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ing organic aerosols and highly
oxidized molecules produced by reaction of ozone
with floor cleaning detergent†

Jinli Xu,‡abcd Tianle Pan,‡abcd Tingting Feng,abcd Yingkun Wang,abcd Wei Chen, abcd

Weiwei Hu*abc and Sasho Gligorovski *abce

Cleaning detergents are a source of numerous volatile organic compounds (VOCs) which are highly reactive

towards ozone leading to the formation of secondary organic aerosols (SOA) in indoor environments. Here

we perform real-time measurements of the organic composition of aerosols produced upon ozone

reaction with floor cleaning detergent by extractive electrospray ionization time-of-flight mass spectrometer

(EESI-TOF-MS) coupled to a chamber reactor. The experiments were performed in the absence of light and

under light irradiation (320 nm < l < 400 nm) simulating the fraction of sunlight that penetrates indoors. The

multiple increases in particle number concentrations correspond to rise in the signal intensity of specific

species. Notably, the secondary increase in particle mass concentration is mainly contributed by highly

oxidized molecules (HOMs), which increased from 16.5% upon ozone oxidation to 19.9% under photo-

oxidation reactions. A large fraction of CHON compounds such as imidazole, pyrazine/pyrimidine, and

azaindole was observed most likely formed through the reaction of O3 with benzothiazole (constituent of

the cleaning detergent). The difference between the molecular compositions detected in the absence of

light and in the presence of light indicates that sunlight penetrating through the windows can affect the SOA

produced by the reaction of ozone with the floor cleaning detergent.
Environmental signicance

Secondary organic aerosols in the indoor air play an important role from a health point of view but the knowledge about their formation processes and chemical
composition is still lacking. Cleaning agents which are widely used indoors represent a source of volatile organic compounds especially monoterpenes which are
highly reactive toward ozone and produce organic aerosols. Understanding the formation and chemical structure of these aerosols in particular under sunlight
irradiation which penetrates indoors through glass windows is essential for proper modeling of indoor air quality and a comprehensive understanding of their
effect on human health.
1 Introduction

Ozone (O3) reactions in indoor environments have attracted
great attention among the scientic community.1–4 Previous
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studies have shown that ozone can be generated indoors by
photocopiers, laser printers, ozone-based air puriers, and
ozone disinfection cabinets or transported from outdoors
through ventilation.5–7 The indoor O3 concentration can vary
from a few ppb to tens of ppb.2,8–10 The reactions of O3 with
unsaturated compounds e.g. terpenes lead to the formation of
secondary organic aerosols (SOA).1,11–13 In the indoor environ-
ment, oor cleaning detergents contain various volatile organic
compounds (VOCs) including terpenes and terpenoids which
can react rapidly with ozone to generate aerosol particles.1,14–19

Few studies have shown that use of cleaning products, indeed
leads to the formation of SOA in the indoor air.1,17,18,20 One of the
main constituents of the cleaning products is D-limonene which
concentration in the indoor air can reach up to 13 ppb during
the cleaning event.17 Another study showed that a-pinene, D-
limonene, and b-pinene, which are important ingredients in
detergents,19 can lead to a signicant increase (∼15%) in
particulate matter within three hours aer the cleaning event
© 2024 The Author(s). Published by the Royal Society of Chemistry
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compared to no cleaning activities.21 The gas-phase emission
from the cleaning detergent used in our study contains more
than 30 volatile organic compounds (VOCs), including D-limo-
nene and a variety of alcohols (dihydromyrcenol, g-terpineol, a-
terpineol) and esters (2-hydroxypropyl methacrylate and allyl
heptanoate).19 These compounds have the potential to react
with ozone and produce secondary organic aerosols (SOA).22,23 It
has been found that the reaction of ozone with D-limonene
produces more SOA particles than its reaction with a-
pinene,24–26 however, it is a-pinene that exhibits higher aerosol
formation potential in terms of ozone reactivity.27,28

Over the past two decades, extensive research has been
conducted on the chemical composition of secondary organic
aerosols (SOA) produced through the ozonolysis of terpenes,
with a particular emphasis on the mass and number concen-
trations as well as the size distribution of the particles gener-
ated during indoor cleaning activities.1,20,29–38 Furthermore,
several studies have delved into the SOA formation resulting
from specic reactants, such as limonene, a-pinene, ozone, and
nitrogen oxides (NOx).31–33,35 These investigations have also
incorporated methodologies that involve the collection of lter
samples and the application of various offline analytical tech-
niques to identify the chemical constituents of the particulate
phase.29 Despite this extensive body of work, our understanding
of the composition of indoor-generated SOA remains incom-
plete. This knowledge gap is signicant, especially considering
the implications for human health.20,38–42 Indeed, it has been
shown that the deposited aerosol dose in the particle range of
1.2–800 nm, formed by the ozonolysis of monoterpenes during
the mopping event is greater than, or comparable to, that one
would inhale in an urban street canyon traffic.1,43,44

In the present investigation, we conducted a real-time
assessment of aerosol particle formation following the reac-
tion between gaseous ozone (O3) and a commonly utilized oor-
cleaning detergent. This study was designed to simulate indoor
environmental conditions, examining scenarios both devoid of
light and exposed to UV-light within the range typical for indoor
settings (320 nm < l < 400 nm).10,45–47 The aerosols generated
through the ozonolysis of the cleaning detergent were charac-
terized using an extractive electrospray ionization time-of-ight
mass spectrometer (EESI-TOF-MS), which provided insights
into their chemical composition. Concurrently, particle size
distributions were determined utilizing a scanning mobility
particle sizer (SMPS), with measurements recorded every 4
minutes. Experimental observations indicated that particulate
matter mass concentrations varied from 5 to 7 mg m−3, with an
increase attributed to secondary particle formation during
photo-oxidation reactions (Fig. S1†).

2 Materials and methods
2.1 Set up of the reactor

The experiments were carried out in a spherical borosilicate
glass reactor (R = 9 cm, V = 3.05 L) (Fig. S3†). The glass reactor
was placed in a stainless-steel box equipped with eight UV-A
lamps (40 W, 320 nm < l < 400 nm) simulating the sunlight
intensity penetrating indoors.10,45,46 A ow of 100 mL min−1
© 2024 The Author(s). Published by the Royal Society of Chemistry
(range 0–200mLmin−1 HORIBAMETRONmass ow controller;
accuracy, ±1%) tank zero air passed through a commercial
ozone generator (UVP, LLC Upland) to produce a stable mixing
ratio of O3. Another ow of 500 mL min−1 air (0–500 mL min−1

HORIBA METRON mass ow controller; accuracy, ±1%) passed
through a glass bottle lled with bubbling ultrapure water (18
M-ohm, H2OMM-UV-T, Germany) to control the relative
humidity (RH). These two ows were mixed to acquire the O3

mixing ratios of 50 ± 5 ppb, simulating the ozone levels in an
indoor environment with the 70% RH and then introduced into
the reactor through the right exit. The le exit of the reactor is
connected to a diluted airow of 1.7 L min−1 (0–5 L min−1

HORIBA METRON mass ow controller; accuracy, ±1%) before
introducing it into a scanningmobility particle sizer (SMPS) and
an extractive electrospray ionization time-of-ight mass spec-
trometer (EESI-TOF-MS, ToFWerk AG and Aerodyne Research
Inc.) (Fig. S3†). The preparation of the samples is described in
the ESI.† Particle composition was measured by EESI-TOF-MS.
Particle mass concentration and size distributions were
measured by a scanning mobility particle sizer (SMPS, 3080, TSI
Inc.). Our study specically examines the impact of varying
ozone reaction conditions on the composition of particles in the
aerosol phase.
2.2 Extractive electrospray ionization time-of-ight mass
spectrometer (EESI-TOF-MS)

The EESI-TOF-MS is a commercial instrument (ToFWerk AG
and Aerodyne Research Inc.) coupled with positive electrospray
ionization (ESI+) sources.48 The aerosols were sampled using an
activated carbon denuder (2 cm diameter, 4 cm height, with
a 1 mm square aperture) at a ow rate of 0.37 L min−1, before
encountering a droplet spray from a fused silica electrospray
capillary (360 mm outer diameter and 75 mm inner diameter).
The extraction solvent, a 50 : 50 mixture of water and acetoni-
trile, was fortied with 100 ppm of sodium iodide (NaI) to
facilitate the detection of aerosol molecules. The soluble
constituents of the aerosol were effectively captured within the
liquid phase. As the droplets evaporated, the resulting
compounds were characterized as sodium ion (Na+) adducts.
The adducts were guided through a series of ion guides and
were separated based on their mass-to-charge ratio in a time-of-
ight mass spectrometer. During the experiments, the resolu-
tion of the mass spectrometer was m/Dm ∼ 9000–10 000. Posi-
tive ion spectra were recorded at a time resolution of 5 s and
were averaged to a 1 min resolution in the latter analysis.
Continuous background measurements were conducted by
periodically sampling aerosols through a particulate lter
(Balston disposable lter unit, model Parker 9933-11-BQ, USA)
for 3 minutes within every 12 minute interval.33 Aer switching
from the sampling line to the lter or lter to the sampling line,
transition data (∼1 min) were recorded, which was deleted to
exclude the interferences. [(NaI)n]Na

+ clusters are also removed
from the dataset. Before the experiments, we calibrated the
EESI-TOF-MS for levoglucosan, achieving a detection limit of
16.4 ng m−3 and a sensitivity of 2283.1 ions per s mg m3. No
matrix effect was found in our study, which is consistent with
Environ. Sci.: Atmos., 2024, 4, 1358–1367 | 1359
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what Lopez-Hilker et al. (2019) found.48 The description of the
data analysis by EESI-TOF-MS is shown in the ESI.†
3 Results and discussion
3.1 Hierarchical cluster analysis

Fig. 1 shows the hierarchical cluster analysis performed by
Matlab R2018b to identify the compounds with different chro-
nological variations during ozone-only, simultaneous ozone
and light, and light-only, exposure periods.

The hierarchical cluster diagram (HKD) obtained from real-
time monitoring of 194 selected ions was classied into four
groups that exhibit different signal intensity–time proles. The
grouping lines of the clusters were shown in the le of Fig. 1A.
The groups marked with a blue and green rectangle contain 26
and 25 species, respectively, and show increasing intensity
trends (Fig. 1A and B) as the oor-cleaning detergent was
Fig. 1 (A) Hierarchical cluster analysis of 194 ions detected by EESI-
TOF-MS upon ozone oxidation reaction and photo-oxidation reaction.
The grouping lines of the clusters are shown in the left. The normalized
signal intensity in the hierarchical cluster is presented by a color-
coded scale; i.e., the signal intensity increases linearly from dark blue
(normalized value of−3) to wine red (normalized value of 3). (B) Curves
showing signal intensity over time for different groups derived from
hierarchical cluster analysis. (C) Mass spectra of observed ions in four
groups produced under oxidation reaction (dark color) and photo-
oxidation reaction (light color). The signal is normalized to the
maximum of the highest peak in the group.

1360 | Environ. Sci.: Atmos., 2024, 4, 1358–1367
exposed to O3. The intensity of the species categorized under
‘Blue’ diminishes when the detergent is concomitantly sub-
jected to ozone (O3) and light exposure, signifying that these
species are likely consumed during the photo-oxidation
process. Conversely, the ion intensity within the ‘Green’ group
increases upon both ozone-only and photo-oxidation reactions.
Additionally, the ‘Blue’ and ‘Green’ groups can be further
differentiated into multiple sub-groups, as illustrated in ESI,
Fig. S4 and S5.† The ‘Yellow’ group predominantly display an
increase in ion intensity under photo-oxidation conditions with
the cleaning detergent while the ion signals in the ‘Red’ group
increase under both reaction conditions (Fig. S6†). However, the
evolutionary trend of species in the ‘Red’ group is signicantly
distinct from that in the ‘Green’ group. Fig. 1C presents
a comparative analysis of the ion intensities across all four
groups under the two experimental scenarios. The ‘Yellow’ and
‘Red’ groups are predominantly composed of dimers with
carbon chains ranging from C15 to C20 or even larger. In
contrast, the ‘Blue’ and ‘Green’ groups are comprised of
monomers with shorter carbon chains, C5 to C10. The majority
of compounds within the ‘Blue’ group exhibit a O/C # 0.5, and
H/C $ 1.5, suggesting that aliphatic hydrocarbons are the
predominant constituents. Both ‘Yellow’ and ‘Red’ groups may
also include aliphatic hydrocarbons, as indicated by their H/C
and O/C ratios that fall within the ranges of 1.70 to 2.13 and
0 to 0.42, respectively. Contrasting these, the ‘Green’ group is
primarily composed of highly oxidized functional compounds
(28%) along with a signicant proportion of aliphatic hydro-
carbons (16.0%).49–51 In the following section, is provided
a detailed introduction to classications of the observed
substances.
3.2 Mass spectral analysis

Fig. 2 shows the high-resolution mass spectra (background-
subtracted) of the observed species produced under different
conditions. For sake of convenience all substances in the text
are shown solely in the form of organic molecular formulas
excluding the Na+ ion. The mass spectra depicted in Fig. 2
represent the average proles for each distinct phase of the
reaction: namely, ozone oxidation (Fig. 2A), photo-oxidation
reactions (Fig. 2B), and the differences between them
(Fig. 2C). In the rst two mass spectra (Fig. 2A and B), the ion
signal intensities are normalized to the highest peak observed
under the respective reaction conditions. Fig. 2C is derived by
subtracting the ion signals depicted in Fig. 2B (photo-oxidation)
from those in Fig. 2A (ozonolysis), thereby highlighting the
differences in the products formed under different reaction
conditions. Among all the detected compounds, both mono-
mers (C5–C10) and dimers (C15–C20) are evident (Fig. 2A and
B).19 The monomer region is dominated by C9 and C10 species,
which together account for 71.4% of the total detected mono-
mer compounds formed upon ozone oxidation reactions, and
66.1% produced during photo-oxidation reactions. In our
previous study19 focused on the heterogenous chemistry of
ozone on oor-cleaning detergent, the majority of the detected
compounds were monomers retaining the skeleton of VOCs
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ea00076e


Fig. 2 High-resolution mass spectra of the observed species
produced under (A) ozone oxidation reaction, (B) photo-oxidation
oxidation reaction, and (C) comparison of both spectra calculated by
graph (A) minus graph (B). The signal is normalized to the maxima of
the highest peaks observed. Due to space constraints, only the species
with the highest relative signal intensity are labelled in this figure. The
labelled species in the figure have omitted the Na+ ion.
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(C7–C10), but here products with different C-numbers were also
observed. The photo-oxidation reaction is notably characterized
by an increase in the average molecular size, attributable to the
condensation process and the incorporation of monomers into
oligomeric structures. In particular, dimers (C15–C20) and
higher-molecular weight oxygenated compounds are formed as
shown on the negative axis, while monomers (C5–C10) have
been consumed as shown on the positive axis (Fig. 2C). Note
that the CHON (O/N < 3) compounds in the generated dimers
have increased signicantly, which will be discussed in detail in
the later ‘CHON compounds’ section.

In order to further distinguish the differences in oxidation
products under various reaction conditions, here we subdivided
the CHO and CHON compounds (for more details see section
“CHON compounds”) into ve groups according to their carbon
oxidation states (OSc) and corresponding H/C and O/C ratios, as
follows: aliphatic compounds which can be cyclic, saturated,
and unsaturated compounds, (H/C $ 1.5, O/C # 0.5);52,53 low
oxidized aromatic compounds e.g. unsaturated low-oxygen-
containing aromatic hydrocarbons, (H/C # 1.0, O/C # 0.5);54

highly oxidized functional compounds e.g. alcohols, esters, and
peroxides, (OSc $ 0, O/C $ 0.6); highly reduced functional
compounds like organic acids and carbonyls, (OSc < 0, O/C $

0.6); and moderately oxygenated compounds, (OSc $ 0, O/C $

0 and H/C # 1.2).49–51 It should be noted that the majority of
CHO compounds under all conditions are aliphatic in nature,
constituting over 50% of the observed species. These are fol-
lowed in prevalence by highly oxidized functional compounds,
which account for approximately 15%, and highly reduced
functional compounds, which make up about 10%. Relative to
© 2024 The Author(s). Published by the Royal Society of Chemistry
the ozone reactions conducted in the dark, the photo-oxidation
reactions exhibit a reduced production of aliphatic compounds
and an increased presence of both highly oxidized and highly
reduced functional compounds, as illustrated in Fig. S12.†

Another very interesting nding is that the formation of
HOMs appears to be correlated with the evolution trend of
particulate matter. HOMs are distinguished by elevated O/C
ratios, falling within the range of 0.4 to 1.1, and contain
a minimum of six oxygen atoms in their molecular structures.55

They constitute 16.5% and 19.9% of the total compounds
generated during the ozone oxidation and photo-oxidation
processes, respectively. These species are hypothesized to orig-
inate from auto-oxidation reactions.55 Consequently, they are
considered to represent an upper estimate of the HOMs
yield.56–60 In this study, we report a signicant increase in the
normalized signal intensity of numerous HOMs observed
during both oxidation and photo-oxidation reactions. The
observed increase in HOMs concentration under light condi-
tions aligns with the established research conclusion that
ultraviolet light further stimulates auto-oxidation reactions.61–66

The highly oxidized organic compounds produced from ozone
oxidation can nucleate, accumulate, and grow SOA.35,67,68 Taking
the ‘Green’ group as an example, 56% of the species can be
classied as HOMs, and the signal intensity of these species has
increased again under photo-oxidation conditions (Fig. S5†).
However, except for C10H20O6, the signal intensity of other ions
rapidly declines aer reaching their peak, while the particle
mass concentration subsequently reaches a second peak, which
coincides with the increase in signal intensity of higher
molecular weight species in the ‘Yellow’ group (Fig. S7†). We
posit that the consumption of these HOMs and the formation of
larger species, to a signicant degree, are responsible for the
secondary increase in mass concentration (Fig. S1†). Further-
more, our analysis of data shown in Fig. S2† suggests that the
secondary increase in particulate matter mass concentration
under photo-oxidation conditions is primarily attributed to the
enlargement of existing particles with a diameter of 60–300 nm
formed by oxidation reactions, rather than the formation of new
particles. Furthermore, the multiple increases in particle
number concentration are in harmony with the evolution trend
of aerosol species. To elaborate, the rst increase in particle
concentration (red section) in Fig. S2A† corresponds to the
explosive increase in signal intensity of the ‘Blue’ and ‘Green’
groups in Fig. S2B.† The second and third increases in particle
concentration during the oxidation reaction phase in Fig. S2A†
correspond to the two slight increases in signal intensity of the
‘Blue’ and ‘Green’ groups in Fig. S2B.† The last increase in
particle concentration during the photo-oxidation reaction
phase in Fig. S2A† corresponds to the signicant increase in
signal intensity of the ‘Yellow’ group in Fig. S2B.† This corre-
sponding phenomenon to some extent indicates that the
increase in the intensity of the ion signals shown in Fig S2B† is
contributed by the particulate matter that formed rst in Fig
S2A.†

The aforementioned differences in the molecular composi-
tion of aerosols highlight the potential impact of sunlight
penetrating through windows in indoor settings. Specically, it
Environ. Sci.: Atmos., 2024, 4, 1358–1367 | 1361

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ea00076e


Environmental Science: Atmospheres Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

1.
11

.2
02

5 
23

:0
4:

59
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
suggests that the secondary organic aerosols (SOA) generated
from the interaction between ozone and the surface treated with
oor cleaning detergent are subject to modication by natural
sunlight.

A van Krevelen (VK) diagram of the detected CHO
compounds is illustrated in Fig. S8† in the form of H/C versus O/
C, showing different types of compounds within the same CH2

homologous series. The relative number abundances of the
compounds produced under different conditions are shown in
the pie chart in Fig. S9.† There are 43 groups of CHO
compounds with different numbers of CH2 groups shown in
Fig. S8,† exhibiting a broad range of DBE values from 0 to 11.
The specics regarding the data presented in Fig. S9,† as well as
the categorization of these compounds, are delineated in Table
S2.† Compounds are categorized based on parameters such as
O/C, H/C, DBE, and XC. Please refer to ESI† for more informa-
tion about DBE and XC. In short, DBE refers to double bond
equivalent, representing the degree of unsaturation of
compounds while XC, the aromaticity equivalent, serves as
a supplement to DBE. In particular, CHO compounds with
a DBE of 0 are identied as saturated alcohols or ethers;
compounds with XC = 0 are unsaturated aliphatic compounds;
compounds with 0 < XC < 2.5 are unsaturated aliphatic
compounds or cyclic compounds, and compounds with XC $

2.5 are suggestive of aromatic or polycyclic structures, poten-
tially featuring multiple unsaturated functional groups or rings.

As shown in Fig. S10,†most of the identied compounds are
in the SVOC (45.1%, −0.5 < log C × # 2.5) and IVOC (36.4%,
2.5 <log C × # 6.5) ranges, and almost no compounds in the
ELVOC range (3.28%) (see text S6† for details of the
classication).
3.3 CHON compounds

We also detected CHON product compounds during the reac-
tion of O3 with the oor-cleaning detergent whose precursor is
most likely benzothiazole (C7H5NS),19 among the others. It has
been shown that the reaction of O3 with azoles leads to the
formation of nitrosamines which are then transformed to
higher molecular weight N-heterocyclic compounds.69–71 Since
EESI-TOF-MS of the Na+ ion source is mainly sensitive to CHON
compounds and cannot detect compounds containing S,48,72 no
products containing S were observed. There are 40 groups of
CHON compounds with different CH2 group numbers shown in
Fig. 3 and exhibit a broad range of DBE values from 0 to 14. The
CHON compounds with 0 < XC < 2.5 should contain at least
a nitro- (–NO2), amine group, or nitroso – (–N]O) group.73

CHON compounds with 2.5 # XC < 2.7143 are likely aromatics
with a benzene core structure containing nitrogen functional
groups, or nitrogen-containing heterocyclic compounds.74

Compounds with XC $ 2.7143 are condensed aromatic hydro-
carbon.75 To facilitate an extensive yet concise presentation of
data, Table S2 in the ESI† offers an elaborate breakdown of the
compounds depicted in Fig. 3 The table includes specic DBE
and XC values, alongside potential functional groups attributed
to each compound class.
1362 | Environ. Sci.: Atmos., 2024, 4, 1358–1367
The comparative analysis of compound production, as
depicted in Fig. S9,† indicates that the ozone reaction with the
detergent yields a higher abundance of saturated compounds
with DBE= 0 than those generated through the photo-oxidation
process. Conversely, other compounds are more prevalent in
the photo-oxidation scenario.

The photo-oxidation reaction is characterized by a richer
diversity of functional compounds. These include highly
reduced species (OSc < 0, O/C $ 0.6) and highly oxidized
functional compounds (OSc $0, O/C $ 0.6). The presence of
low-oxidized aromatic compounds is also notable, identied by
hydrogen-to-carbon (H/C) ratios not exceeding 1.0 and an O/C
ratio not surpassing 0.5.

Furthermore, the photo-oxidation reaction, in contrast to the
reaction conducted in the dark, is marked by a higher yield of
moderately oxidized compounds, characterized by an O/N ratio
within the range of 0 to 3. This observation is complemented by
a notable increase in relative signal intensity of reduced CHON
compounds (O/N < 3) under photo-oxidation reaction as shown
in Fig. 2, and the decrease in CHN substances depicted in
Fig. S11.†

Within the CHN compound group, themost prevalent subset
comprises molecules with two nitrogen atoms (N2) and DBE
value exceeding 5. Notably, the series of homologous
compounds, such as C12H16N2(CH2)n, C12H14N2(CH2)n,
C14H10N2(CH2)n, and C14H8N2(CH2)n, are tentatively identied
as belonging to the imidazole, pyrazine/pyrimidine, and
azaindole chemical classes.76,77 The formation of CHON
compounds with O/N = 0.5, produced by ozone reaction and
photo-oxidation reaction with the oor detergent, suggests the
presence of nitrosamines which could be also formed as
second-generation products by ozone oxidation of N-heterocycle
compounds such as imidazoles.69,78 Similarly, the high intensity
of compounds with O/N = 1 produced during the photo-
oxidation reaction, could result from light-induced ozone
reaction of rst-generation products (N-heterocyclic aromatic
compounds), such as imidazole, pyrazole,69,78 piperidine,
piperazine and quinoline, or compounds containing amide
group. For compounds with more abundant O-atoms, it has
been reported that CHON compounds with O/N < 3 are more
likely to incorporate nitrogen-containing and oxygen-
containing groups.79 Conversely, CHON compounds with an
O/N ratio $ 3 are postulated to contain groups consisting of
both nitrogen and oxygen, such as nitrite (–NO2), nitrate (–NO3),
and nitrooxy (–ONO2) functional groups. The presence of these
groups in the studied compounds implies the formation of
nitrooxy (–ONO2) amines, imines, or organonitrates in this
study.80–83 This inference is supported by our previous ndings
on riverine surface microlayer, where these compounds were
identied as tertiary products resulting from the ozonolysis of
secondary N-heterocycle compounds, such as imidazole.70,71

However, the underlying reaction mechanism remains elusive
at this stage, and elucidating the molecular-level formation of
these compounds presents a formidable challenge. This diffi-
culty is particularly pronounced when authentic samples are
utilized instead of proxy compounds. Nevertheless, we propose
that the N-containing compounds present in the detergent act
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Van Krevelen plot for homologous series of CHON compounds produced from the ozone oxidation reaction (A and B) and photo-
oxidation reaction (C and D). The “n” refers to the number of CH2 groups in a given family.
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as precursors to the CHON product compounds, given that no
NOx species were involved in the reaction process.
4. Conclusions

Considering that in a real-life indoor environment, there is the
presence of other oxidants/reactants such as NO2, NO3, and
NH3, the number and mass concentration of the particles
generated from the use of cleaning detergent may be signi-
cantly higher than those observed in this study under laboratory
conditions.16,84–87 The highly oxidized organic compounds
produced from ozone oxidation can nucleate, accumulate, and
grow SOA.11,35,67 It has been reported that people would inhale
approximately 3.8 × 1010 to 1.8 × 1011 particles (3.0 to 7.5 mg)
over the duration of a 90 min indoor mopping event, with much
of the inhalation intake occurring during the rst few minutes
of active cleaning.1 Therefore, it is necessary to further under-
stand the evolution trend of particle size and composition of
particulate matter produced by the reaction between ozone and
common oor detergents.

In particular, the formation of nitrogen-containing aerosols
may exacerbate indoor air quality and affect human health.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Here, we observed the formation of imidazole, pyrazine/
pyrimidine, and azaindole compounds, which are likely to be
formed by the oxidation of ozone with benzothiazole,
a constituent of the oor detergent. It has been shown that
imidazoles are potentially toxic compounds.88 Therefore, from
a health point of view, it is strongly recommended future
studies evaluate the combined effect of oxidants on the particle
formation by ozone chemistry of cleaning products in indoor
environments.
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I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee,
F. Lopez-Hilker, S. Andres, I. H. Acir, M. Rissanen,
T. Jokinen, S. Schobesberger, J. Kangasluoma,
J. Kontkanen, T. Nieminen, T. Kurtén, L. B. Nielsen,
S. Jorgensen, H. G. Kjaergaard, M. Canagaratna, M. Dal
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