electrodes. (c) SEM
pictures of micro-holes processed by UCV electrodes.67 (d–f ) Profile diagram of micro-holes processed by different pulse generators: (d) TR pulsed
generator; (e) TRC pulsed generator; (f ) MEMLSC pulsed generator.68
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and depth of the machined hole. As the average power of the
laser increased, the diameter and depth of the hole also
increased. The aperture increased with an increase of the laser
ablation time, but the depth of the hole remained almost
unchanged. Wu et al.86 investigated the effect of different laser
wavelengths on the laser drilling of polyurethane synthetic
leather. The machined sample exhibited photochemical abla-
tion behavior under laser irradiation at a wavelength of

355 nm, which reduced the thermal impact. Liu et al.87 used a
truncated Bessel beam to directly write on the surface of fused
silica to prepare square array nano-holes. The intensity distri-
bution of the Bessel beam is shown in Fig. 7a. Numerical
simulations and experiments were carried out to investigate
the influence of existing holes on the propagation of Bessel
beams. The processing parameters were optimized to obtain
periodic array nano-holes with good repeatability.

Fig. 7 (a1–a3) Distribution of Bessel beam intensity on the surface of fused silica: (a1) Bessel beam; (a2) experimental truncated Bessel beam; (a3)
simulated truncated Bessel beams.87 (b1–b4) Comparison of ultrafast laser and long pulse laser drilling: (b1) schematic diagram of long pulse laser
drilling; (b2) schematic diagram of ultrafast laser drilling; (b3) SEM images of holes processed by a long pulse laser; (b4) SEM images of holes pro-
cessed by an ultrafast laser.88
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In addition to the methods of optimizing processing para-
meters to improve processing quality, ultra-short pulse lasers
have received widespread attention in the field of array micro-
hole processing in recent years. Compared to long pulse lasers,
ultra-short pulse lasers have shorter pulse widths and a higher
peak power.89,90 The thermal effect during ultra-short pulse
laser processing was relatively small (Fig. 7b) and was con-
sidered to be suitable for high-quality microfabrication.88,91,92 Ji
et al.93 machined circular and triangular hole arrays without
cracks on quartz glass by using a picosecond laser. Ahsan
et al.94 used a femtosecond laser to fabricate array micro-holes
with good consistency on the surface of glass. By utilizing the
loss of laser flux inside transparent glass, only the laser flux at
the center of the laser’s focus reached the material’s ablation
threshold, therefore, a hole with an aperture smaller than the
diameter of the spot was obtained. Shangguan et al.95 estab-
lished a theoretical model of single pulse femtosecond laser
ablation based on the Drude equation, and analyzed the mecha-
nism of femtosecond laser ablation of transparent materials.
Subsequently, they used a bottom-up drilling strategy to process
array micro-holes on quartz glass. Under the conditions of a
single energy pulse of 3 μJ, a scanning speed of 0.1 mm s−1, and
a defocusing distance of −0.3 mm, they prepared a 10 × 10 array
of micro-holes with an aperture of 10 μm and a taper of 2°.
Wang et al.96 used a Michael interferometer device to convert a
traditional Gaussian femtosecond pulse beam into a dual pulse
laser beam with an energy ratio of 1 : 1 for preparing a periodic
array of micro-holes on ZnS substrates, and found that the
depth of the micro-holes could be controlled by adjusting the
pulse energy. Zhai et al.97 obtained array holes with good
surface quality on Inconel 718 alloy by applying femtosecond
laser shock drilling technology. The basic composition and
metallographic structure of the processed thermal barrier
coating were hardly changed. Zhang et al.98 machined array
micro-holes in PDMS thin films by femtosecond laser spiral dril-
ling. The effects of laser pulse energy and scanning speed on
micro-hole profiles were studied. The research results indicated
that laser scanning speed significantly affected the geometric
structure of micro-holes. As the laser scanning speed increased,
the cross-sectional diameter of the hole decreased while the
taper of the hole gradually increased. Li et al.99 investigated the
effect of different processing parameters on the machining
process during femtosecond laser drilling of copper foil with a
thickness of 8 μm. By using optimized processing parameters,
array micro-holes with a smooth surface, high geometric accu-
racy, and good consistency were obtained. They found that a
single pulse energy had a significant impact on the diameter of
micro-holes, while laser frequency had the most significant
impact on cumulative thermal effects. Yang et al.100 used axon
system shaping to obtain femtosecond Bessel beams for prepar-
ing micro-hole arrays on YAG crystals. The experimental results
showed that Bessel beams could improve the aspect ratio of
micro-holes. Meanwhile, the diameter of micro-holes could be
controlled by adjusting the laser’s single pulse energy.

In addition, the laser machining quality and efficiency of
array micro-holes could be improved by optimizing the proces-

sing technology. Ha et al.101 proposed a new process of laser
drilling on cover plates for the processing of stainless steel
foil. Other materials were coated on the workpiece as a protec-
tive layer to reduce material erosion and deformation.
Compared with traditional laser processing, the average round-
ness of the micro-holes processed by this method increased by
77%, and thermal defects were significantly reduced, as shown
in Fig. 8(a–e). Liu et al.102 found that it was hard to improve
the surface quality of the hole outlet by using single laser pro-
cessing technology. Therefore, they proposed a new method,
which used a protective layer and water to assist in femtose-
cond laser processing. Array micro-holes on 4H-SiC with
smooth inner walls and good consistency were successfully
obtained. The processing device is shown in Fig. 8(f ). Wang
et al.103 achieved high-quality laser drilling on silicon wafers
by coating them with aluminum film, resulting in a group of
micro-holes with no recast layer on the surface of the
machined micro-holes. Thereafter, they further explored the
effect of laser flux on the processing of fused silica wafers
coated with aluminum film. The results indicated that an
increase in laser flux would lead to an increase in the average
diameter of the array micro-holes.104

Zhao et al.105 conducted a simulation study on the laser
ablation of Al2O3 ceramic array micro-holes. When adjacent
holes were continuously eroded, a small high-temperature area
was generated, leading to crack propagation along the laser
scanning path direction. Therefore, optimizing the scanning
path was an effective means of laser processing array holes.
Zhanwen et al.106 proposed a thermal input adjustment strat-
egy based on scanning path and parameter optimization to
reduce local thermal accumulation effects in multi-beam laser
parallel drilling processes. A schematic diagram of multi-beam
laser processing is shown in Fig. 9(a). The traditional scanning
path and the optimized scanning path are shown in Fig. 9(b
and c). Compared with traditional scanning paths, the opti-
mized scanning path had a more uniform temperature distri-
bution with a maximum temperature decrease of 10%. By uti-
lizing this strategy in conjunction with matching machining
parameters, high-quality array micro-holes could be machined
on stainless steel sheets. To further reduce the heat accumu-
lation problem during the ultra-short pulse laser processing of
micro-holes, Lutz et al.107 optimized the laser scanning path
using 100 000 generations of genetic algorithms, which
reduced thermal defects by 45%. However, 100 000 algorithm
iterations were complex and time-consuming. In recent years,
new optimization algorithms have emerged continuously, such
as the particle swarm optimization algorithm,108,109 the ant
colony optimization algorithm,110 Bayesian optimization,111,112

etc. This provides new ideas for optimizing laser scanning
strategies, and they may be more effective. Zhang et al.113

established an adaptive discrete grey wolf optimization laser
drilling model with processing time as the evaluation index.
With only 200 iterations, the processing times for 90 holes,
286 holes, and 649 holes were reduced by 38.9%, 53.6%, and
55.5%, respectively. Hartmann et al.114 used different scanning
strategies to perform picosecond laser array micro-hole proces-
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sing on aluminum foil. The experimental results indicated
that the linear strategy (Fig. 9d) was more stable in the
machining process than the random strategy (Fig. 9e). By
studying the effect of picosecond laser frequency on micro-
hole machining, it was found that the laser frequency had a
significant impact on the ablation behavior during the
machining process.115

2.3. Electrochemical machining

Electrochemical machining (ECM) is a non-traditional machin-
ing technique that utilizes the principle of anodic dissolution
to remove surface materials from samples.116–119 Compared
with other machining techniques, electrochemical machining
had advantages such as no tool wear, no cutting force, no

residual stress, and no thermal defects.120–124 Therefore, it is
very suitable for machining array micro-holes.

2.3.1. Maskless electrochemical machining and its var-
iants. Although traditional electrochemical machining has
many unique advantages, there are problems such as stray cor-
rosion, which seriously affect the machining quality of array
micro-holes.125,126 To reduce the problem of stray corrosion
during the machining process, a series of new machining pro-
cesses have been studied. Wang et al.127 used a new type of
disc electrode to machine array micro-holes by ECM on stain-
less steel (Fig. 10). The machining electric field of the disc
electrode was mainly concentrated in the bottom gap of the
electrode. The electric field in the side gap was weak, resulting
in weaker stray corrosion. Fang et al.128 introduced an auxiliary

Fig. 8 Laser processed hole on the cover plate. (a) Overall morphology of holes; (b–e) hole morphology diagram at the corresponding cross-
section;101 (f ) schematic diagram of a laser processing device assisted by a protective layer and a water layer.102
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anode into the ECM system and applied a potential difference
between the auxiliary anode and the sample to reduce stray
corrosion. The principle is shown in Fig. 11(a). Experimental
results showed that this method could significantly reduce
stray corrosion at the outlet of the hole. Kong et al.129 con-
ducted ECM experiments on 304 stainless steel and 18CrNi8
alloy in neutral salt solution to manufacture array holes.
During processing, H+ generated from the auxiliary electrode
could acidify the processing interface, dissolve insoluble elec-
trolytic products and reduce stray corrosion. The principle of
interface acidization between the pulses is shown in Fig. 11(b).
In addition, an asymmetric electrophoresis method was pro-
posed for the preparation of an insulation layer on the side of
the electrode,130 as shown in Fig. 12. Compared with the elec-
trodes prepared by a traditional electrophoretic coating
method, the insulation performance of the electrodes prepared
by this method was better, and the taper of the micro-holes
processed by this method was reduced by 62%. Liu et al.131

introduced a pulsed power supply and a rotating spiral elec-
trode into traditional ECM systems. The high-speed rotation of
the spiral electrode could promote the removal of electrolytic
products in the machining gap, reduce stray corrosion, and
improve machining efficiency. A micro-hole array with almost
no taper was obtained under optimized processing parameters
(machining voltage of 6 V, pulse period of 2.5 μs, pulse width of
0.5 μs, electrode speed of 25 000 rpm, feed rate of 1.2 μm s−1).

In addition to stray corrosion, the machining replication
errors and repetitive errors also have a negative impact on the
application of ECM.132 The existence of machining gaps is
the fundamental cause of ECM replication errors. The fluctu-
ations in the flow field, electric field, and electrochemical
field in the machining gap led to changes in the machining
state of ECM. Therefore, improving the stability of machining
gaps could reduce machining errors.133 To reduce this error,
multi-electrode synchronous machining was proposed.
During the multiple-electrode simultaneous machining of
array micro-holes, the splitter significantly affected the flow
distribution, thereby affecting the consistency of the
machined array micro-holes.134 The optimization design of
the splitter was an effective means to improve the stability of
the multi-electrode ECM. Fang et al.135 used simulation
technology to explore the influence of splitter pipe structural
parameters on machining consistency. ECM was performed
on 304 stainless-steel by using optimized diversion pipes,
resulting in consistent array micro-holes. Luo et al.136 devel-
oped an eight-channel flow control system, which could
monitor and regulate the real-time flow rate of electrolyte
through each electrode, as shown in Fig. 13a. The distri-
bution of electrolyte between different electrodes was more
uniform, and a consistent array of small holes was success-
fully processed, as shown in Fig. 13b. Additionally, Chen
et al.137 designed a novel tubular electrode with a half-wedge-

Fig. 9 (a) Schematic diagram of the multi-beam laser processing principle; (b) schematic diagram of the traditional scanning path; (c) schematic
diagram of the heat input regulation path strategy.106 (d) Linear scanning strategy; (e) random scanning strategy.114
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shaped tip; the coupling of a pulsatile flow field and a pulsa-
tile electric field within the inter-electrode gap was achieved
by the rotating motion of electrodes. According to simulation
and experimental results, the coupling of the physical pulsa-
tile fields could improve the surface quality of the machined
micro-hole.

2.3.2. Mask electrochemical machining. In mask electro-
chemical machining (TMEMM), it is necessary to apply a layer
of photoresist to the surface of the sample. Then, the area of
the sample that needs to be removed is exposed to achieve
localized removal of the sample material.138–140 The processing
principle is shown in Fig. 14(a). In TMEMM, the controllability
of the size, density, and position of the processed micro-holes
was better because of the presence of masks, so this techno-
logy became a commonly used method for array micro-hole
processing.141–143 However, there were still problems such as
overcutting, poor processing consistency, and difficulties in
mask preparation during the TMEMM.144,145 In response to

these issues, researchers conducted a large amount of research
to improve the machining quality of array micro-holes.

Many researchers achieved improved processing quality
through parameter optimization during TMEMM.141 Tsai
et al.148 established a finite element model of the machining
process, and studied the effects of the electrolyte flow rates on
array micro-hole machining. The research results indicated
that under the same voltage, the faster the electrolyte flow rate,
the smaller the average depth of the array micro-holes. Chun
et al.149 performed TMEMM processing on alloy materials.
During processing, a magnetic rotor was used to stir the elec-
trolyte. When the flow rate of the electrolyte was too low, the
electrolytic products were not easily removed, which was
harmful for the processing stability. When the electrolyte flow
rate was too high, the hole overlap phenomenon would occur.
Therefore, the electrolyte flow rate had a significant impact on
the processing quality of TMEMM. Jin et al.150 focused on the
influence of the processing parameters on the current density

Fig. 10 (a1–a4) The manufacturing process of disk array electrodes; (b) SEM pictures of an array disk electrode; (c) SEM pictures of array cylindrical
electrodes.127
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distribution. The distribution of current density became
uniform when the machining gap was large enough. The mag-
nitude of current density would decrease with an increase of
the machining gap, so it was necessary to determine a reason-
able machining gap based on actual processing requirements.
By utilizing optimized parameters, elliptical array micro-holes
were obtained. Li et al.151 measured the electrochemical behav-
ior of molybdenum in NaNO3 electrolyte and found that the
surface dissolution uniformity of molybdenum was better
when the current density was less than 16.89 A cm−2. The
machining quality of the array micro-holes on the molyb-
denum plate was significantly improved by controlling the
current density. Li et al.152 studied the influence of machining
parameters and their composite effects on the machining
process using orthogonal experiments. Under the optimal
parameter combination of a voltage of 35 V, a pulse frequency
of 400 Hz, and a duty cycle of 20%, a high-quality micro-hole
array was obtained. He et al.153 used polyaluminum chloride
electrolyte to perform jet electrochemical machining of array
micro-holes on Zr702 alloy plates. The effects of pulse voltage,
electrolyte pressure, and jet scanning speed on machining
results were explored using the multi-actor interaction
response surface method. The experimental results indicated
that pulse voltage had the most significant impact on the
machining quality of array micro-holes. In addition, they used
non-Newtonian fluid polyacrylamide (PAM) as an electrolyte to

Fig. 11 (a) Schematic diagram of electrochemical machining with an in-
soluble auxiliary anode.128 (b) Schematic diagram of the acidification
principle at the pulse interface.129

Fig. 12 Asymmetric timed bipolar electrophoresis coating process: (a) the ith positive electrophoretic coating; (b) the ith negative electrophoretic
stripping; (c) the (i + k)th positive electrophoretic coating.130
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perform array micro-hole machining on SS304 stainless-
steel.154 The processing effect of SS304 stainless-steel in PAM,
PAM NaOH, and NaNO3 electrolytes was explored through
comparative experiments. The experimental results showed
that the PAM-NaOH solution had the best processing effect
because of the dissolution effect of OH– on the processed pro-
ducts, and the properties of non-Newtonian fluids improved
the processing accuracy. The continuous generation of bubbles
and Joule heat during the machining process could cause an
uneven distribution of electrolyte conductivity in the machin-
ing area, thereby affecting the distribution of current
density.155,156 Optimizing the electrolyte flow field and redu-
cing the non-uniformity of electrolyte conductivity was ben-
eficial for improving machining accuracy. Wang et al.156 inves-
tigated the effect of electrolyte conductivity on the machining
consistency of a group of holes. The research results indicated
that using a pulsed power supply in TMEMM processing could
reduce the variation of electrolyte conductivity, thereby improv-
ing the consistency of the group of holes. Li et al.146 proposed
a serpentine flow channel to improve the electrolyte flow state
during the machining process. By reasonably placing guide
plates in the flow channel, the optimization of the electrolyte
flow field was achieved. A schematic diagram of the optimized
serpentine flow channel is shown in Fig. 14(b). Consistent
array micro-holes were obtained with this channel. Therefore,
optimizing the electrolyte flow mode was necessary to improve
the machining accuracy of array micro-holes.

In addition, masks had a significant impact on the distri-
bution of electric and flow fields during TMEMM processing,
which in turn affected the machining accuracy of array micro-
holes.157 Optimizing mask parameters was beneficial for
improving processing quality and efficiency. Wang et al.147

investigated the effect of different mask wall angles on the
machining process, as shown in Fig. 14(c). The results indi-
cated that the masks with conical holes were beneficial for
the flow of electrolyte. Increasing the wall angle within a
certain range could improve machining accuracy. However, if
the mask wall angle were too large, it would exacerbate stray
corrosion. Li et al.158 established a finite element model for
TMEMM processing of nickel based high-temperature alloys.
The effect of the mask aperture on the hole formation
process was explored. Simulation and experimental results
showed that masks with large diameter holes reduced the
taper of the processed holes. For nickel based high-tempera-
ture alloys with a thickness of 0.2 mm, the larger the mask
hole diameter, the shorter the time required to form perfor-
ations. Wang et al.159 used double-sided mask electrolysis
technology to simultaneously process the upper and lower
surfaces of the sample and established corresponding
numerical models. Simulation and experimental results
showed that this process could significantly improve the
taper of the machined micro-holes. Array micro-holes with a
maximum taper of 2.52° were successfully prepared on a
0.5 mm thick titanium alloy sheet.

Fig. 13 (a) Schematic diagram of the eight-channel electrochemical machining device; (b) SEM pictures of array micro-holes.136
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3. Other non-traditional machining
technologies

Due to the increasingly widespread application of hard brittle
non-conductive materials such as glass and silicon in radio-
frequency (RF) and microelectromechanical systems (MEMS),
there is now an urgent need to process high-quality array
micro-holes on these materials.160,161 However, EDM and ECM
cannot process non-conductive materials, while laser proces-
sing has defects such as thermal effects, which means that
these mainstream non-traditional machining technologies are
unable to meet the machining requirements for non-conduc-
tive materials.162–164 Therefore, some other non-traditional
machining techniques, such as ultrasonic machining (USM)
and chemical etching, have begun to be explored for the pro-
cessing of array micro-holes in non-conductive materials.

Ultrasonic machining (USM) is advanced manufacturing
technology that uses the ultrasonic vibration of the cutting
tool to drive abrasive particles in the slurry to impact the
sample, causing brittle failure of the sample material and
achieving material removal.165,166 This technology is very suit-
able for processing hard brittle materials. The processing prin-
ciple is shown in Fig. 15. Pandey et al.167 used modal and har-
monic analysis techniques to optimize the length of the ampli-

tude rod to improve the uniform distribution of vibration at
the tip of the array tool. Using SiC particles with a diameter of
1 μm as abrasives and optimized array tools, USM processing
was carried out on glass and silicon wafers. The results indi-
cated that the efficiency of USM machining was higher than
that of plasma etching or electrochemical discharge machin-
ing. This confirmed the superiority of this technology in pro-
cessing array micro-holes on hard and brittle materials.

Chemical etching is a special processing technique which
removes material through chemical reactions.168 The conven-
tional chemical etching process has low efficiency and poor an-
isotropy, which limits its application.169 To solve these pro-
blems, some novel etching methods were proposed for the pro-
cessing of array micro-holes. Agrawal et al.170 used a photoche-
mical etching process (PCM) with ferric chloride aqueous solu-
tion to etch stainless steel array micro-holes. The Taguchi
method was used to optimize the processing parameters. The
array micro-holes with different diameters were successfully
processed under optimized parameters. However, the consist-
ency of the group of holes was poor because of the uncontroll-
ability of the machining process. Michaels et al.171 proposed a
UV induced metal assisted chemical etching technique based
on the chemical properties of SiC. This process utilized an
etchant composed of potassium persulfate (K2S2O8) and hydro-
fluoric acid as oxidants, and patterned Pt as a mask and

Fig. 14 (a) Schematic diagram of the processing principle of TMEMM. (b) Schematic diagram of the optimized serpentine flow channel.146 (c) Cross
section of holes under different mask wall angles: (c1) 90°; (c2) 120°; (c3) 140°; (c4) 160°.147
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chemical reaction catalyst to achieve localized oxidation and
acid etching removal of SiC under the induction of ultraviolet
light. Liao et al.172 further investigated the effect of metal
pattern size on the hole formation process for 4H-SiC through
photon enhanced metal assisted chemical etching. The
research results indicated that the vertical etching rate acceler-
ated with an increase of the coverage area of the Pt mask, pro-
viding a certain reference significance for improving the depth
to diameter ratio of micro-holes. Chen et al.173 proposed a
double-sided metal assisted photochemical etching process, as
shown in Fig. 16(a). A patterned Au metal layer was introduced
on top of the SiC chip, while an Au metal layer was sputtered
on the bottom of the chip, followed by wet-etch processing.
The experimental results showed that compared to traditional
metal assisted photochemical etching, the vertical etching rate
of this process increased by 2.2 times. Kawamura et al.174 de-
posited silver on a glass substrate and then removed the silver
deposition area by a wet etching process. An array of micro-
holes was formed on the glass substrate. A schematic diagram
of the preparation process is shown in Fig. 16(b). The com-
parative experiments showed that KOH etchant was beneficial
for improving the depth to diameter ratio of micro-holes, but
its processing efficiency was relatively low. They believed that
the lateral diffusion and deposition of silver ions could be sup-
pressed by controlling the electric and thermal fields, thereby
improving the depth to diameter ratio of micro-holes. Choi
et al.31 proposed a process combining wet etching and electro-
chemical processing. The uncoated photoresist surface of the
sample was first thinned using wet etching, and the through-
hole array was subsequently processed using ECM. They suc-
ceeded in obtaining tetragonal array micro-holes on Invar alloy
films with high geometrical accuracy by rationally controlling
the time of wet etching. However, the thinning step may result

in a wider thickness tolerance of the sample because of the
uncontrollable nature of wet etching, which does not meet the
requirements of practical applications.

As the application fields of micro-holes became increasingly
broad, other non-traditional machining techniques began to
receive attention. At present, related reports in the literature
on USM and chemical etching in the field of array micro-hole
processing are few. These technologies have great potential in
the processing of hard and brittle non-conductive materials,
which are expected to become key processing technologies in
this field.

Non-traditional machining techniques played an important
role in the field of array micro-hole machining. The appli-
cation and existing problems of EDM, laser machining, ECM,
and other non-traditional machining technologies in array
micro-hole machining were summarized. A comparison of
mainstream non-traditional machining technologies in the
field of array micro-hole processing is shown in Table 1. In the
actual machining process, factors such as machining accuracy,
machining efficiency, and machine costs should be compre-
hensively considered.

4. Composite machining technology

Although non-traditional machining techniques have mul-
tiple advantages, they also have various shortcomings. As
for laser processing and EDM, the material is removed with
thermal energy, so it is difficult to avoid thermal defects
such as recast layers, micro-cracks, and heat affected
zones.175–177 In addition, there is a problem of tool wear in
EDM. ECM has problems such as scattered corrosion and
poor machining stability.178,179 The efficiency of ultrasonic

Fig. 15 Schematic diagram of material removal in ultrasonic machining.165
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machining is low. The chemical etching process is complex
and harmful to the environment.180,181 To solve the above
problems and achieve high-quality processing of array
micro-holes, composite processing technology has emerged
and developed rapidly. Composite machining is a technique

that integrates multiple technologies, which can achieve
complementary advantages of different machining tech-
niques. Composite processing is an important direction for
achieving efficient and high-quality processing of array
micro-holes.

Fig. 16 (a1–a5) Schematic diagram of the double-sided metal assisted photochemical etching process.173 (b1–b6) Schematic diagram of the
etchant permeating along a network of silver precipitate to preferentially remove glass: (b1) silver precipitation on the surface of glass; (b2) expan-
sion of the silver precipitation area; (b3) etching agent penetrates along the silver precipitate; (b4) edge peeling of the silver precipitation area; (b5)
removal of the silver precipitation area and the formation of blind holes; (b6) SEM pictures of machined array micro-holes.174

Table 1 Comparison of common non-traditional machining technologies for array micro-holes45,175

Machining characteristics EDM LBM ECM

Minimum hole diameter (μm) <50 <10 >100
Maximum aspect ratio 25 150 250
Material removal rate Slow Fast Medium
Cost Medium High Low
Tool wear Serious Absent Absent
Thermal defect Serious Serious Absent
Tool complexity High Low High
Type of material that can be drilled Conductive materials Non-reflective surface materials Conductive materials
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4.1. Ultrasonic assisted electrochemical machining

Ultrasonic assisted ECM (UAECM) is a composite machining
method that introduces ultrasonic vibration into traditional
ECM systems.182–185 During UAECM, the pumping and cavita-
tion effects are used to improve the machining efficiency. As
shown in Fig. 17(a and b), the electrolyte in the machining gap
was periodically pumped.39 The cavitation effect was caused by
the presence of ultrasonic vibration, which continuously gen-
erated bubbles and ruptured the electrolyte. The rupture of
bubbles could cause local jet action and stir the electrolyte in

the processing area.186–188 The above two effects could signifi-
cantly promote the removal of electrolytic products and the
renewal of electrolyte in the machining gap, which improved
the machining efficiency and machining stability.

Shen et al. conducted a study on ultrasonic-assisted ECM of
stainless-steel array micro-holes with an array tool electrode.39

They found that the machining efficiency under the assistance
of ultrasonic vibration could be increased by 5 times. However,
the side of the electrode used in the experiment was not insu-
lated, resulting in poor dimensional accuracy. Zhu et al.184 pro-
posed the ultrasonic assisted electrochemical drilling and

Fig. 17 (a and b) Schematic diagram of the ultrasonic pumping effect: (a) tool electrode moving downward; (b) tool electrode moving upward.39 (c
and d) Schematic diagram of the UAECDG machining principle: (c) schematic diagram of the processing area; (d) UAECDG processing mechanism
diagram.184 (e) Schematic diagram of the ultrasonic assisted mask electrochemical machining principle.189
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grinding technology (UAECDG), which involved two steps for
processing array micro-holes. Firstly, the array micro-holes
were roughened by ECM with a spiral cathode tool. Then, the
diamond abrasive particles embedded at the end of the spheri-
cal tool were used for ultrasonic assisted electrochemical dril-
ling and grinding to complete the precision machining of the
array micro-holes. A schematic diagram is shown in Fig. 17(c
and d). The 304 stainless steel array micro-holes machined by
this new method had good consistency, good surface quality,
and a small taper. Wang et al.190 used NaHCO3 electrolyte and
porous tube electrodes for UAECDG processing of glass. The
range of process parameters was preliminarily determined
through single factor experiments, and then key experimental
parameters were selected through Plackett Burman experi-
ments. Finally, multi-objective and multi-factor optimization
was carried out through BOX-Bekken experiments to obtain
the optimal combination of process parameters. Compared
with ECDG, the overcutting, edge damage, and surface rough-
ness of the microstructure produced through this method were
reduced by 8.3%, 17.5%, and 70.6%, respectively. Under opti-
mized parameter combinations, high-quality array micro-holes
were prepared. This provided new ideas for the green manufac-
ture of glass micro-structures. Kong et al.191 processed mul-
tiple holes with perfect surface quality and a small taper on
GH3030 alloy by UAECDG. The key to this technology was to
achieve a balance between ECM and mechanical grinding,
because this would directly affect the machining quality of
micro-holes. Wang et al.189 used ultrasound assisted mask
ECM technology to process high-quality array micro-holes in
high-temperature alloys. The machining principle is shown in
Fig. 17(e). Through numerical simulation based on the bubble
oscillation equation, they found that ultrasound frequency,
ultrasound sound pressure amplitude, electrolyte incident
pressure, and electrolyte temperature had a significant impact
on ultrasound cavitation. The influence of electrolyte viscosity
and surface tension on ultrasonic cavitation was relatively
small. Li et al.192 proposed a micro-rotation ultrasonic assisted
electrochemical drilling method by introducing an ultrasonic
field into traditional ECM systems. The simulation results
showed that the introduction of ultrasonic vibration could
make the electrolyte flow field more uniform, promote the
renewal of electrolyte, and thus improve machining stability.
The array micro-holes machined by this method had good con-
sistency and a small taper.

4.2. Ultrasonic assisted electric discharge machining

The multiple-electrode simultaneous electric discharge machin-
ing method for array micro-holes is beneficial for improving
processing efficiency. However, it is hard for the multiple elec-
trodes to rotate during the machining process, making it
difficult to remove debris from the machining gap, which
seriously affects the machining accuracy.52 Therefore, promot-
ing the removal of debris during multiple-electrode simul-
taneous EDM is a key issue. Numerous studies showed that the
introduction of ultrasonic fields could significantly improve the
machining quality and efficiency.193–195 Zhang et al.196 con-

ducted simulation analysis on the flow field under different
ultrasonic amplitudes. As shown in Fig. 18, the simulation
results indicated that the introduction of ultrasonic vibration
could increase the flow rate of the working fluid in the bottom
gap, promote the removal of debris, and thus improve the stabi-
lity of the machining process. Xie et al.197 explored the effects of
the ultrasonic amplitude on debris removal. The research
results indicated that increasing the ultrasonic amplitude
appropriately was beneficial for the removal of debris, thereby
improving the stability of array micro-hole processing. Zhang
et al.198 prepared a series of tungsten array electrodes by reverse
electrical discharge technology. Ultrasonic assisted EDM experi-
ments on array holes were carried out with the prepared tung-
sten array electrodes. The experimental results indicated that
the diameter of the central hole was slightly larger than that of
the surrounding holes. Through simulation analysis of the dis-
tribution of gap flow field, the removal of debris from the
middle hole was less than that from the outer hole because of
the interference effect of the working medium flow field, result-
ing in the accumulation of debris in the machining gap. This
increased the probability of secondary discharge, resulting in
an increase in the size of the intermediate hole. Hou et al.199

proposed three-dimensional ultrasonic vibration assisted micro-
electrical discharge machining technology (RTDUV) that com-
bined the circumferential vibration of the electrode and the ver-
tical vibration of the sample. The simulation results of the flow
field indicated that PTDUV was beneficial for the removal of
processed products. The experimental results confirmed the
improved dimensional consistency of array micro-holes pre-
pared by RTDUV-assisted EDM.

4.3. Electrochemical discharge machining

Electrochemical discharge machining (ECDM) is an advanced
composite processing technology that combines ECM and
EDM, and it is considered one of the main technical means for
processing non-conductive hard and brittle materials.200–202

ECDM can be divided into three steps.203–205 The principle is
shown in Fig. 19(a). In the first step, a large number of bubbles
are generated between two electrodes because of electro-
chemical reactions. In the second step, hydrogen bubbles are
continuously accumulated on the surface of the tool electrode
to form a gas film, separating the tool electrode from the
working medium. In the third step, the electric field strength
between two electrodes increases to a very high value, and then
the gas film is broken down and spark discharges occur.

Patro et al.207 established a finite element model for the
ECM preparation of microelectrodes, explored the effects of
processing voltage and processing time on the tool profile,
and conducted experimental verification. The experimental
and simulation results showed that micro-electrodes with rela-
tively uniform contours were obtained in 5% NaCl solution.
Arab et al.208 conducted ECDM on silica with the array elec-
trode. The effects of machining parameters on the heat
affected zone (HAZ) were explored. The research results indi-
cated that the length of the array electrode should be designed
reasonably, otherwise the machining stability would be
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reduced. Afterwards, array electrodes of different lengths were
used to explore the processing of micro-hole arrays on glass
substrates.209 The experimental results showed that a long
electrode could reduce the occurrence of the bubble clamping
phenomenon. Kannojia et al.210 studied tool wear during
ECDM of array micro-holes with array stainless steel electro-
des. As the number of micro-hole machining groups increased,
the volumetric wear of the tool continued to increased, while
the ratio of volumetric material removal to volumetric tool
wear decreased. Singh et al.206,211 used a spherical tool
cathode to repair the worn array tool electrodes through ECM.
The repair accuracy of the pulsed power supply was higher
than that of the DC power supply (Fig. 19c). ECDM machining
experiments were conducted on glass substrates with the
repaired array electrodes, and the feasibility of the repair
technology was verified. Liu et al.212 conducted ECDM drilling
on ultra-white glass with a rotating spiral electrode. The side
gap increased with the improved pulse voltage and duty cycle,
and decreased with the improved pulse frequency and feed
rate. They obtained high-quality array micro-holes with smaller
diameters under optimized parameters. Zou et al.213 used non-
flowing fluid electrolytes instead of traditional KOH electro-

lytes, relying on the constraint effects of non-Newtonian fluids
to improve the stability of the gas film, and thereby improving
the quality of the glass array micro-holes. Compared with tra-
ditional KOH electrolytes, the width of the heat affected zone
was reduced by 64.81%, and the repeatability was improved by
67.92%. Shen et al.214 used a high-speed rotating helical tool
electrode with a non-aqueous electrolyte to change the dis-
charge processing principle from gas film breakdown dis-
charge to low conductivity electrolyte breakdown discharge,
which improved the area and intensity of the electrolytic reac-
tion. Array micro-holes with no recast layer on the surface were
obtained. Geng et al.215 found that the discharge mode was
basically continuous before perforation in the ECDM process,
and the inter-electrode voltage was relatively stable. However,
after perforations formed, the inter-electrode voltage showed
fluctuation. By using the technique of variance statistics, the
breakthrough of micro-holes was accurately identified by deter-
mining whether the average voltage variance exceeded the var-
iance threshold.

The above research indicated the effectiveness of ECDM for
micro-hole machining of non-conductive hard materials.
However, when the depth of the micro-holes was large, the pro-

Fig. 18 (a) Distribution of the gap flow field under different ultrasonic amplitudes: (a1) 0 μm; (a2) 1.86 μm; (a3) 3.35 μm; (a4) 5.22 μm; (a5) 8.51 μm;
(a6) 13.32 μm. (b) Debris removal under two vibration cycles corresponding to different ultrasonic amplitudes: (b1) 0 μm; (b2) 1.86 μm; (b3) 3.35 μm;
(b4) 5.22 μm; (b5) 8.51 μm; (b6) 13.32 μm.196
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cessed holes appeared conical because of the difficulty of the
working fluid entering the machining area.216 To address this
issue, ultrasonic vibration assisted electrochemical discharge
machining (UAECDM) technology was proposed. The introduc-
tion of ultrasonic vibration could affect the formation of gas
film and the distribution of spark discharge energy,217 as
shown in Fig. 20(a). A detailed study was carried out on the
influence of key parameters on the processing of glass by
UAECDM. A mathematical model of the relationship between
micro-hole diameter and processing parameters was estab-
lished. High-quality array micro-holes were obtained under
optimized processing parameters. Compared with that of
ECDM, array micro-holes produced by UAECDM had smaller
diameters and better consistency, resulting in less tool wear.
Yang et al.218 used UAECDM to process array micro-holes on
quartz chips, and found that the introduction of ultrasonic
vibration could thin the gas film, thereby reducing the critical
voltage required for gas film breakdown, and thus reducing
the diameter of micro-holes. The optimal parameter combi-
nation (working voltage of 44 V, feed rate of 1 μm/6 s, pulse
width of 30 μs, duty cycle of 30%) for UAECDM processing was
determined through single factor experiments. Under this

parameter combination, array micro-holes with good orifice
morphology were obtained. Jia et al.219 used an ECDM process
with ultrasonic vibration to obtain high-quality array micro-
holes on glass substrates. They found that the coupling effect
of the electrolyte jet with ultrasonic vibration through numeri-
cal simulation could further optimize the gas film distribution
on the tool electrode surface. Furthermore, the experimental
results confirmed the effectiveness of the introduction of
intra-electrolyte jets and ultrasonic vibrations in improving the
performance of the conventional ECDM process. In addition,
Sharma et al.220 proposed a combined pulse feed method, as
shown in Fig. 20(b). The feed rate and pulse frequency
decreased sequentially, which solved the problem of electrolyte
shortage when the hole depth was large. They used this
method to process array micro-holes on alumina thin plates.
The results showed that compared with a traditional constant
speed feed, the processing time of array micro-holes was
reduced by 40%, and the heat affected zone was significantly
reduced. Hung et al.221 proposed a new composite method
based on an array of stepped tool electrodes, diamond abrasive
electrolyte, and ultrasonic vibration. The combination of
UAECDM, USM, and in situ cutting was achieved. They found

Fig. 19 (a) Schematic diagram of the ECDM.200 (b) Array electrodes of the ECDM: (b1) ECM equipment; (b2) repairing array electrodes with a pulse
power supply; (b3) the restored array electrodes repaired with a continuous power supply.206

Review Nanoscale

19958 | Nanoscale, 2024, 16, 19938–19969 This journal is © The Royal Society of Chemistry 2024

Pu
bl

is
he

d 
on

 2
5 

ak
am

án
nu

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
02

5-
10

-1
7 

00
:2

5:
11

. 
View Article Online

https://doi.org/10.1039/d4nr02910k


that the concentration of abrasive in KOH solution had almost
no effect on the formation of gas film. When the feed rate was
high, bubbles were prone to accumulate at the entrance of the
hole, which reduced the machining quality. They used this
process to obtain array micro-holes with high dimensional
consistency and a small taper. The application potential of
this novel composite process was enormous, as the processing
eliminated the need to change electrodes or electrolyte. In
addition, this novel composite process improved the dimen-
sional consistency of the array micro-holes.

4.4. Summary

Composite processing technology can address the limitations
of single processing methods and enhance the processing
efficiency of array micro-holes. Table 2 summarizes research
conducted in the field of micro-hole composite processing.

Most studies focus on exploring machining mechanisms and
optimizing machining parameters. However, promoting com-
posite processing technology for industrial applications still
faces many difficulties.

Firstly, one of the main challenges is the lack of research
on specialized equipment for various composite processing
technologies. The majority of research is based on improving
other equipment. The correlation between equipment and pro-
cessing technology will have a direct impact on processing
accuracy and efficiency.

Secondly, the practical engineering application of compo-
site processing technology in array micro-hole processing is
seriously limited due to an incomplete understanding of its
mechanism and properties.

Additionally, there is a scarcity of quantitative analysis of
the machining process, as an accurate mathematical model for

Fig. 20 (a) The effect of ultrasonic vibration on spark energy distribution: (a1) no ultrasonic vibration; (a2) upward movement of tools; (a3) down-
ward movement of tools;217 (b) schematic diagram of the combined pulse feed method.220

Table 2 Summary of research on composite machining technologies of array micro-holes

Machining technology Sample material Key findings Ref.

UAECM 301 stainless steel Higher ultrasonic amplitude leads to higher machining efficiency Shen et al.39

ODS superalloy Ultrasonic frequency and sound pressure significantly affect the cavitation effect Wang et al.189

UAEDM Tool steel Debris accumulation in the central hole Zhang et al.198

ECDM Silica Electrode length should not be too short Arab et al.208

Glass Non-NTF electrolyte can improve processing quality Zou et al.213

UAECDM Glass Consistency of array holes is higher than ECDM Wang et al.217
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the composite machining process has not yet been
established.

5. Conclusion and future research
directions

The continuous expansion of the applications of array micro-
holes has made the sustainable manufacturing of array micro-
holes an urgent necessity in multiple industries. This article
presents a review of the principles, characteristics, and
research progress for advanced sustainable non-traditional
manufacturing technologies commonly used in array micro-
hole machining. Presently, researchers are primarily focusing
on enhancing the overall performance of a specific process
through two avenues: parameter optimization and process
improvement. The intrinsic limitations of the processing
technology give rise to a range of inherent disadvantages
associated with different processing techniques. Fig. 21 pro-
vides a detailed comparison of the performance indicators of
six advanced manufacturing technologies. It is necessary to
select an appropriate processing technique based on the
specific performance requirements of the workpiece and the
conditions of industrial production. Despite extensive research
being conducted by scholars on advanced sustainable manu-
facturing technologies for array micro-holes, there are still
some shortcomings in related fields and numerous challenges
that require urgent attention (Fig. 22). The following rec-
ommendations are provided for the processing of array micro-
holes.

(1) It would be beneficial for subsequent research to place a
greater emphasis on the processing mechanisms of advanced
sustainable manufacturing technologies. At present, the
primary focus of research in the field of array micro-hole pro-

cessing is on the optimization of processing parameters, with
the objective of achieving enhanced processing outcomes
within a constrained process window through comprehensive
experimental investigation. However, advanced non-traditional
and composite processing techniques involve energy fields
that differ from those involved in traditional mechanical pro-
cessing, such as light, sound, electricity, and so forth. The
interaction between these energy fields and the workpiece is
highly intricate, encompassing a plethora of processing para-
meters that interact with one another. It is challenging to
enhance process performance through the exclusive optimiz-
ation of process parameters. To advance process performance,
it is essential to conduct comprehensive research on the pro-
cessing mechanisms of diverse advanced manufacturing
technologies. The development of an accurate mathematical
model of the machining process through simulation techno-
logy, coupled with the real-time capture and analysis of excep-
tional phenomena during the machining process, represents a
pivotal avenue for achieving this objective.

(2) It is imperative to pursue the advancement of novel com-
posite processing technologies. The constraints inherent to
individual processing techniques render composite processing
technology a promising avenue for addressing these chal-
lenges. Nevertheless, in comparison with standalone micro-
hole processing technology, the current composite processing
technology employed for array micro-hole processing remains
scarce, with the majority still in the nascent stages of process
development. This hampers the ability to meet the demands
of industrial production. Consequently, the development of
innovative composite processing techniques is of paramount
importance.

(3) The digitization and intelligent control of processing
represent significant avenues for future research. The progress-
ive advancement of computer and automation technology has

Fig. 21 Comparison of key performance indicators for different proces-
sing techniques.

Fig. 22 Prospects for the future development of advanced sustainable
manufacturing technology for array micro-holes.
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rendered the precise automatic control of the machining
process a feasible proposition. In particular, the recent expo-
nential growth of artificial intelligence has opened up a vast
array of unprecedented opportunities across numerous fields.
The small size, large quantity and strict position accuracy
requirements of array micro-holes mean that manual control
of the processing process can easily lead to positioning errors.
Furthermore, manual operation is time-consuming, resulting
in a high scrap rate. Therefore, adopting digital and intelligent
control methods is beneficial for the timely detection and
handling of problems that arise during the machining process,
thereby improving the machining accuracy and efficiency of
array micro-holes, and enhancing the adaptability of the
machining process.

(4) The development of specialized equipment is a crucial
factor in the advancement of diverse advanced manufacturing
technologies. The utilization of processing equipment has a
considerable impact on the accuracy and efficiency of the pro-
cessing itself. The deployment of specialized equipment
enables the precise control of processing parameters and the
optimization of process flow, which in turn reduces the
wastage of raw materials and energy consumption, improves
the efficiency with which resources are utilized, and aligns
with the overarching objective of sustainable manufacturing.
Furthermore, the deployment of specialized equipment
ensures the stability, reliability, and high degree of control
that are essential in the field of micro- and nano-
manufacturing.

(5) Research and development of nanoscale array micro-
hole processing technology should be the primary focus. In
light of accelerated developments in fields such as microelec-
tronics, biomedicine, and materials science, coupled with the
growing demand for practical applications of workpieces and
the ongoing enhancement of material service performance,
the dimensional precision of micro-hole arrays is witnessing a
shift from the micro-metre domain to the nano-metre range. It
is, however, important to note that existing reports in the lit-
erature indicate that only a limited number of processing tech-
niques have been successfully applied in the manufacture of
nanoscale micro-hole arrays. Consequently, the development
of efficient processing techniques suitable for nanoscale
micro-hole arrays will not only address this technological gap
but also act as a significant driving force for the advancement
of technology and industrial upgrading in related fields.

(6) Develop micro-hole processing technology suitable for
new materials. In recent years, with the widespread application
of new materials such as structural ceramics, composite
materials, and additive manufacturing metals, it is often
necessary to process array microstructures on them to achieve
some special functions. However, current mainstream array
micro-hole processing technology generally faces the challenge
of limited material applicability, for example, laser processing
technology faces difficulties in processing transparent
materials, while electrical discharge machining and electro-
chemical machining are only applicable to conductive
materials. Although electrochemical discharge machining has

a wide range of material applicability, it is still difficult for its
machining accuracy to meet the requirements for the prepa-
ration of array micro-holes. Therefore, developing suitable pro-
cessing methods based on the physical, chemical, and
mechanical properties of different materials is beneficial for
further expanding the application of array micro-holes.

Sustainable manufacturing technology for array micro-
holes is still in its infancy, with numerous avenues that require
urgent attention or further investigation. As this field and its
associated technologies continue to evolve, processing techno-
logy for array micro-holes will undoubtedly improve, enhan-
cing its practical applicability.
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