Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Transition metal nitrides (TMNs) are emerging as a feasible alternative to noble metal co-catalysts in photocatalytic hydrogen production. Considering the recent prospects created by multicomponent systems, it is reasonable to investigate multi-component TMNs for photocatalytic hydrogen production. Herein, in an effort in that direction, ternary chromium-titanium nitride (Cr0.5Ti0.5N) nanoparticles have been synthesized by a solid–solid phase separation method, resulting in highly efficient co-catalysts for promoting photocatalytic hydrogen production of semiconductors under visible light irradiation. Both experimental results and density functional theory (DFT) calculations demonstrate that ternary Cr0.5Ti0.5N offers a comprehensive advantage by boosting the photo-induced charge carrier separation and migration, improving the reaction kinetics as compared to those of TiN and CrN. Therefore, the optimal Cr0.5Ti0.5N-based sample exhibits the highest photocatalytic hydrogen evolution rate of 2.44 mmol g−1 h−1, and has ∼120 times better kinetics than the reference pure CdS sample. In fact, this result even surpasses that of Pt-based nanocomposites (2.06 mmol g−1 h−1).

Graphical abstract: Chromium-titanium nitride as an efficient co-catalyst for photocatalytic hydrogen production

Page: ^ Top