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hes for the prediction of the
breakthrough of organic contaminants in
wastewater treatment plants†

Nicola Chirico, *a Michael S. McLachlan, b Zhe Li b and Ester Papa a

The removal efficiency (RE) of organic contaminants in wastewater treatment plants (WWTPs) is a major

determinant of the environmental impact of chemicals which are discharged to wastewater. In a recent

study, non-target screening analysis was applied to quantify the percentage removal efficiency (RE%) of

more than 300 polar contaminants, by analyzing influent and effluent samples from a Swedish WWTP

with direct injection UHPLC-Orbitrap-MS/MS. Based on subsets extracted from these data, we

developed quantitative structure–property relationships (QSPRs) for the prediction of WWTP

breakthrough (BT) to the effluent water. QSPRs were developed by means of multiple linear regression

(MLR) and were selected after checking for overfitting and chance relationships by means of bootstrap

and randomization procedures. A first model provided good fitting performance, showing that the

proposed approach for the development of QSPRs for the prediction of BT is reasonable. By further

populating the dataset with similar chemicals using a Tanimoto index approach based on substructure

count fingerprints, a second QSPR indicated that the prediction of BT is also applicable to new

chemicals sufficiently similar to the training set. Finally, a class-specific QSPR for PEGs and PPGs showed

BT prediction trends consistent with known degradation pathways.
Environmental signicance

Breakthrough of chemicals from wastewater treatment plants (WWTPs) can be a big risk for the environment and the human health. Time and cost-effective
solutions to estimate the potential to break from WWTPs would help prioritizing chemicals before the application of more expensive experimental techniques.
In this work we propose an in silico methodology for the development of new quantitative structure–property relationship (QSPR) models able to predict the
breakthrough of chemicals from WWTPs from their molecular structure. These models are easily interpretable and checked for their robustness, both in terms
of overtting and chance relationships. Furthermore, we discuss strengths and weaknesses of the proposed modelling approach in relation to the use of
experimental data from non-target analysis.
1. Introduction

Wastewater treatment plants (WWTPs) are an important lter
between the technosphere and the environment, preventing the
export of many anthropogenic chemicals to aquatic systems.
Ensuring high effectiveness of this lter is thus a central goal to
safeguard the environment. Therefore, WWTP removal effi-
ciency (RE) is a central parameter in chemical safety assess-
ment. Measured values of RE are available for some existing
chemicals, but not for new chemicals. When conducting risk
assessments of new chemicals, other methods for estimating
mistry and Ecotoxicology, Department of

y of Insubria, via J. H. Dunant 3, 21100,

bria.it

ACES), Stockholm University, 106 91

tion (ESI) available. See DOI:
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the removal efficiency of WWTPs are required. In silico
approaches like quantitative structure–property relationship
(QSPRs), which are both cost and time saving, could help ll
this need.

A major challenge in developing QSPRs is obtaining
consistent datasets. WWTP RE varies between plants due to e.g.,
differences in treatment technology. It can also vary over time as
a result of changes in the wastewater inuent and the plant
operating conditions. Furthermore, differences in sampling
strategy and the quality of analytical techniques introduce
between-study uncertainty. Consequently, it is difficult to
construct a QSPR from data assembled from diverse literature
sources.

Single studies providing RE data for a large number of
chemicals are rare. Most studies focus on just a handful of
chemicals. Oen, they are focused on assessing the risk of
a particular substance or on elucidating the behavior of
a particular class of chemicals in WWTPs. Broader studies have
This journal is © The Royal Society of Chemistry 2024
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usually relied on targeted analysis of a specic set of
substances, which constrains the information obtained.
However, analytical approaches using suspect screening and
non-target screening are now being employed in assessing
WWTP removal efficiency.1,2 These approaches have the poten-
tial to generate consistent datasets for large numbers of
chemicals.

In a recent paper written by Li and colleagues,3 the RE in
a Swedish municipal WWTP was measured by a high-
throughput methodology, which allowed the detection of
many organic chemicals (from now on referred to as “chem-
icals”) and quantication of their removal efficiency without
requiring calibration. One of the conclusions of the study by Li
and colleagues was that such methodology is suitable when “RE
values for a large number of chemicals are needed”, and one of
the possible future applications is “generating quantitative
structure–property relationships (QSPRs) to predict RE from
chemical structures.”, which is the focus of this work. There-
fore, we are interested in developing QSPRs specically
addressing RE while considering the WWTP as a whole, even
though, typically, existing QSPRs target only specic
technologies/processes concerning the WWTPs like adsorp-
tion,4 oxidation,4 photolysis,4 coagulation,4 ltration4 and bio-
logical processes.5

In this work we make an initial attempt to develop QSPRs to
predict the overall breakthrough (BT) of chemicals from
aWWTP, which is directly related with the RE, using specically
tailored subsets of data from an internally consistent dataset of
measured RE for 319 chemicals in a Swedish WWTP.

Our objective is to develop statistically valid QSPRs which can
be used to predict BT at a screening level without making initial
assumptions related to the complexity of the WWTP. The ability of
these QSPRs to predict the BT of new chemicals is also assessed,
where applicable, by means of bootstrapped estimations and
external test sets, in order to support their possible application to
new chemicals. Therefore, particular attention is also devoted to
estimating the probability of incurring chance relationships, by
means of randomization techniques,6 and in estimating the
number of molecular descriptors able to minimize the overtting7

of the QSPRs. This is important because QSPRs may be plagued by
chance relationships and/or overtting, which means that while
they may seem good in tting, chances are that they will fail in
predicting the BT of new chemicals.

2. Material and methods
2.1 Retention efficiency dataset

The dataset was from a published study in which inuent and
effluent samples were collected ow proportionally over 24 h
from a municipal WWTP in Stockholm (Sweden) which had
mechanical, chemical and biological treatment and sand
ltration as the nal treatment step.3 These samples were
analyzed by direct injection into an UHPLC-Orbitrap-MS/MS
system following ltration. Chemical separation was achieved
using a reversed phase column and a binary mobile phase
gradient consisting of water and acetonitrile, both containing
0.1% formic acid. The mass spectrometer was operated at
This journal is © The Royal Society of Chemistry 2024
a mass resolution of 120 000 and data dependent acquisition
was employed using both ESI positive mode and ESI negative
mode. Isotope-labeled standards of 40 polar contaminants were
used for target analysis of these contaminants and for quality
control, while some of these and additional chemicals (319 in
total) were identied via non-targeted suspect screening using
the online database mzCloud. The response factors of the
isotope-labeled standards showed that matrix effects were
similar for inuent and effluent for most chemicals. From this it
was concluded that RE could be calculated using the peak areas
in inuent and effluent, which made it possible to estimate RE
for all 319 chemicals. Of the chemicals for which a positive RE
was determined, there were 22 for which matched isotope
labelled standards showed similar matrix effects in inuent and
effluent. Further information about the dataset can be found in
the publication.3 For our work, BT has been calculated from the
original data as the ratio between effluent and inuent peak
areas. Calculated BT was modelled by QSPR (see Section 2.4).
2.2 Chemicals selection

A dataset called Ta (see Fig. 1 and Table S3,† gray and dark gray
rows) was developed using the 22 target chemicals having
similar matrix effects in inuent and effluent, as these data were
deemed to be less uncertain. A second dataset, called Ta* (see
Fig. 1 and also Table S3,† gray rows), was the same as Ta except
for the removal of 2 endpoint outliers detected by the QSPR
based on the Ta dataset (see Section 3.1).

The next step was to pool the Ta dataset with the collected
non-target data, to further populate the training set. However,
the wide heterogeneity of the full dataset of non-target chem-
icals did not allow us to build a reasonable QSPR. To reduce the
structural dissimilarities of the non-target (Nt) chemicals with
the Ta dataset, Nt chemicals were ltered using the Tanimoto
index (calculated using substructure count ngerprint8) as
a measure of distance from Ta chemicals. The Tanimoto index
measures the similarity between two chemicals structures,
spanning from 1 (the chemical structures are identical) to 0 (no
similarity is found between the chemical structures). In this
work, the best compromise between the number of Nt chem-
icals (which should be the biggest possible) and the structural
similarity to Ta chemicals, was found for values of the Tanimoto
index between 1.0 and 0.87 (included). These values led to the
pooled training set Ta + Nt (see Fig. 1 and Table S3,† orange and
dark orange rows), composed of 70 chemicals (i.e., only Nt
chemicals with a Tanimoto index $0.87 were included). Values
of the Tanimoto index between 0.87 (excluded) and 0.83 were
found optimal for the test set, since it was the best compromise
between the number of chemicals and the structural dissimi-
larity from the Ta dataset; in fact, large dissimilarities would
lead to an underestimation of the QSPR predictive power. The
resulting test set consisted of 28 chemicals. The same procedure
was applied to the Ta* dataset, ending in a dataset called Ta* +
Nt (see Fig. 1 and Table S3,† dark orange rows) consisting of 56
training and 17 test chemicals.

PEGs and PPGs were selected separately and called respec-
tively Pe and Pg datasets (see Fig. 1 and Table S3,† green rows
Environ. Sci.: Processes Impacts, 2024, 26, 400–410 | 401

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3em00267e


Fig. 1 QSPR datasets. Ta = target chemicals (22 items), Ta* = target chemicals without endpoint outliers (20 items). Ta + Nt = target and non-
target chemicals (70 training items and 28 test items). Ta* + Nt = target chemicals without endpoint outliers, and non-target chemicals (56
training items and 17 test items). Pe + Pg = PEGs and PPGs (16 items). Pe = PEGs (6 items).
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for PEGs and dark green rows for PPGs), then they were pooled
together as another dataset called Pe + Pg (see Fig. 1 and Table
S3,† green and dark green rows).

The ranges of BT for the datasets used to develop the QSPRs
are: dataset Ta/Ta* from 0.0012 to 0.95; dataset Ta/Ta* + Nt
from 0.00031 to 0.96; dataset Pe + Pg from 0.0074 to 0.37;
dataset Pg from 0.070 to 0.37.
2.3 Molecular descriptors

Mono and bidimensional descriptors were calculated from
canonical Simplied Molecular-Input Line Entry System
(SMILES) notations, desalted and converted in the canonical
form using OpenBabel soware version 2.4.1.9 The list of
chemicals and SMILES is reported in Table S1.†

PaDEL-Descriptor soware version 2.21,10 congured for
detecting aromaticity and standardizing nitro groups, was used
to calculate descriptors and ngerprints (see Table S2†).

Problematic QSPRs may arise when the descriptors are
highly inter-correlated, have zero or nearly zero variance, or
have problematic ranges. For these reasons, descriptors were
pre-ltered according to (1) pair-wise correlation above 0.95, (2)
redundancy measured as the repetition of the same value in
more than 80% of the chemicals and (3) span less than 2 orders
of magnitude. The ltering by range was applied to avoid
numerical instabilities that would impact the leave-one-out
bootstrap procedure, see Section 2.4.
2.4 Development of QSPRs

The RE of a WWTP is measured as one minus the quotient of
the concentration of the chemical in effluent and inuent. This
measure focuses on the treatment plant, while from an
402 | Environ. Sci.: Processes Impacts, 2024, 26, 400–410
environmental standpoint ameasure of the remaining chemical
in water, here called breakthrough (BT), dened as the quotient
of the chemical concentration between effluent and inuent,
was deemed more appropriate.

In this work, multiple linear regression (MLR) by means of
ordinary least squares (OLS) is used as the modeling tool. We
restricted our analysis to linear model by design because we
wanted to test one of the simplest approaches available to create
QSPRs, which is more transparent and portable compared to
other more complex solutions. Furthermore, due to their
usually limited complexity in terms of number of descriptors,
MLR models are easier to interpret than machine learning
approaches based on tens or hundreds of molecular descrip-
tors. Finally, even though MLR QSPRs may suffer from higher
modeling bias in comparison to non-linear alternatives, they
tend to have less modeling variance.

The log10 BT, called log BT for brevity, is used as the
endpoint because the uncertainty of the logarithm of the
measured BT is largely independent of the magnitude of BT
(while this is not the case for either BT, RE or log RE). This is
due to the fact that the uncertainty of the logarithm of the
concentration is independent of concentration itself. The
independence of the uncertainty of the endpoint from its
magnitude provides for homoscedasticity of the residuals,
which is one of the requirements for applying MLR.

To reduce chances of overtting the descriptors selection
procedure7 (here the step-up procedure, see below), reiterated
descriptors selections were performed from scratch using
training sets generated by a leave-one-out bootstrap proce-
dure,11 and the one standard error rule12 was then applied to
select the most parsimonious QSPR. See Method S1 and S2† for
further details.
This journal is © The Royal Society of Chemistry 2024
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The MAE (Mean Average Error) values, where

MAE ¼
Pn

i¼1

�
�yi � ŷi

�
�

n
(yi and ŷi are respectively the measured and

predicted log BT values), were calculated from the leave-one-out
bootstrap procedure and provide a cross validation that
includes the descriptors selection procedure. This is known to
be more robust and less biased7,11 than cross validating the
nally chosen model (i.e., aer the descriptors' selection
procedure) which gives overly optimistic results.

The selection of the descriptors was performed by the step-
up procedure introduced by Rücker et al.,6 using R2 as the
objective function. The step-up size of the population of QSPRs
was set to 25, unless the number of available descriptors was
smaller (in this case the population size equals the number of
descriptors).

The probability of a coincidental relationship between the
descriptors and the endpoint was calculated by applying the
step-up procedure 100 times on randomized descriptors, as
described in Rücker et al.,6 and by a customized randomiza-
tion technique, see Method S3† for further details. QSPRs
with probabilities above 5% using both approaches were
dropped.

Once a candidate QSPR was selected, its performance was
assessed by means of R2 and MAE for tting, Q2 (leave-one-out)
for stability and y-scramble (50 iterations) for chance correla-
tion between the descriptors and the endpoint.

Where bootstrap was deemed applicable to the step-up
procedure because the number of available chemicals was
sufficient, the MAE for the corresponding QSPR size was re-
ported. Where a test set was available, the corresponding MAE
was also reported.

All procedures were performed by custom in-house devel-
oped R (version 4.2.1)13 scripts.

QQ charts (quantile–quantile charts) are used to evaluate the
distribution of the residuals. It is here recalled that themore the
residuals fall along a straight line, the closer they are to being
normally distributed.
2.5 QSPR applicability domain

Chemicals with a leverage value exceeding three times the ratio
between the number of descriptors + 1 and the number of
chemicals (this is called h* threshold) were considered chem-
ical structural outliers.14 The leverages are calculated as hii =
xi(X

′X)−1xi
T (where X is the descriptor's matrix) and measure the

distance between the descriptors values for the ith chemical
point and the average of all chemicals descriptors.

Chemicals with a standardized ordinary residual (calculated

as r
0
i ¼ ri

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii

p , where r is the residual) greater than 2.5

standard deviation units, were considered as endpoint
outliers.14

The charts plotting the leverages values vs. the standardized
residuals are reported in the QSPRs ESI.† These charts also
report the leverage threshold (h*) as a vertical line on the
abscissa axis for the detection of the structural outliers, and the
This journal is © The Royal Society of Chemistry 2024
2.5 standard deviation thresholds as horizontal lines for the
detection of the endpoint outliers.
3. Results
3.1 Target chemical QSPR (Ta and Ta* datasets)

Starting from the Ta dataset (see for reference the Ta callout in
Fig. 1), the bootstrap smallest average MAE value (see Bootstrap
analysis S1,†middle chart) was found for a 1-descriptor QSPR at
index 1 of the step-up population. The corresponding one
standard error chart (see Bootstrap analysis S1,† lower chart)
indicated that a QSPR with more than one descriptor would
overt, so the rst 1-descriptor QSPR was nally chosen from
the step-up population of candidate QSPRs (see Method S2† for
details concerning the selection of the QSPR).

The equation of the 1-descriptor Ta QSPR is

log BT = −0.44*** (±0.11) − 6.2*** (±1.1)$MATS2m (1)

where ± is the standard error of the intercept and the coeffi-
cient, three asterisks (***) means that the p-value (signicance)
is #0.001, log BT is the logarithm of the breakthrough and
MATS2m is the descriptor.

The performance metrics for eqn (1) are reported in Table 1.
According to the QQ chart (see Fig. S1†), the residuals are
reasonably normally distributed, apart from the skewness due
to aniline (ID 25) and acetaminophen (ID 29).

The leverage vs. standardized residuals chart (see Fig. S1†)
spotted caffeine (ID 30) as a structural outlier, acetaminophen
(ID 29) as an endpoint outlier, and aniline (ID 25) just within the
residual endpoint threshold.

To check whether the removal of aniline (ID 25) and acet-
aminophen (ID 29) from the training set would lead to a better
performing QSPR, the whole procedure was repeated without
them (which led to a new dataset here called Ta*, see also the
Ta* callout in Fig. 1). The bootstrap smallest average MAE value
(see Bootstrap analysis S2,† middle chart) and the correspond-
ing one standard error chart (see Bootstrap analysis S2,† lower
chart) still indicated that a QSPR with more than one descriptor
would overt and, also in this case, the rst 1-descriptor QSPR
was nally chosen from the bootstrap step-up population.

The equation of the 1-descriptor Ta* QSPR is

log BT = −0.31*** (±6.4 × 10−2) − 6.5*** (±0.67)$

MATS2m (2)

The explanation of the equation is the same as eqn (1). The
performance metrics for eqn (2) are reported in Table 1.
According to the QQ chart (see Fig. S2†), the residuals are
broadly normally distributed.
3.2 Target and non-target chemical QSPR (Ta + Nt and Ta* +
Nt datasets)

Continuing with the Ta + Nt dataset, the bootstrap smallest
average MAE value was obtained for the 2-descriptor QSPR at
index 13 of the bootstrap step-up population (see Bootstrap
analysis S3,† middle chart). However, many predictions of the
Environ. Sci.: Processes Impacts, 2024, 26, 400–410 | 403
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Table 1 Performance of the QSPRs for the Ta and Ta* datasets

QSPR
Training
set items Descriptors

Probability% of coincidental
relationshipa R2 R2 y-scrb Q2c MAE trainingd MAE bootstrapd,e

Taf 22 1 0.0083 0.61 0.047 0.48 0.34 0.68 � 0.01
0.0060

Ta*g 20 1 <2.2 × 10−14 0.84 0.040 0.69 0.21 0.44 � 0.01
2.2 × 10−14

a Calculated between descriptors and endpoint: upper = mode 1, lower = descriptor nature. b R2 calculated using shuffled endpoints. c Leave-one-
out cross validated R2. d MAE=mean absolute error. e Bootstrap± standard error. f Target chemicals. g Target chemicals without endpoint outliers.
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corresponding candidate QSPR in the step-up population were
identical (i.e., 19 training and 5 test chemicals had log BT =

−1.92) for almost the whole range of experimental values (see
Bootstrap analysis S3,† lower le chart) because of the GGI7
descriptor being 0 and the PubchemFP443 descriptor being 1
simultaneously. For this reason, the next smallest average MAE
from the bootstrap step-up population was looked for, and it
resulted in a 3-descriptor QSPR located at the 24th step-up
population index. The one standard error chart (see Bootstrap
analysis S3,† lower right chart) indicated that a QSPR with more
than three descriptors would overt, while the 2-descriptor
QSPR bootstrap average MAE misses (even though slightly) the
one standard error of the 3-descriptor QSPR bootstrap average
MAE, so the 3-descriptor QSPR was nally chosen from the step-
up population of candidate QSPRs at index 24 (see Method S2†
for details concerning the selection of the QSPR).

The equation of the 3-descriptor Ta + Nt QSPR is

log BT = −1.2***(±0.24) − 1.0***(±0.18)$PubchemFP420

+ 0.11***(±2.1 × 10−2)$VR3_Dzs

− 0.63**(±0.19)$PubchemFP373 (3)

where ± is the standard error of the intercept and coefficient,
three asterisks (***) means that the p-value (signicance) is
#0.001, two asterisks (**) means that the p-value is 0.001 < p #

0.01, log BT is the logarithm of the breakthrough, and Pub-
chemFP420, VR3Dzs, PubchemFP373 are the descriptors.

The performance metrics for eqn (3) are reported in Table 2.
The absolute pair correlation between the descriptors was below
or equal to 0.20, and the QQ chart (see Fig. S3†) indicated
reasonably normally distributed residuals.
Table 2 Performance of the QSPRs for the target and non-target chem

QSPR
Training
set items

Test
set items Descriptors

Probability% of
coincidental
relationshipa R2 R2 y-s

Ta + Ntg 70 28 3 3.3 × 10−14 0.58 0.045
8.9 × 10−14

Ta* + Nth 56 17 2 4.6 × 10−13 0.54 0.047
1.0 × 10−12

a Calculated between descriptors and endpoint: upper = mode 1, lower =
out cross validated R2. d MAE =mean absolute error. e Bootstrap ± standa
Nt QSPRs. g Target and non-target chemicals. h Target chemicals without

404 | Environ. Sci.: Processes Impacts, 2024, 26, 400–410
The leverage vs. standardized residuals chart (see Fig. S3†)
highlighted benzophenone (ID 76) and fexofenadine (ID 229) as
training structural outliers, and 10-hydroxycarbazepine (ID 39)
as a training endpoint outlier (even though it is just above the
threshold). The same chart also highlighted acridine (ID 71)
and epinephrine (ID 227) as test endpoint outliers.

In Section 3.1, the Ta* QSPR (eqn (2)) performed better
than the Ta QSPR (eqn (1)) because of the removal of two
outliers/problematic chemicals i.e., acetaminophen (ID 29)
and aniline (ID 25). Therefore, a new dataset (called Ta* + Nt,
see also Fig. 1), compiled starting from the Ta* dataset, could
also lead to a better QSPR in comparison to the Ta + Nt QSPR
(eqn (3)).

For the Ta* + Nt dataset, the bootstrap smallest average MAE
was obtained for a 2-descriptor QSPR from the bootstrap step-
up population at index 25 (see Bootstrap analysis S4,† middle
chart). Indeed, the smallest value was obtained for a 1-
descriptor QSPR, located at index 1 in the population, but the
difference in terms of MAE, compared to the 2-descriptor QSPR
at index 25, was negligible i.e., 0.7495 vs. 0.7499, and the cor-
responding QSPR was deemed not acceptable because it pre-
dicted only two values of log BT i.e., −2.0 and −0.6, because of
the nT9HeteroRing descriptor. However, predictions of the
corresponding candidate QSPR in the step-up population ten-
ded to cluster around log BT −2.0 and log BT −0.5 (see Boot-
strap analysis S4,† lower le chart). For this reason, the next
smallest average MAE from the bootstrap step-up population
was investigated, and it resulted in a 2-descriptors QSPR located
at the index 12 in the step-up population. The one standard
error chart (see Bootstrap analysis S4,† lower right chart) indi-
cated that a QSPR with more than two descriptors would overt,
icals

crb Q2c MAE trainingd MAE bootstrapd,e MAE testd MAE testd,f (16)

0.53 0.49 0.75 � <0.01 0.69 0.62

0.48 0.51 0.75 � <0.01 0.58 0.59

descriptor nature. b R2 calculated using shuffled endpoints. c Leave-one-
rd error. f Test chemicals (16) in common between the Ta + Nt and Ta* +
endpoint outliers and non-target chemicals.

This journal is © The Royal Society of Chemistry 2024
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Table 3 Performance of the PEG and PPG QSPRs

QSPR
Training
set items Descriptors

Probability% of
coincidental relationshipa R2 R2 y-scrb Q2c MAE trainingd MAE bootstrapd,e

Pe + Pgf 16 1 <2.2 × 10−14 0.85 0.079 0.80 0.19 0.25 � <0.01
<2.2 × 10−14

Pgg 6 1 2.2 0.93 0.19 0.77 0.059 —
2.0

a Calculated between descriptors and endpoint: upper = mode 1, lower = descriptor nature. b R2 calculated using shuffled endpoints. c Leave-one-
out cross validated R2. d MAE = mean absolute error. e Bootstrap ± standard error. f PEGs and PPGs. g PPGs.
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so the 12th 2-descriptor QSPR was nally chosen from the step-
up population of candidate QSPRs (see Method S2† for details
concerning the selection of the QSPR).

The equation of the chosen 2-descriptor QSPR for the Ta* +
Nt dataset is

log BT = 1.8**(±0.64) − 0.92***(±0.18)$AATS1s

+ 0.99***(±0.21)$ETA_Beta_ns_d (4)

±, log BT and asterisks meaning is the same as for eqn (3),
while AATS1s, and ETA_Beta_ns_d are the descriptors.

The performance metrics for eqn (4) are reported in Table 2.
The absolute pair correlation between the descriptors was 0.21
and the QQ chart (see Fig. S4†) indicated broadly normally
distributed residuals.

The leverage vs. standardized residuals chart (see Fig. S4†)
spotted 4′-hydroxydiclofenac (ID 258) as a training structural
outlier and 3-indoxyl sulphate (ID 255) as a test endpoint
outlier.
3.3 PEG (polyethylene glycol) and PPG (polypropylene glycol)
QSPRs (Pe + Pg, Pe and Pg datasets)

The bootstrap smallest average MAE value (see Bootstrap anal-
ysis S5,† middle chart) was obtained for a 1-descriptor QSPR,
index 2 in the step-up population. The corresponding one
standard error chart (see Bootstrap analysis S5,† lower chart)
indicated that a QSPR with more than one descriptor would
overt, so the 1-descriptor QSPR, located at index 2, was chosen
from the step-up population of candidate QSPRs (see Method
S2† for details concerning the selection of the QSPR).

The equation of the Pe + Pg QSPR is

log BT = 18*** (±2.2) − 28*** (±3.1)$hmax (5)

±, log BT and ***asterisks meaning is the same as for eqn (3),
and hmax is the descriptor.

The performance metrics for eqn (5) are reported in Table 3.
The QQ chart (see Fig. S5†) indicated broadly normally
distributed residuals, but the sudden breaks between PPG n5
(ID 135) and PPG n10 (ID 179) suggests a possible bimodal
character.

The leverage vs. standardized residual chart (see Fig. S5†)
highlighted PPG n.4 (ID 134) as a relatively high leverage
chemical.
This journal is © The Royal Society of Chemistry 2024
Concerning PEGs, QSPRs were developed for one descriptor
to avoid overtting. The rst QSPR in the step-up population
was not acceptable because predicted log BT values were only
−2.0 and −1.7 (see Fig. S6†). The next best performing QSPR
showed insufficient tting, was unstable, and the probability of
chance correlated descriptors with the endpoint due to the
variable selection procedure was too high (especially mode 1).
For these reasons (see Fig. S6† and Statistics S6 for further
information) the modelling of PEGs as an independent class
was not further considered.

Concerning PPGs, also in this case only QSPRs of one
descriptor could be developed to avoid overtting.

The equation of the Pg QSPR is

log BT = −7.4 × 10−2 (±9.2 × 10−2) + 0.71** (±0.10)$

ATSC7s (6)

±, log BT and ** asterisks meaning is the same as for eqn (3),
while no asterisks means that the p-value is 0.1 < p # 1, and
ATSC7s is the descriptor.

The performance indicators for eqn (6) are reported in Table
3. The QQ chart (see Fig. S7†) suggested normally distributed
residuals.

The leverage vs. standardized residuals chart (see Fig. S7†)
highlighted PPG n.10 (ID 179) as a relatively high structural
leverage chemical.
4. Discussion
4.1 Target chemical QSPR (Ta and Ta* datasets)

The aim of this work was to evaluate the possibility to develop
QSPRs, based on a simple approach, for the prediction of log
BT. The BT values determined for target chemicals showing
negligible matrix effects were deemed to be less uncertain than
the BT values for the other target chemicals and the non-target
chemicals, so we began our exploration of the feasibility of
developing a QSPR using the target chemicals.

The QSPR developed using all the 22 chemicals (Ta dataset,
eqn (1)) shows acceptable tting performance (R2 = 0.61) but
suffers some instability (Q2 = 0.48). However, it has an accept-
able estimated prediction accuracy when applied to new
chemicals (MAEbootstrap = 0.68 ± 0.01), and the probability of
a coincidental relationship due to the descriptor selection
procedure is low (<0.01%, see also Table 1). The removal from
Environ. Sci.: Processes Impacts, 2024, 26, 400–410 | 405
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the training set of aniline (ID 25) and acetaminophen ID (29),
because of their large deviation from the normality of the
residual, substantially improved the performance of the QSPR
(R2 = 0.84, Q2 = 0.69, MAEbootstrap = 0.44 ± 0.01, and negligible
probability of a coincidental relationship due to the descriptor
selection procedure), see also Table 1. For this reason, eqn (2)
was deemed as a possible nal candidate QSPR for target
chemicals.

For this QSPR, caffeine (ID 30) was spotted as a structural
outlier and is the only xanthine-like compound in the training
set. The corresponding residual is not much different from
most of the other compounds, so caffeine was deemed as a good
high leverage chemical expanding the QSPR's structural and
endpoint domain.

The chemical descriptor in eqn (2), MATS2s, reects the local
heterogeneity within the molecular structure in terms of atomic
mass at lag 2 distance, and how this information is recursively
distributed within the molecule (autocorrelation). The sign of
the descriptor in the model suggests that large local atomic
heterogeneity (detected for instance in caffeine and ace-
sulfame), encoded by more positive values of MATS2s (above 0.1
in the studied training set) is related to low log BT values (below
10% in the studied training set). In contrast large log BT values
were detected in the studied dataset for chemicals with values of
MATS2m close to zero, such as atenolol and metoprolol acid.

Overall, the proposed QSPR has acceptable tting properties
(see Table 1 and Fig. 2) and suggests the role of molecular
complexity as highly relevant to discriminate log BT within the
small training set used to develop eqn (2) (which is similar to
eqn (1)). However, it is necessary to highlight that eqn (2) (and
eqn (1)), is representative for a narrow structural and response
domain. Therefore, it is encouraging that the proposed rela-
tionship encodes for about 80% of the information using only
Fig. 2 Experimental vs. predicted log BT for the target chemicals (Ta*)
QSPR. 30 = caffeine.

406 | Environ. Sci.: Processes Impacts, 2024, 26, 400–410
one descriptor, with a negligible probability of the relationship
of being by chance. This is a good indication that QSPRs for the
prediction of log BT can be developed. However, eqn (2) is too
simplistic to be suggested as a predictive model applicable to
a larger domain of chemicals.
4.2 Target and non-target chemical QSPR (Ta + Nt and Ta* +
Nt datasets)

The target chemical training sets served as the basis to build
more populated training sets which should, at least in principle,
lead to more stable and generalizable QSPRs. Therefore, non-
target analysis chemicals were added to both the Ta and Ta*
datasets separately, on a structural similarity basis (see Section
2.2).

Using the Ta + Nt dataset, a 3-descriptor QSPR (eqn (3)) was
developed and showed acceptable tting performance (R2 =

0.58), coherent stability (Q2 = 0.53) and negligible probability of
a coincidental relationship due to the descriptor selection
procedure (see Table 2 for further details). In addition, this
QSPR also performed well when validated by an external test set
(MAEtest = 0.69). This was further supported by the bootstrap
estimation (MAEbootstrap = 0.75 ± 3.3 × 10−3) and highlighted
the potential predictive ability of this QSPR when applied to new
chemicals.

The eqn (3) QSPR contains three descriptors, which are
discussed here on the basis of their standardized residual
values (which indicates their inuence on predicting log BT),
from the biggest to the smallest. The most inuential
descriptor, PubchemFP420, encodes for the presence of a C]O
fragment, considering the bond order, type, and aromaticity. It
is known from the literature (e.g., Papageorgiou et al.15) that the
concentration of carbonyl compounds decrease during
coagulation/occulation, sand/activated carbon ltration and
bioltration (for bioltration see e.g., Marron et al.16), therefore
having an impact on the BT.

VR3_Dzs is a descriptor based on the Barysz matrix, which
accounts for the presence of multiple bonds and heteroatoms,
and includes atomic weight. It reinforces the ndings for Pub-
chemFP420 because it provides a topological aspect. It also
gives an additional discriminant for different atomic types.

Finally, even though PubchemFP373 is the descriptor in the
QSPR with the least impact, it is interesting because it tests for
the presence of N where bond aromaticity is signicant, thus
suggesting that aromatic N also plays a role in determining BT.
Aromatic amines in general are known to be very susceptible to
electrophilic aromatic substitution. We hypothesize that
biodegradation of aromatic N may be a process inuencing log
BT in the studiedWWTP (see for example Pankaj17 andMasoom
et al.18). The selection of these molecular descriptors, which
have a negative sign in eqn (3) (i.e., their presence reduces BT),
seems to be in line with known mechanisms of removal and
degradation in WWTPs.

Considering the structural outliers in the eqn (3) QSPR, while
benzophenone (ID 76) seems to be not particularly different
from other chemicals in the training set, fexofenadine (ID 229)
is different because of the three benzene rings and one N acyclic
This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3em00267e


Fig. 3 Experimental vs. predicted log BT for the target and non-target
chemicals (Ta* + Nt) QSPR. Green dots = training set, orange dots =
test set. 16 = diclofenac, 255 = 3-indoxyl sulphate, 258 = 4′-
hydroxydiclofenac.
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ring, thus playing a role as a good (low residual) structural
outlier, extending the structural applicability domain of the
QSPR.

Concerning the test set, no simple or evident explanation
could be found for acridine (ID 71) and epinephrine (ID 227) as
endpoint outliers. Therefore, the eqn (3) QSPR, based on only
three descriptors, may simply lack sufficient structural infor-
mation to correctly predict these two chemicals in comparison
to the rest of the test set chemicals.

Looking for an improvement of this QSPR, recall that the
removal of two problematic chemicals (detected using the eqn
(1)) i.e., aniline (ID 25) and acetaminophen (ID 29), signicantly
improved the performance of the target chemical QSPR (see eqn
(2)). Therefore, it was hypothesized that also the corresponding
QSPR based on pooled target and non-target chemicals (here
called Ta* + Nt) would benet from the removal of these two
chemicals. However, the removal of aniline (ID 25) and acet-
aminophen (ID 29) reduced the training set size from 70 to 56
items, which in turn led to the non-overtting QSPR being
based on two descriptors instead of three. Indeed, the tting
and cross validated (in terms of Q2) performance slightly
decreased with respect to the Ta + Nt QSPR (from R2 = 0.58 to R2

= 0.54, and fromQ2= 0.53 toQ2= 0.48), while the probability of
coincidental relationships is basically the same. However, it is
important to highlight that the performance on the test set, in
terms of MAE, improved from 0.69 to 0.58. However, since this
nding is based on test sets of different size (28 for the Ta + Nt
QSPR and 17 for the Ta* + Nt QSPR), the performance was
further evaluated using only the test set chemicals common to
both datasets. In this case a small (but still noticeable)
improvement from 0.62 to 0.59 (in terms of MAE) was obtained,
thus supporting the previous nding. Furthermore, even
though the performance of the two QSPRs, both in tting and
cross validation, and by considering the test set validation
sharing the common chemicals, is similar (see also Table 2), it
should be taken into account that the number of descriptors
included in the Ta* + Nt QSPR is smaller than in the Ta + Nt
QSPR, whichmay explain the poorer tting of the training set by
the Ta* + Nt QSPR.

Eqn (4) consists of two descriptors. The one with the biggest
standardized coefficient, AATS1s, is a lag 1 averaged Broto-
Moreau autocorrelation descriptor weighted by I-state, which
takes into account the electronic and topological environment
(lag 1) of atoms in a molecule, depending on their electroneg-
ativity values (Kier and Hall19). The second descriptor, ETA_-
Beta_ns_d, considers “size, shape, branching and functionality
contributions of a molecular graph in addition to contributions
of specic vertices or positions within common substructures of
molecular graphs towards total functionality” (Roy and
Ghosh20) and, according to the authors it “.may be taken as
a relative measure of electron-richness (unsaturation) of the
substructure (Roy and Gosh.21)”. In our study, it seems that, the
higher the value of ETA_Beta_ns_d, the higher the
breakthrough.

4′-Hydroxydiclofenac (ID 258) was highlighted as a relevant
structural outlier (see Fig. S4†). However, since its experimental
log BT (−0.29) is comparable to that of diclofenac (−0.19, ID
This journal is © The Royal Society of Chemistry 2024
16), it is expected to be a good (low residual) structural outlier,
effectively extending the applicability domain of the QSPR.

Concerning the test set, 3-indoxyl sulphate (ID 255) was
a response outlier (see Fig. S4†). Indeed, there is a tendency of
this QSPR to overestimate (on average 1.6 times) the log BT of
indoles belonging to the training set (see Table S3†).

For this explorative work, the proposed QSPR has acceptable
tting properties (see Table 2 and Fig. 3) and it is encouraging
that the relationship uses only two descriptors, which makes it
very parsimonious from a modeling standpoint, with negligible
probability that this is due to chance. In addition, it should be
noted that, in comparison to the training set, the test set
chemicals were more dissimilar than for the target chemicals,
because the latter were chosen using lower values of the Tani-
moto index from the target chemicals (see Section 2.2). There-
fore, the test set used for this QSPR is expected to give a more
pessimistic view of its generalized performance (it should be
noted that the estimation by the bootstrapped MAE, being 0.75
in comparison to 0.58 estimated by the test set, suggests that
the approach used in this work is robust).

Therefore, this QSPR is expected to give predictions of log BT,
when applied to new chemicals, with an expected average error
between 0.58 and 0.75, for a WWTP and conditions like those
reported in Section 5. This model could be reasonably used for
an initial screening phase of the BT of new chemicals, within an
applicability domain dened in terms of leverage distance.
4.3 PEG (polyethylene glycol) and PPG (polypropylene glycol)
QSPRs (Pe + Pg, Pe and Pg datasets)

Since the mechanisms inuencing log BT can be many and can
differ among heterogeneous chemicals, questions arise whether
Environ. Sci.: Processes Impacts, 2024, 26, 400–410 | 407
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Fig. 4 Experimental vs. predicted log BT for the PEG and PPG (Pe + Pg) QSPR (left) and the PPG (Pg) QSPR (right). Gray dots= PEGs, green dots=
PPGs. 126= PEG n5, 127= PEG n6, 128= PEG n7, 129= PEG n8, 134= PPG n4, 135= PPG n5, 136= PPG n6, 137= PPG n7, 138= PPG n8, 173=

PEG n10, 174 = PEG n11, 175 = PEG n12, 176 = PEG n13, 177 = PEG n14, 178 = PEG n15, 179 = PPG n10.
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structurally homogeneous chemicals, interacting by means of
few or just one mechanism, would lead to better performing
QSPRs. For this reason, PEGs and PPGs, for which mechanisms
of degradation are known, were selected. PEGs are aerobically
degraded by oxidation of the terminal alcohol groups followed
by the terminal ether cleavage,22 thus the chemicals are short-
ened, while PPGs are oxidized to ketones and/or aldehydes,23

but the chemicals are not shortened.23,24

The QSPR developed for pooled PEGs and PPGs (Pe + Pg, eqn
(5)) ts well (R2 = 0.85) and is stable (Q2 = 0.80), and the
probability of a coincidental relationship between the
descriptor and the endpoint due to the descriptor selection
procedure is negligible.

The descriptor for the QSPR equation, hmax, is the
maximum hydrogen E-State (hydrogen electro-topological state
index), which encodes electronic and topological information
about the hydrogens. For PPGs, hmax increases as the chain
length increases, while for PEGs, hmax decreases as the chain
length increases up to 13, then hmax increases again. Since
PEGs and PPGs relate in the opposite way with hmax, this
suggests that they should not be modelled in the same QSPR. In
fact, taking PPGs and PEGs separately, a regression of hmax vs.
log BT for PPGs correlates well (R2 = 0.75) while for PEGs it does
not (R2 = 0.19). Indeed, while both the experimental and pre-
dicted log BT of PPGs consistently decreases as the chain length
increases, the same is not true of PEGs, as the experimental log
BT values show no consistent relationship with chain length
(see Fig. S5†). Also, the experimental vs. predicted log BT chart
(see Fig. 4, le panel) showed a clear distinction between PEGs
and PPGs.

As a consequence, the PEGs and PPGs were modeled
separately.
408 | Environ. Sci.: Processes Impacts, 2024, 26, 400–410
Concerning PEGs (Pe dataset), no reasonable 1-descriptor
QSPR was found (see Section 3.3). This could be due, at least in
part, to the absence of a consistent chain-length dependence
with the experimental log BT values.

On the other hand, the PPGs QSPR (Pg dataset) ts well (R2 =

0.93) and has an acceptable stability (Q2= 0.78). The probability
that the relationship between the descriptor and log BT is
coincidental was reasonably low (around 2%, see Table 3). The
descriptor in this QSPR, ATSC7s, is a lag 7 centered Broto-
Moreau autocorrelation weighted by I-state. This descriptor is
similar to the AATS1s descriptor in eqn (4), which is an auto-
correlation descriptor taking into account the electronic and
topological environment (lag 7) of atoms in a molecule,
depending on their electronegativity values. From the tting
standpoint there is some improvement in the Pg QSPR in
comparison to the Pe + Pg QSPR, especially in terms of training
MAE (the improvement could be due, at least in part, to the
coherence with the degradation pathways). The Pg QSPR shows
a decrease in terms of stability and coincidental relationships,
which is expected because of the smaller number of available
chemicals (6 instead of 16).

Finally, it should be noted that while the molecular size
decreases, the log BT increases. This seemed counter-intuitive,
but the experimental results of Li et al.3 are supported by the
literature, where PPG 425 proved to be less biodegradable than
PPG 725 (which is longer).24

As a side note, it should also be noted that in the paper of Li
et al.3 PEG n8 to n15 and PPG n10 were severely out of the
structural domain of the target chemicals when considering the
second and third PCA axis, while the remaining PEGs and PPGs
were scarcely represented. However, the relationship found for
the PPGs suggested that the methodology for RE calculation
This journal is © The Royal Society of Chemistry 2024
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described in Li et al.3 seems to also be reliable for chemicals
outside the structural domain of the target chemicals.

5. Limitations of the approach

This work is based on removal efficiencies measured by target
and non-target analysis from the Henriksdal municipal WWTP
located in Stockholm (Sweden) which includes mechanical,
chemical and biological treatments, with a nal sand ltration
step. Flow-proportional samples were collected for 24 hours,
during dry weather, on June 15, 2016.3 Therefore, the proposed
QSPRs and performances in predicting the BT should be
considered applicable only for WWTPs under similar condi-
tions. This specication is in addition to the need to verify the
inclusion of new predictions within the structural applicability
domain of the models, by checking the structural similarity to
the training set of eqn (4) or by using the leverage approach.14

The QSPRs have been developed treating the WWTP as
a whole, not taking into consideration specic mechanisms
which are responsible for the BT of the chemicals. While this
approach simplies the development of predictive QSPRs, it
makes it difficult to relate the molecular descriptors to specic
WWTPs processes, thus impacting the interpretability of the
QSPRs. However, the thorough checking of chance correlation
and overtting adds condence to the proposed QSPRs, even
though a straightforward mechanistic interpretation of the
descriptors is not always possible.

Finally, it is necessary to highlight, as also reported in
Section 2.4, that MLR was used here for simplicity to develop
QSPRs which are transparent and easily applicable as linear
equations. These models are based on molecular descriptors
which can be calculated for new chemicals using free soware.
However, relationships between molecular descriptors and the
BT of heterogeneous chemicals are unlikely to be linear, which
limits the accuracy of MLR QSPRs. On the other hand, it should
be noted that linear regressions tend to be more robust (i.e.,
have less variance) than non-linear alternatives. Therefore,
there is a tendency for linear QSPRs to be less overtted than
more complex approaches.

6. Conclusions

This work aimed to check whether the BT calculated as the ratio
between effluent and inuent peak areas of target and non-
target chemicals from WWTPs can be predicted by in silico
methodologies, specically QSPRs. Even though the WWTP
under scrutiny is a complex system, a simple approach was
followed i.e., QSPRs were developed for direct relationships
between the log BT and the structure of the chemicals under
consideration.

Overall, there is evidence that reasonable QSPRs for the
prediction of log BT, at least for a screening phase level, can be
developed, by regressing the structural information of the
chemical to the log BT.

We want to highlight that, to the best of our knowledge, this
work represents the rst attempt reported in the literature to
model BTs, using simple, but statistically robust, MLR
This journal is © The Royal Society of Chemistry 2024
equations and molecular descriptors derived from a freely
distributed soware. In particular, the QSPR developedmerging
target and non-target chemicals (eqn (4)) can be applied for an
initial screening phase of the BT of new chemicals, at least for
WWTPs with treatment steps and operating conditions similar
to the one used here. Moreover, since the structural heteroge-
neity of the studied compounds was a fundamental factor in
dening the dimension of the training and of the test set, we
strongly recommend to apply the proposed QSPR strictly within
the structural applicability domain dened by the leverage
approach.14
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