Issue 2, 2025

Reusable EWOD-based microfluidic system for active droplet generation

Abstract

Droplets are essential in a wide range of microfluidic applications, but traditional passive droplet generation methods suffer from slow response speed and the need for precise flow rate adjustment. Here, we present an active droplet generation method through electrowetting-on-dielectric (EWOD). Electrowetting is a technique that uses an electric field to change the wettability of a surface. In our method, we apply an electric field to the laminar flow of the dispersed and continuous phases in a microchannel, which induces the discretization of the dispersed thread and leads to droplet formation. A key feature of the proposed active droplet-generating microfluidic device is the reusability of the EWOD actuation substrate, dramatically reducing operational costs. In addition, this approach offers significant advantages over passive methods, including fast response speeds, a wider range of droplet sizes, and greater control over droplet size. In addition, the ultrathin polymer film used in this device allows for a low electrowetting voltage, which helps to prevent damage to encapsulated cells. We believe that our active droplet generation method is a promising new method for generating droplets in microfluidic applications. It is faster, more versatile, and more precise than passive methods, making it ideal for a wide range of applications, including single-cell genomics and drug discovery.

Graphical abstract: Reusable EWOD-based microfluidic system for active droplet generation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 čakč 2024
Accepted
06 juov 2024
First published
10 juov 2024

Lab Chip, 2025,25, 225-234

Reusable EWOD-based microfluidic system for active droplet generation

S. Park, J. Ryu and K. Han, Lab Chip, 2025, 25, 225 DOI: 10.1039/D4LC00744A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements