Ultrasmall coinage metal nanoclusters as promising antibacterial agents: from design to applications
Abstract
Ultrasmall coinage metal nanoclusters (MNCs, <3 nm) have emerged as a novel class of broad-spectrum antibacterials due to their unique physicochemical properties. The rapid advances in the design and applications of MNC-based antibacterials are made possible by the atomic-level core–shell engineering of MNCs. In this review, we initially explore the fundamental requirements for MNC-based antibacterials. Following this, we emphasize the significance of antibacterial modalities in the design and application of these agents by summarizing the key antibacterial modalities of MNCs and highlighting their mechanisms of action. We then outline the primary design strategies for MNC-based antibacterials. In the subsequent section, we provide an overview of the representative antibacterial applications of MNC-based antibacterials across various scenarios. Finally, we offer a comprehensive summary along with the current opportunities and challenges faced by MNC-based antibacterials. We believe that this review will illuminate the design of MNC-based antibacterials for future applications and inspire further innovative research in their development.
- This article is part of the themed collections: Chemical Communications HOT articles 2025 and 2025 Pioneering Investigators