Mind the gaps: what the STGABS27 set can teach about second-order excited state methods, solvent models, and charge transfer

Abstract

Charge-transfer (CT) states are ubiquitous in modern organic electronics, yet their accurate theoretical description poses a challenge for common excited state methods. The recently introduced STGABS27 benchmark set provides highly accurate experimentally measured adiabatic energy gaps (ΔEST) between the lowest singlet and triplet excited states of thermally activated delayed fluorescence (TADF) emitters. While first studies revealed a remarkable performance of orbital-optimized state-specific ΔDFT and mixed results with TD-DFT and DFT/MRCI, this work explores the performance of correlated wave-function methods, namely second-order algebraic diagrammatic construction (ADC(2)) and second-order approximate coupled-cluster singles and doubles (CC2) in their canonical and spin-scaled variants. Owing to the polar nature of the states, a particular emphasis is placed on the dielectric solvent models. The results show that only a few models, namely the iterative state-specific COSMO solvation model in combination with spin-component-scaled or scaled opposite-spin (SCS/SOS) ADC(2) or CC2, are competitive with ΔDFT/PCM and achieve sub-kcal mol−1 agreement with experimental singlet–triplet gaps, which is confirmed by cross-checks on emission energies. However, this performance comes with a hefty cost, as both models are roughly 100 times slower than similarly accurate ΔDFT/PCM-based models.

Graphical abstract: Mind the gaps: what the STGABS27 set can teach about second-order excited state methods, solvent models, and charge transfer

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 Jun 2025
Accepted
12 Aug 2025
First published
26 Aug 2025

Phys. Chem. Chem. Phys., 2025, Advance Article

Mind the gaps: what the STGABS27 set can teach about second-order excited state methods, solvent models, and charge transfer

T. Froitzheim, C. Hättig and J. Mewes, Phys. Chem. Chem. Phys., 2025, Advance Article , DOI: 10.1039/D5CP02144H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements