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A generalized neural network approach for
separation of molecular breaking traces†

Frederik van Veen,*ab Luca Ornago,a Herre S.J. van der Zant *a and
Maria El Abbassi a

Break-junction experiments are used to statistically study the electronic properties of individual

molecules. The measurements consist of repeatedly breaking and merging a gold wire while measuring

the conductance as a function of displacement. When a molecule is captured, a plateau is observed in

the conductance traces otherwise exponentially decaying tunnel traces are measured. Clustering

methods are widely used to separate these traces and identify potential sub-populations in the data

corresponding to different molecular junction configurations. As these configurations are typically a

priori unknown, unsupervised methods are most suitable for the classification. However, most of the

unsupervised methods used for the classification perform poorly in the identification of these small sub-

populations of molecular traces. Robust removal of tunnelling-only traces before clustering is thus of

great interest. Neural networks have been proven to be powerful in the classification of data samples

with predictable behaviour, but often show large sensitivity to the underlying training data. In this study

we report on a neural network method for the separation of tunnelling-only traces in conductance vs.

displacement measurements that achieves excellent classification performance for complete and unseen

data sets. This method is particularly useful for data sets in which the yield of molecular traces is low or

which comprise of a significant number of traces displaying a jump from tunneling features to a

molecular plateau.

1. Introduction

Single-molecule charge transport experiments have enabled the
investigation of a broad range of quantum effects at the mole-
cular scale such as quantum interference,1 nanoscale diodes2 and
Franck–Condon blockade.3 At room temperature, these phenom-
enon are studied using break-junction experiments which rely on
the stochastic formation of molecular junctions, resulting in a
spread of outcomes of consecutive measurements.4,5 The origin
of these variations lies in the sensitivity with regard to the atomic
details of the molecule, the position in the junction and the
metal-molecule chemistry.6–9 Because of this, the junction prop-
erties (e.g. junction conductance, current–voltage characteristics,
or Seebeck coefficient) are typically investigated through the
acquisition of large data sets, comprising thousands of repeated
measurements.

A common approach to statistically determine the single-
molecule conductance value is to construct conductance histograms
from a set of conductance vs. displacement (breaking) traces and fit
the prominent peaks with a log-normal distribution.10 However, this
approach can lead to inaccurate data interpretation as measure-
ment sets may exhibit breaking curves of distinct molecular config-
urations (e.g. different injection points, participation of additional
molecules). In such cases, the most probable conductance value
obtained from the raw histograms cannot be attributed to a
unique molecular conformation.11 Clustering algorithms can help
to separate the traces into categories of distinct molecular config-
urations, to be analysed individually. Most conventional unsuper-
vised learning algorithms, however, perform poorly in capturing
small subpopulations from data sets with highly non-uniform
cluster sizes due to the uniform effect.12,13 In particular, in the
case of low yield measurements, most of the molecular classes are
visible only after several steps of over-clustering.

Convolutional neural networks (CNN) are a class of artificial
feed-forward neural networks with initial convolutional layers.
These layers contain filters that are optimised to identify
features in the input data that are characteristic for distinguish-
able classes. CNNs have been shown to be particularly powerful
for image recognition tasks, and can be applied for the analysis
of break-junction experiments, as breaking traces can be
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considered as 1D and 2D images. While the more commonly
used unsupervised methods extract the average features of
groups of traces, CNNs treat each breaking trace individually,
and are thus useful for the identification of small subpopula-
tions. Here, we describe a supervised deep learning approach,
using CNNs, to improve the performance of the unsupervised
clustering methods by initially removing tunnelling-only traces
from the measurement set.

A convolutional neural network was trained to distinguish
between tunnelling and molecular traces on a large dataset of
roughly 200 000 labeled breaking traces obtained for alkane-
dithiols, displaying very diverse breaking traces. A schematic of
the chemical structure of the alkanedithiols is shown in the
ESI,† Section S6. Once trained, this network is used to label and
remove the tunnelling-only traces in sets of unseen breaking
traces. We show that the network fulfills the important require-
ment of generalization, showing excellent performance for
complete and unseen experimental datasets of different mole-
cules with different anchoring groups and breaking traces.

A single breaking trace describes the conductance of the
junction at increasing electrode displacements. In the absence
of bridging molecules, the junction conductance decays expo-
nentially as the gap size between the electrodes increases,
typical for direct tunnelling across a barrier of increasing
length, as observed for the orange-colored traces in Fig. 1b.
Target molecules can bridge the gold electrodes after rupture of
the point contact, which is typically identified by the presence
of a conductance plateau in the breaking trace, as seen in the
green- and blue-colored traces in Fig. 1b. Fig. 1c shows a reduced

feature space representation, obtained by applying principle com-
ponent analysis, for the three-class measurement set recorded for
hexanedithiol,14 shown in Fig. 1a. Due to the large amount of
tunnelling traces, the measurement set shows a high variance in
the dimensions describing tunnelling features, indicated by the
large spread of the tunnelling class in Fig. 1c. A zoomed-in view
around the origin (Fig. 1d) displays the large overlap of traces from
the different configurations, complicating the separation of the
different (molecular) configurations. The challenge is now to
efficiently separate the molecular traces from the ones displaying
tunneling only, after which unsupervised clustering methods can
be utilized to capture only the variance in the molecular set.

2. Experimental: training data and
network optimization

The neural network architecture used in this work was obtained
from a small gridsearch through a hyperparameter space, con-
sidering both fully-connected neural networks and convolutional
neural networks (CNN). The final network architecture chosen was
a CNN consisting of two convolutional layers and two fully-
connected layers. The presence of convolutional layers slightly
increased the classification performance; additional convolutional
layers were found to have a negligible effect, while increasing both
the training and classification time. More rigorous optimization of
the hyperparameters of the network (e.g. layer widths) was not
performed, after similar performances for several architectures
were observed. The convolutional layers were combined with a

Fig. 1 (a) Two-dimensional (left) and one-dimensional (right) conductance histograms built from a set of breaking traces recorded for hexanedithiol.
The data is taken from ref. 14. (b) Examples of individual breaking traces showing three different configurations: tunneling (orange), single molecule (blue)
and traces with plateau lengths larger than the molecule (green). (c) Reduced feature space of all the breaking traces in the dataset, obtained by applying
principle component analysis (PCA). (d) Zoomed-in region in the reduced feature space, containing a mixture of traces from the three different
configurations.
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max-pooling layer to downsample the constructed feature maps
and a ReLU activation function. The final output nodes were
converted to normalized probabilities via a softmax activation
function. Shifted threshold values of 0.60 and 0.40, for tunnel-
ing and molecular respectively, were used in the final softmax
layer at the end of the network during classification, to decrease
the probability of separating any molecular traces, which could
jeopardize the ability to extract the complete picture from the
subsequent statistical analysis of the molecular set.

To train the neural networks, large training data sets (roughly
100 000 traces per molecule) were used from a previous study of
mechanically controlled break-junction (MCBJ) measurements on
propanedithiol (ADT3), hexanedithiol (ADT6) and octanedithiol
(ADT8), displaying a large variety of molecular traces.14 To label the
data, we used an unsupervised learning algorithm to cluster the
individual measurements sets into many (i.e. 100) subclasses. The
classes displaying very clean tunnelling and molecular features
were labeled accordingly. From these labelled sets, we constructed
a training set with equal amounts of tunnelling and molecular
traces and similar amounts of traces from ADT3, ADT6, and ADT8.
Note that one could also collect large amounts of tunnelling traces
from measurements of the bare gold samples. However, as the
presence of molecules can influence the tunnel barrier between
the electrodes,2 the used collection scheme might capture more
diverse tunnelling behaviour.

For each breaking trace the region within 0.5–1.0 � 10�6G0

(G0 = 2e2/h E 77 mS), and within the 0.5–3 nm displacement
range was transformed into a discrete feature vector using the
histogram method explained in the ESI,† Section S1. These
ranges were chosen since good initial results were obtained
while the electrode displacement range includes most plateau
lengths observed in the experiments. To train the networks, we
exposed them to the labeled breaking traces, in batches of 1600
traces per iteration. The cross-entropy function was utilized to
calculate the network loss, while the network parameters were
optimized via the adaptive moment estimation (Adam)
algorithm.15 80 percent of the labeled data was used to train
the networks, while the remaining 20 percent was used to
determine the generalization of the network. Fig. 2b displays
the loss and network accuracy for both the training and
validation sets as a function of epochs. A single epoch denotes
a complete pass of the labeled data through the neural network,
while updating its parameters. In order to visualize the differ-
ence between the training and validation curves, we omitted the
first 10 epochs (reducing the loss and accuracy range of the
plots). The full curves are shown in the ESI,† Section S2. A
constant step-size of a = 10�3 was used together with exponen-
tial decay rates b1 = 0.9 and b2 = 0.999, and e = 10�8. All models
in this study were developed with the pytorch open source
library.16

Fig. 2 (a) Proposed clustering approach. Using a neural network, trained on carefully selected training data, molecular traces can be separated from
tunneling for any molecular dataset. (b) Learning curves for training on our labeled dataset. (c) Tunnelling separation performance results of the trained
neural network compared to conventional unsupervised clustering methods. (d) Classification accuracy for molecular and tunneling traces for all three
molecules.
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3. Results and discussion
3.1 Network generalization and benchmarking

The training curves in Fig. 2b show that our network achieves a
very high accuracy in distinguishing between tunneling and
molecular traces. The total amount of training cycles was set to
200, as the training curves fully converge at this stage. It can be
seen that there is a very small difference between the training
(dots) and validation (crosses) curves for both the loss and the
accuracy during the network optimization, showing that our
network generalizes well to unseen data without over-fitting.

The breaking traces in the validation set are likely to display
very similar features to the ones in the training set, since they
are obtained using the same parameters (i.e. same sample and
molecules). However, the model should also generalize well to
measurement sets of different molecules, containing breaking
traces with distinct shapes. To investigate the model’s ability,
we design the following test: first, we train the model based on
only two chain lengths, and second we check the classification
accuracy of the remaining compound. The classification per-
formance after this training is summarized in Fig. 2d. The
figure shows from left to right the classification accuracy of the
network for ADT3 (trained on ADT6 and ADT8), ADT6 (trained
on ADT3 and ADT8) and ADT8 (trained on ADT3 and ADT6).

The CNN achieves excellent classification for all three mole-
cules, with accuracies exceeding 95% for all of them, indicating
that it generalizes the classification task well to unseen data.
The network achieves higher accuracies for the molecular
traces than for the tunneling traces, with higher accuracies
(bars) reached on the molecular traces. This is likely the result
of the network being penalized more for false classification of
molecular traces than tunneling ones.

Additionally, the network performance was benchmarked
against commonly used unsupervised techniques (K-means and
Gaussian mixture model). For this benchmarking, the ratio
between molecular and tunneling traces was varied, ranging
from 1 : 1 to 1 : 10. The two-class clustering results of this
benchmark are shown in Fig. 2c, displaying the classification
performance, averaged over the three datasets, for the different
methods and ratios. The full results, without averaging are
shown in the ESI,† Section S4. Firstly, it can be seen that the
unsupervised techniques work well when the amount of mole-
cular and tunneling traces are similar. When the ratio between
the two drops, the performance reduces drastically. For all
molecules, the CNN outperforms the unsupervised methods
significantly. The unsupervised methods take into account all
the features in the breaking traces, diluting the features that are
relevant and molecule-dependant with ones that are not, while

Fig. 3 Tunnelling separation performance of the trained network on unseen experimental measurement sets of breaking traces recorded for ADT6 (a)
and OPE3-diSAc (b), showing the histogram of the complete data set (left), and the histograms constructed from the separated tunnelling-only (middle)
and remaining molecular traces on the right (right).
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the CNN learns to capture only the ones that are relevant for the
distinction between tunneling and molecular.

As expected, the classification performance of the CNN
remains also constant when varying the ratio of molecular traces
to tunneling traces. In addition to the higher accuracy, the
network, once trained, also outperforms the considered unsu-
pervised two-class clustering techniques substantially in terms of
time, by more than a factor 10. This becomes especially advanta-
geous for large data sets.

3.2 Classification of complete and unseen data sets

To date, the network has been tested on labeled datasets of
selected breaking traces. To be useful in the analysis of break-
ing traces, the model will need to also achieve excellent
classification for full experimental datasets, without any prior
selection. To demonstrate the capabilities of our CNN model to
do so, we applied it to several unfiltered experimental measure-
ment sets. Fig. 3 displays the classification results obtained for
measurements of ADT6 (a) and OPE3-diSAc (b), showing the
conductance histograms obtained from the complete (raw) set,
and the separated tunnelling (tun) and molecular (mol)
sets. For ADT6, the network was trained on ADT3 and ADT8,
while for OPE3-diSAc the network was trained on all three
alkanedithiols.

For both molecules, the tunnelling classes show clean expo-
nentially decaying features, while the remaining set of traces
show no clear tunneling features, indicating that the network
separates only and most tunneling traces. These observations are
also confirmed from a more detailed evaluation (see the ESI,†
Section S3.1 and S3.2); subsequent clustering with k-means of the
obtained tunnelling and molecular sets into 15 (ADT6) and
10 (OPE3-diSAc) subclasses shows that for ADT6, 97.5 percent
of the tunneling traces are removed while zero molecular ones
were discarded, and that for OPE3-diSAc, none of the traces have
been wrongfully labeled by our network.

3.3 Influence of anchoring groups and switching traces

To further test the CNN generalization, we now consider datasets
of OPE3 molecules with two different anchoring groups, pyridine
(Pyr) and amino (NH2), measured in a recent study.17 A schematic
of the chemical structure of the OPE3s is shown in the ESI,†
Section S6. These anchoring groups result in a weaker binding of
the molecule to the electrodes, which can influence the shape of
the breaking traces.17 Additionally, the study showed that these
datasets include large amounts of breaking traces for which the
signal switches between tunneling and molecular signals. Among
these a significant amount displays an initial exponentially
decaying tunneling signal and only in the final part switches to

Fig. 4 Tunnelling separation performance of our trained network on unseen experimental measurement sets of breaking traces recorded for OPE3-Pyr
(a) and OPE3-NH2 (b), showing the histogram of the complete data set (left), and the histograms constructed from the separated tunnelling-only (middle)
and remaining molecular traces on the right (right). The molecular classes for both molecules contain a single blue-colored example trace.
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an, often short, conductance plateau. Although these traces dis-
play tunneling features for a large portion, it is important that
these traces are not considered as tunnelling by the CNN, as they
provide valuable information on the formation of the molecular
junctions.

The classification results obtained for measurements on
OPE3-Pyr (a) and OPE3-NH2 (b) are shown in Fig. 4. From the
two-dimensional histograms it can be seen that the tunneling
sets contain very little (OPE3-Pyr) or no (OPE3-NH2) molecular
features (see also the ESI,† Section S3.3 and S3.4). The detailed
evaluation in the ESI† shows that for OPE3-NH2, no molecular
traces are separated, while for OPE-Pyr very few molecular
traces were separated, and they only show very short jumps
and do not display a significant molecular plateau. For both
molecules, the histograms constructed from the remaining
traces still display prominent exponentially decaying features.
From the clustering evaluation, however, we find merely break-
ing traces that contain molecular plateaus. A large percentage
of these traces display a tunneling part, followed by a jump to a
molecular plateau, as reported in ref. 17. Individual example
traces of this type have been added to the molecular histograms
(Mol) of both molecules as black-lined overlay in Fig. 4. These
results indicate the robustness of the model, achieving also
excellent classification, without additional training, for break-
ing traces with different anchoring groups and even molecular
traces with initially a tunneling signal.

3.4 Low molecular yield datasets

The initial separation of tunneling-only traces becomes parti-
cularly useful in the analysis of datasets exhibiting small
amounts of molecular traces. To demonstrate this, we con-
structed a low-molecular yield ADT3 dataset from the clustering
analysis performed in ref. 14, by including all the tunneling
traces and removing all but 5 percent of the molecular ones. If
the raw data are analysed directly, both the shape and position
of the molecular conductance peak will be affected by the
presence of tunneling traces.11,18,19 Furthermore, identification
of the peak in the 1D histogram will become very challenging
when the molecular yield is low. This can be seen in the
leftmost panel of Fig. 5, displaying the conductance histograms
constructed from the full low molecular yield dataset. No
conductance peaks can be identified, while the dataset does
show a clear set of multiple conductance peaks, as will be
discussed shortly. When clustering analysis with k-means is
performed on the low molecular-yield dataset, one often needs
to use a high number of classes (overclustering) in order to
resolve all of the molecular features. Fig. 5 shows the 5 classes
obtained from the unsupervised learning algorithm in ref. 11
when initial tunneling traces are separated with the neural
network (bottom) or not (top). After initial separation of the
tunnelling traces, a five class clustering (K-means) suffices to
distinguish the distinct breaking traces, in agreement with the
results obtained in ref. 14. When the same procedure is

Fig. 5 Clustering results on a low molecular-yield dataset (ADT3). K-means clustering in five classes (labeled as 1 to 5 in the top right of the histogram)
without the use of neural networks to separate the tunneling traces (top) and after removing the tunneling traces by the neural network (bottom).
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employed on the full set, one only obtains tunnelling classes
(classes 1 to 4) and one hybrid class (class 5). Only after
clustering the data into roughly 20 classes, one starts obtaining
molecular classes. For datasets exhibiting multiple molecular
classes, one ends up typically overclustering also molecular
classes, which then need to be merged back afterwards. Besides
being time consuming, this process is prone to user-bias.

4. Conclusion

In conclusion, we have demonstrated that a neural network
approach can effectively separate tunnelling-only traces from
break-junction measurement sets. By training our network on
large and diverse training sets, it generalizes to full and unseen
data of different molecules (both conjugated and non-
conjugated backbones) and anchoring groups (strong and
weak). Importantly, our network does not remove molecular
traces and even molecular traces that switch from initial
tunneling to a molecular plateau are labeled correctly. Our
neural network approach greatly improves the analysis of low-
yield measurement sets. The approach thus offers an efficient
and accurate method to remove the tunneling-only traces from
conductance vs. displacement data sets, leaving a set of mole-
cular traces that can be further analyzed.
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electrode tunneling in break-junction measurements of
molecular conductance, Phys. Rev. B: Condens. Matter Mater.
Phys., 2011, 84, 205408.

19 P. D. Williams and M. G. Reuter, Level alignments and
coupling strengths in conductance histograms: The infor-
mation content of a single channel peak, J. Phys. Chem. C,
2013, 117(11), 5937–5942.

Journal of Materials Chemistry C Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
go

lg
go

tm
án

nu
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

02
5-

10
-1

7 
00

:1
6:

02
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3tc02346j



