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achine learning for ozone
modeling in Southern California during the COVID-
19 shutdown†

Khanh Do, ab Arash Kashfi Yeganeh,ab Ziqi Gaoc and Cesunica E. Ivey *bd

We combine machine learning (ML) and geospatial interpolations to create two-dimensional high-

resolution ozone concentration fields over the South Coast Air Basin (SoCAB) for the entire year of 2020.

The interpolated ozone concentration fields were constructed using 15 building sites whose daily trends

were predicted by random forest regression. Spatially interpolated ozone concentrations were evaluated

at 12 sites that were independent from the machine learning sites and historical data to find the most

suitable prediction method for SoCAB. Ordinary kriging interpolation had the best performance overall

for 2020. The model is best at interpolating ozone concentrations inside the sampling region (bounded

by the building sites), with R2 ranging from 0.56 to 0.85 for those sites. All interpolation methods poorly

predicted and underestimated ozone concentrations for Crestline during summer, indicating that the site

has a distribution of ozone concentrations that is independent from all other sites. Therefore, historical

data from coastal and inland sites should not be used to predict ozone in Crestline using data-driven

spatial interpolation approaches. The study demonstrates the utility of ML and geospatial techniques for

evaluating air pollution levels during anomalous periods. Both ML and the Community Multiscale Air

Quality model do not fully capture the irregularities caused by emission reductions during the COVID-19

lockdown period (March–May) in the SoCAB. Including 2020 training data in the ML model training

improves the model's performance and its potential to predict future abnormalities in air quality.
Environmental signicance

In the spring of 2020, shis in emissions and subsequent air pollution levels associated with COVID-19 lockdown measures were signicantly different
compared with any previous period in the Anthropocene. We investigate the utility of deterministic and machine learning models in capturing the observed
anomalies in ozone concentrations across the South Coast Air Basin, a region with spatially heterogeneous formation of secondary pollutants. The directionality
of model biases before, during, and aer the lockdown period gives insight into the NOX and VOC limited characteristics of locations across the Basin, which
guides future emissions reduction strategies.
1. Introduction

In the atmosphere, the non-linear relationship between
nitrogen oxides (NOX), volatile organic compounds (VOCs), and
ozone is complex. In the United States, the COVID-19 pandemic
and the ensuing shutdown presented an unintentionally
optimal period to observe, revise, and improve our existing air
quality models and observe the sensitivity of the NOX–VOC–
tal Engineering, University of California

berkeley.edu

hnology, Riverside, CA, USA

ineering, Georgia Institute of Technology,

ntal Engineering, University of California,

tion (ESI) available. See DOI:

488–500
ozone relationship in real time. In California, the pandemic
shutdown began on March 16, 2020, when signicantly reduced
traffic volume was observed. In Los Angeles and Ventura
Counties, there was approximately a 30% decrease in vehicle
miles traveled (VMT) on weekdays and up to a 40% decrease on
weekends in 2020.1 This unusual event temporarily changed the
conventional distribution of primary and secondary air pollut-
ants in the South Coast Air Basin (SoCAB). Since NOx and VOC
emissions declined with the reduction in traffic ow,2 we ex-
pected signicant changes in ozone concentrations in Southern
California. Several studies were published regarding the
pandemic that investigated the effects of the COVID-19 shut-
down on air pollutants. For instance, Jiang et al., used WRF-
Chem to simulate the major air pollutants before lockdown
and during lockdown and found an increase in ozone in urban
areas due to emission reductions during the lockdown.2 The
COVID-19 shutdown also provided an estimation of the impacts
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Ozone design values for the South Coast Air Basin from 2006 to
2020 (https://www.epa.gov/air-trends/air-quality-design-values).
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of future large-scale emission reduction strategies on ozone
concentrations in SoCAB.3

Of particular interest is the exploration of possible differ-
ences in ozone prediction performance of different modeling
approaches during periods of signicant emissions and mete-
orological anomalies. The Community Multiscale Air Quality
(CMAQ) modeling system, developed by the U.S. Environmental
Protection Agency (EPA), is widely-used for multi-day air quality
simulations to estimate air pollutant concentrations with
prescribed emissions andmeteorology inputs (Ooka et al., 2011;
Rao et al., 1996; Wong et al., 2012).4–6 From the model outputs,
scientists and regulators can better predict the interactions
between future emissions, meteorology, and air pollutants to
strengthen recommendations for emissions control programs.
Chemical transport models (CTMs), such as CMAQ, are based
on rst principles equations and are initiated with interpolated
observation data, hence avoiding most obstacles introduced by
data missingness in observations. Machine learning (ML) as an
alternative modeling approach has attracted more attention
from air quality researchers. Although ML and CTMs have
a similar goal to accurately predict air pollution, ML heavily
depends on the quality and quantity of historical data. In
contrast with CTMs, which produce larger scale, spatially
resolved outputs, ML only provides accurate predictions strictly
at trained locations when used for ambient air quality
applications.

As most ML approaches depend heavily on observational
data, we introduce spatial interpolation as a central procedure
for increased comparability with the CMAQ data. Also, the
relative sparseness of monitoring stations and the locality of air
pollutants have been shown to misrepresent spatially-varying
air quality over a large area.7 Spatial interpolation methods
(e.g., nearest neighbors, linear or polynomial interpolation,
continuous natural neighbor interpolation, etc.) have proven
useful for overcoming these limitations.8 Yu et al. evaluated 14
unique spatial modeling methods for eight air pollutants in
Atlanta, Georgia for developing spatiotemporal air pollutant
concentrations elds.9 Wong et al., assessed four spatial inter-
polation methods (spatial averaging, nearest neighbor, inverse
distance weighting (IDW), and kriging) to estimate ozone and
PM10 concentrations.10 In California, the South Coast Air
Quality Management District (SCAQMD) operates 38 air moni-
toring stations in Southern California over an area of approxi-
mately 10 743 square miles, including SoCAB, portions of the
Salton Sea Air Basin, and Mojave Desert Air Basin, with an
average of 283 square miles per monitoring station.11,12 There-
fore, spatial interpolation is expected to enhance the observa-
tional analyses that follow.

This paper focuses on the performance of deterministic and
ML models under rapid changes in emissions and meteoro-
logical conditions, specically during the COVID-19 lockdown
period in March throughMay of 2020. We compare three spatial
interpolation techniques to the CMAQ model and evaluate
biases related to COVID-19 lockdown anomalies. Furthermore,
we aim to answer the question of whether there were other
periods with emissions changes similar to the COVID-19 lock-
down period within the past few decades and how those
© 2024 The Author(s). Published by the Royal Society of Chemistry
changes impacted the behavior of ozone in different regions of
Southern California.
2. Study area and datasets

This study targeted the Southern California region, including
Los Angeles, Orange, Riverside, and San Bernardino counties.
The region has been historically challenged with poor air
quality, with especially higher ozone concentrations than the
rest of the United States. The coastal areas tend to have higher
relative humidity (RH) and lower temperatures than inland
Southern California. Since the turn of the century, SoCAB has
been designated as a nonattainment area for the 1997 8 hour
ozone standard (80 ppb), with design values for ozone well
above the 2015 standard of 70 ppb (Fig. 1). In 2019, the
maximum daily 8 hour average (MDA8) ozone concentration in
SoCAB was 108 ppb at the design value location with a classi-
cation of “extreme” (Redlands, California).13
2.1 Model input data

The input meteorological data for the CMAQ simulation were
generated using the Weather Research and Forecasting (WRF)
model. WRF was initiated using initial and boundary condition
meteorology data from the North American Mesoscale (NAM)
Forecast System integrated with high-resolution sea surface
temperature (SST) from the Group for High Resolution Sea
Surface Temperature. We used the WRF Objective Analysis
program to improve the meteorological simulation, and this
step blends observed surface and upper air observations with
the background WRF elds. The surface and upper air obser-
vations were sourced from NCEP ADP Global Surface Observa-
tional Weather Data (ds461) and NCEP ADP Global Upper Air
Observational Weather Data (ds351) via the National Center for
Atmospheric Research's Research Data Archive, respectively.14

We re-projected gridded 4 km emissions from 2019 for the
year 2020 using a two-step adjustment to account for changes
Environ. Sci.: Atmos., 2024, 4, 488–500 | 489
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due to the COVID-19 lockdown.15 In the rst step, a linear
projection factor (eqn (1)) was applied to 2019 gridded emis-
sions based on SCAQMD basin-wide, total annual emissions
spanning from 2012 to 2034, where the District's future
projections began in the year 2020. The correction factor was
calculated for seven air pollutant groups (total organic gases,
reactive organic gases, CO, NOX, SOX, NH3, PM).

Linear projection factor ¼ 2020 emis� 2019 emis

2019 emis
(1)

The second step accounted for traffic reductions due to the
COVID-19 lockdown, and reductions were highest from March
to May 2020, then slowly but not fully rebounding to pre-
lockdown levels toward the end of 2020.1 SCAQMD basin-wide
projections understandably did not reect the decrease in
mobile source emissions due to unforeseen traffic reductions.
Moreover, weekly traffic metrics in 2020 were acquired for the
total ow, ow change, and speed change at 2991 locations in
Southern California.16 Since the traffic data were not evenly
distributed over the study domain, we used k-nearest neighbors
Fig. 2 Data from 15 air monitoring stations (Anaheim, Azusa, Banning, C
Mira Loma, Rubidoux, San Gabriel, Santa Clarita, San Bernardino, Upland

Table 1 Data summary for machine learning modeling

Ground Monitoring Locations

Features
Label
Data sources

Training years
Evaluation year

490 | Environ. Sci.: Atmos., 2024, 4, 488–500
(k-NN) to obtain the traffic data for grid cells (locations) that had
nomore than ve reported data points (k value# 5). For the grid
cells with more than ve reported data points, we normalized
traffic volume and then averaged the normalized data.
2.2 Machine learning inputs

We used two air quality features (NO2 and NO) and four mete-
orological features (temperature, relative humidity, wind speed,
and wind direction) from 15 air monitoring sites in SoCAB
(Fig. 2). Hourly meteorological and air quality data used for ML
training and validation were obtained from the Air Quality
System (AQS) Data Mart (https://aqs.epa.gov/aqsweb/airdata/
download_les.html#Raw, last access Jan 19, 2023). We
checked the data to ensure that hourly data were available for
all training features. If there was a missing data point for one
of the features, we removed the invalid hour and all
corresponding features. The date range of the model training
data was 2009–2010 and 2016–2019 for all 15 sites (Fig. 2).
The period from 2011–2015 was not included in our models
due to the limited availability of wind direction and wind
ompton, Fontana, Glendora, Lake Elsinore, LAX, LA North Main Street,
) were used for ML model predictions of ozone concentrations.

Anaheim, Azusa, Banning, Compton, Fontana, Glendora, Lake Elsinore,
Los Angeles International Airport (LAX), LA North Main Street, Mira
Loma, Rubidoux, San Gabriel, Santa Clarita, San Bernardino, Upland
NO2, NO, temperature, relative humidity, wind speed, wind direction
Ozone
EPA AQS data mart, CARB air quality and meteorological information
system (AQMIS)
2009, 2010, 2016, 2017, 2018, 2019
2020

© 2024 The Author(s). Published by the Royal Society of Chemistry
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speed at the sites. We used 2020 data for model testing and
evaluation (Table 1).

3. Methods

We carried out a parallel approach using both ML and CMAQ to
predict 2-D ozone concentrations as shown in Fig. 4. The
deterministic model (top panel) utilized WRF and CMAQ to
simulate ozone concentrations based on the emissions and
meteorological inputs described above. In contrast, the ML
model (bottom panel) relied on observational meteorology and
air quality data to predict ozone concentrations. ML and CMAQ
models were evaluated with observational data to assess their
performance, especially in response to the irregular emissions
patterns of 2020. Additionally, predictions from ML and inter-
polation were explored to examine the NOx and VOC limited
regimes in Southern California, providing insights into how the
models perform in different regions.
Fig. 3 The third and inner-most domain (red boundary) with 4 km horizo

© 2024 The Author(s). Published by the Royal Society of Chemistry
3.1 CMAQ modeling

In this study, we compared the performance of both CMAQ and
ML with spatial interpolations of ozone concentrations in
SoCAB for the year 2020.17,18 The CMAQ simulation covered
three distinct periods to study the impact of COVID-19 lock-
down on air pollutant concentrations: pre-lockdown (Jan 1st to
Mar 15th), lockdown (Mar 16th to May 15th), and post-lockdown
(aer May 16th) periods. Meteorological modeling was carried
out using the Weather Research and Forecasting (WRF) model
version 3.9 with 4 km horizontal grid spacing, 11 vertical layers
for the nest domain (10 layers near the surface), and 156× 102
grid cells (Fig. 3). There were two parent domains with coarser
horizontal grid spacing (36 km and 12 km for domain 1 and
domain 2, respectively). WRF congurations were optimized for
SoCAB, and they included the use of United States Geological
Survey (USGS) land use, thermal diffusion surface physics, and
Yonsei University planetary boundary layer scheme (Hong et al.,
ntal grid spacing covered the entire SCAQMD region (thick black lines).

Environ. Sci.: Atmos., 2024, 4, 488–500 | 491

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ea00159h


Fig. 4 Flow diagram of the deterministic (CMAQ) and ML models for predicting 2-D ozone concentrations in Southern California, where SST is
sea surface temperature, MET IC and MET BC are meteorological initial and boundary conditions, CHEM IC and CHEM BC are chemistry initial
and boundary conditions, AQ data is air quality data (NO and NO2), and MET data is meteorology data (temperature, relative humidity, wind
speed, and wind direction).
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2006; Huang et al., 2014).17,18 The CMAQ simulation used the
modied 2020 emissions and previously described WRF simu-
lations as inputs. The choice of chemical mechanism was
SAPRC07tc_ae6_aq, i.e., SAPRC07tc photochemical mecha-
nism, aerosol module 6, and aqueous chemistry (Byun & Schere,
2006; Carter, 2010).19,20
3.2 Machine learning

In a preceding study, we tested multiple ML algorithms to
obtain a better method that resulted in the highest prediction
accuracy for ozone concentrations in the SoCAB. Those
included neural network, support vector machine, k-nearest
neighbors, and random forest.21 Here, we selected random
forest regression (RFR), as RFR is the most suitable ML algo-
rithm for predicting ozone concentrations in SoCAB. We also
conducted a 10-fold cross-validation over the training data to
ne tune the training RFR model in the previous study.21

The random forest (RF) algorithm is a supervised learning
method employing a tree-based ensemble approach. Each
decision tree is derived from training data and represents
a subset of the training data. In our model, we have a vector x
with n features, denoted as x = (xi, ., xn)

T. The goal is to nd
a function f(x) for predicting ozone concentrations. RF is
a collection of decision trees consisting of J trees that are split
Table 2 Optimal RFR configurations for the study

Hyperparameter Description

n_estimators = 16 The number of tre
max_features = ‘auto’ The number of fe
max_depth = none The maximum de
min_samples_split = 5 The minimum nu
min_samples_leaf = 30 The minimum nu
min_weight_fraction_leaf = 0 The minimum we
max_leaf_nodes = none Best nodes are de

492 | Environ. Sci.: Atmos., 2024, 4, 488–500
into j branches from hi, ., hj. The learning function computes

the average of all decision trees, expressed as f ðxÞ ¼ 1
J

XJ

j¼1

hjðxÞ.

RF is a combination of multiple decision trees trained on an
independent collection of input variables. To reduce the model
bias, RFR selects a random subset of features from the input
features for each tree, and the output of RFR is the average
result from all the decision trees (Rodriguez-Galiano et al., 2015;
Zhang & Ma, 2012).22,23

In this study, we selected six training features to predict
ozone concentrations, which included two air quality features
(NO and NO2) and four meteorological features (temperature,
relative humidity, wind speed, and wind direction). The two air
quality features are directly related to ozone formation in the
troposphere. Ozone undergoes the photolytic cycle during the
day and is removed by NOx during nighttime.24–26 The four
meteorological features were well studied in our previous work
and were shown as the most important features to capture the
variability in annual ozone, especially in SoCAB.27–29

We used the scikit-learn 0.22 library supported by the
Python programming language to train our RFR model. Again,
the input features are NO2, NO, temperature, relative
humidity, wind speed, and wind direction, and the label is
ozone. We tuned the algorithm by varying the number of
es in the forest
atures to consider when looking for the best split
pth of the tree
mber of samples required to split an internal node
mber of samples required to be at a leaf node
ighted fraction of the sum total of weights required to be at a leaf node
ned as relative reduction in impurity

© 2024 The Author(s). Published by the Royal Society of Chemistry
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decision trees, the depth of the tree, sample split, and the
sample leaf to obtain the best prediction accuracy. We used
the same model tuning approached described in Do et al.
(2023) (Table 2).21
Fig. 5 Hourly ozone heatmap (16:00 on June 22, 2020) using ordinary
kriging. The dots with white borders are the evaluation sites, and dots
without borders are the training sites.
3.3 Spatial interpolation

To generate a 2-D ozone concentrationmap, we rst ran the RFR
model to obtain the ozone concentrations at each air moni-
toring location (15 sites), which served as the model building
sites. In other words, we applied a pointwise ML algorithm to
predict ozone concentrations at each trained location. Next, we
spatially interpolated the output over the target Southern Cal-
ifornia region. We applied three different spatial interpolation
methods (ordinary kriging, inverse distance weighting (IDW),
and bicubic interpolation) and comparatively evaluated the
performance of each method. Each interpolation approach is
described below.

Ordinary kriging was applied to interpolate ozone concen-
tration at 10 km resolution over the study area. Generally,
kriging predicts the values for unknown locations by perform-
ing a series of linear combinations of values at known locations.
Eqn (2) expresses the generic form of the estimator to predict
the optimum value Z* of an unknown location by combining
the known values Zi with their weights li.30 We can write the
variance s2 as an optimization problem (eqn (3)) that can be
solved using the Lagrange multiplier m (eqn (4)).

Z*ðuÞ ¼
Xn

i¼1

liZðuiÞ (2)

s2ðuÞ ¼ Var½ZðuÞ � Z*ðuÞ�
¼ �

Xn

j¼1

Xn

i¼1

ljlig
�
ui � uj

�þ 2
Xn

i¼1

ligðui � uÞ (3)

Xn

j¼1

lj
�
ui � uj

�þ m ¼ gðui � uÞ (4)

and

Xn

j¼1

lj ¼ 1 (5)

m is the Lagrange multiplier, ui and uj are the distance of known
locations from unknown locations u, g is the variogram, and i=
1,., n. Eqn (2) and (3) are called the kriging system, and l is the
kriging weight. The values for li and the optimum value Z* are
obtained by solving the kriging system and eqn (4).31

Bicubic interpolation is another method for interpolating
data points on a 2-D grid. The interpolated surface can be
written in terms of two variables (eqn (6)). The polynomial p
consists of sixteen coefficients aij that are solved with sixteen
boundary conditions (i.e., (x = 0, y = 0), (x = 1,y = 0), (x = 0,y =
1), (x = 1,y = 1)) and its derivatives with respect to x, y, and xy.32

pðx; yÞ ¼
X3

i¼0

X3

j¼0

aijx
iyj (6)
© 2024 The Author(s). Published by the Royal Society of Chemistry
The IDW interpolation method accounts for the distances
between the interpolated points and the measured locations.
The assumption for IDW is that points close to each other are
more alike and have more signicant inuence than those
farther apart. Thus, the nearest measured values have greater
weights assigned. Eqn (7) shows that the predicted value Z(x) is
inversely proportional to the distance between the measured
and interpolated points d(x,xi).

ZðxÞ ¼
Pn

i¼1

Zi

dðx; xiÞp
Pn

i¼1

1

dðx; xiÞp
(7)

Z(x) is the predicted value, d is the distance, x is the unknown
point, xi is the known location, Zi is the value of a known
location, and p is the power.33
4. Model evaluation

Fig. 5 shows a snapshot of the ozone concentrations over the
interpolation region at 4:00 PM on June 22, 2020 (the highest
ozone episode of the day), using ordinary kriging. The colored
dots with a white border are the actual values at the evaluation
sites, and those without a white border are the RFR predicted
values for training sites. The model successfully reconstructed
the spatial trends in the region, where the lowest ozone levels
were in the southwest (coastal) and the highest were in the east
(inland), and there was good agreement with the actual ozone
concentrations. Fig. S2 and S3† show the heatmap for bicubic
and IDW interpolation for the same timestamp. Although all
interpolation methods predicted the lowest ozone concentra-
tions in the Southwest, the highest ozone concentrations were
predicted in the Northeast of the study region for bicubic and in
the North for IDW. The concentration gradient increased from
south to north for bicubic and IDW, but from west to east for
ordinary kriging.

The performance of the models was evaluated based on
commonly used statistical metrics: mean bias (MB), correlation
coefficient, root mean square error, and R2 (equations listed in
ESI†). The models were evaluated based on data from 27 air
monitoring stations in SoCAB, of which 15 sites were used to
Environ. Sci.: Atmos., 2024, 4, 488–500 | 493
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evaluate the training sites, and the other 12 sites were used to
evaluate the performance of the three interpolation methods at
non-training sites. Tables 3 and 4 highlight R2 for daily average
ozone for the bicubic, IDW, and ordinary kriging interpolations,
as well as R2 for the CMAQ comparison. We used the entire year
to evaluate the interpolation methods, but we only used the ve
highest ozone months from May to September for the CMAQ
evaluation.

The bicubic R2 indicates the poorest performance of the
three interpolation methods. IDW showed a signicant
improvement compared to bicubic interpolation. Since IDW
accounts for the distances between the interpolation points and
the data points, farther data points have less inuence on the
interpolation points. Ordinary kriging resulted in the best
interpolation method because the method not only accounts for
the distance between building points and interpolated data by
assigning larger weight li to the near neighbors, but it also
Table 3 Daily average R2 at the 15 building sites for three interpolation
methods for the year 2020. R2 for CMAQwas computed using the five
highest ozone months May–September of 2020

Sites
Bicubic
R2 IDW R2

Ordinary kriging
R2 CMAQ R2

Anaheim 0.66 0.67 0.74 0.41
Azusa 0.52 0.64 0.77 0.59
Banning 0.17 0.46 0.73 0.26
Compton 0.65 0.67 0.77 0.48
Fontana 0.88 0.89 0.87 0.59
Glendora 0.46 0.53 0.72 0.52
Lake Elsinore 0.52 0.70 0.79 0.56
LA North Main ST 0.36 0.67 0.78 0.48
LAX 0.31 0.48 0.65 0.25
Mira Loma 0.56 0.71 0.86 0.67
Rubidoux 0.46 0.65 0.86 0.68
San Bernardino 0.68 0.85 0.86 0.67
San Gabriel 0.53 0.77 0.81 0.62
Santa Clarita 0.27 0.72 0.84 0.61
Upland 0.76 0.80 0.86 0.61

Table 4 Daily average R2 at 12 evaluation sites, and these were not
used spatial interpolation. R2 for CMAQ was computed using the five
highest ozone months, May–September of 2020

Sites
Bicubic
R2 IDW R2

Ordinary kriging
R2 CMAQ R2

Crestline 0.35 0.42 0.42 0.23
La Habra 0.75 0.80 0.77 0.44
Long Beach 0.46 0.60 0.56 0.30
Mission Viejo 0.15 0.36 0.49 0.39
North Hollywood 0.67 0.67 0.79 0.59
Pasadena 0.55 0.71 0.78 0.57
Perris 0.55 0.72 0.80 0.56
Pomona 0.71 0.83 0.84 0.68
Redlands 0.60 0.74 0.71 0.57
Reseda 0.63 0.63 0.71 0.01
West LA 0.29 0.56 0.60 0.28
Winchester 0.37 0.40 0.39 0.45

494 | Environ. Sci.: Atmos., 2024, 4, 488–500
considers the variability of data by considering the variance of
input data, s2.34

ML with interpolation gave a poor performance for Crestline
and Winchester locations. Crestline is located in the mountains
and to the northeast of SoCAB, which is elevated terrain asso-
ciated with upper air and a different air mass at times. Crestline
ozone was not well-correlated with coastal or inland sites. Thus,
interpolated Crestline ozone based on coastal or inland data
points will likely yield poor results. The Winchester air moni-
toring site is located near the Skinner Reservoir (Fig. S1†), far
away from other data points (Lake Elsinore and Banning). Low
R2 for Winchester can be explained by the inuence of the lake
and local meteorology and air quality. The ordinary kriging
model performed well for locations bounded by data points
with R2 above 0.56. However, poor interpolation results
occurred for peripheral locations in SoCAB (Crestline, Mission
Viejo, and Winchester). LAX ozone levels were not well corre-
lated with meteorology, and training the ML model with fewer
meteorological features did not affect the performance of the
LAX location. Overall, model performance increased from the
West to the East, with better prediction for inland sites.

The distribution of the monthly mean bias (MB) for ordinary
kriging interpolation centered around zero with the range
between +9 ppb for Compton (August) and −11 ppb for Glen-
dora (October). Eleven building sites have a net positive
monthly MB, and four have a net negative monthly MB (Fig. 6).
The results from the CMAQ simulation overestimated the ozone
levels. CMAQ's best performance was from May to October
when the MBs were the smallest. CMAQ underestimates the
ozone concentrations at the LAX location, due to the site's
proximity to the Pacic Ocean, colder model temperatures, and
potential discrepancies in aviation emissions. In general, ozone
concentrations in the SoCAB are highest during the summer
and lowest in the winter, corresponding with the temperature.
Although the CMAQ simulation captures diurnal variation, the
seasonal variation is not as well-represented (Fig. S4, S5, S7, and
S11†). Lower performing CMAQ results could come from
uncertainties in emissions estimates. CMAQ generally over-
estimated ozone concentrations because the simulated night-
time ozone concentrations were higher than those observed,
potentially due to underestimated nighttime NOx emissions.15

In other words, there was not enough NOx emitted in the model
during the daytime for ozone formation and at night for ozone
removal.35,36

Training features can be varied to study the sensitivity to
modeled ozone response. For example, we can perturb the
temperature, RH, or emissions values and examine the ozone
levels corresponding to the change in the features. However,
because the formation of ozone results from a complex
combination of chemical reactions, resulting impacts are
nonlinear and interdependent. Therefore, when using ML to
test for sensitivity to a feature, one should consider feature
dependencies. For example, in testing temperature impacts on
ozone concentration, we must consider both how temperature
impacts photolysis rates (NO2 degradation) as well as simulta-
neous correlations/anticorrelation with other meteorological
variables, such as RH or wind speed.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Monthly mean bias computed for 2020 for 15 sites using the kriging interpolation method (panel a), and CMAQ simulation (panel b). The
colors of the lines correspond to the evaluation locations.
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Although the interpolation R2 values for the 15 building sites
are high, the accuracies of the 12 evaluation sites are somewhat
lower than those reported in other studies. In our previous
work, where we employed RFR to predict O3 levels in Fontana,
we achieved an R2 of 0.86. Additionally, Lyu et al. utilized the
RFR method to predict ozone concentrations in the Beijing–
Tianjin–Hebei region, achieving a monthly R2 of 0.93 (Lyu et al.,
2022).37 Two factors contribute to the performance of the eval-
uation sites in our approach. First, the estimation of O3

concentrations in evaluation sites relied on historical data from
neighboring building sites. However, the building sites are not
evenly distributed in Southern California, and the performance
of the interpolating locations is inversely proportional to the
distance of the building sites. Second, O3 levels are more locally
inuenced in SoCAB, and the relationship between NOx and
VOC is not strictly linear. Therefore, the estimation from
interpolation might not fully capture this locality. We also note
that the choice of averaging period will impact R2, such that
comparison of daily vs. monthly values will lead to discrep-
ancies that favor a longer averaging period.
5. Discussion

The reduction in traffic volumes during the lockdown from
March to May led to a decrease in observed CO and NOX.3,16 As
a result, we expected an overall reduction in ozone levels over
the SoCAB region. The average diurnal ozone concentrations
before the lockdown (Jan–Feb) in 2020 were noticeably greater
than the average from 2016–2019 for all 15 building sites. Fig. 7
shows the averaged diurnal proles of three 2020 periods for
inland sites, Lake Elsinore and Fontana: pre-lockdown (a and
d), lockdown (b and e), and post-lockdown (c and f) periods.
Before the lockdown, the 2020 ozone concentrations (red line)
in Lake Elsinore and Fontana exceeded the four-year average
(blue line), indicating a recent worsening of ozone trends in
Southern California. The ML model with the interpolation
© 2024 The Author(s). Published by the Royal Society of Chemistry
method (black line) successfully predicted this ozone trend
before the lockdown. During the lockdown, observed ozone
levels in 2020 signicantly decreased in Lake Elsinore, dropping
below the four-year average. Aer the lockdown, ozone levels in
2020 rebounded but remained lower than the pre-lockdown
period. The ML model effectively captured these ozone trends
throughout the three periods of 2020 for the Lake Elsinore site.
In contrast, ozone levels in Fontana did not decrease signi-
cantly below the four-year average during the lockdown and
remained high aerward. It is important to note that Lake
Elsinore is located in a remote area surrounded by trees. During
the lockdown, Lake Elsinore showed a drop in ozone concen-
trations, indicating that the location is in a NOx limited atmo-
sphere, where uctuations in NOx have a signicant impact on
ozone levels. On the other hand, Fontana is an urban site, and
the ozone levels did not exhibit signicant improvement during
the lockdown, suggesting that Fontana is located in a VOC
limited atmosphere.

Post-lockdown differences compared to the four-year average
were not signicant across the 15 sites. The RFR model
captured ozone trends throughout 2020, although slightly lower
during lockdown and despite the observed reduction in NOx,
suggesting that meteorological features would play an impor-
tant role in predicting ozone levels during anomalous episodes
in addition to air quality features. Actual and modeled
discrepancies also indicate anomalous ozone behavior during
lockdown. For instance, several sites in the SoCAB showed an
increase in ozone levels based on the diurnal prole implying
that the urban locations in the SoCAB were in VOC limited
regimes, where there was NOx reduction-initiated ozone
enhancement.38

The diurnal NOx concentrations at all sites in Southern
California exhibit a consistent pattern, in which both pre-
lockdown and post-lockdown NOx levels were signicantly
higher than during the lockdown period. In Fig. S13,† the
diurnal changes in NOx levels are illustrated for pre-lockdown
Environ. Sci.: Atmos., 2024, 4, 488–500 | 495
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Fig. 7 Averaged diurnal profiles of 2016–2019 (blue), actual 2020 (red), and ML predicted 2020 (black) ozone concentrations (ppb) at Lake
Elsinore (a–c) and Fontana (d–f) for three different periods: (a and d) pre-lockdown (Jan to Feb), (b and e) lockdown (Mar to May), and (c and f)
post-lockdown (after May). The shaded area is the standard deviation of the 2016–2019 measurements. Additional sites are provided in the ESI.†
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(blue), lockdown (orange), and post-lockdown (green) between
the 2020 NOx and the average from 2016–2019. Positive values
before the lockdown suggest an increase in NOx levels in 2020
compared to the historical average of 2016–2019. However,
during the lockdown, the differences are negative, indicating
a signicant decrease in 2020 NOx levels compared to the
historical data due to a substantial decrease in traffic and
anthropogenic activities.

We computed the diurnal differences between 2020 O3 and
historical O3 (average from 2016 to 2019) for both actual 2020
O3 and ML 2020 O3 (Fig. S17 and S18†) to show the trends in
496 | Environ. Sci.: Atmos., 2024, 4, 488–500
O3 concentrations for the pre-lockdown, lockdown, and post-
lockdown periods. During the lockdown (orange line), the
Lake Elsinore site exhibits negative changes of −4 ppb at
15:00, the peak O3 concentration time of the day. However, in
the early morning, the O3 changes turn positive (∼3 ppb),
attributed to the reduced NOX titration. Post-lockdown (green
line) shows mostly positive differences, indicating an increase
in O3 concentrations due to rising emissions and transition to
summertime. In Fontana, O3 trends do not show signicant
differences across the three periods. Notably, during peak O3

hours (13:00–16:00), O3 levels are more than 3 ppb higher
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Flow chart of the ML model to summarize the ML method and the evaluation results in the South Coast Air Basin.

Fig. 9 O3 sensitivity for six locations in Southern California during the
lockdown period reflecting the change in O3 with respect to the
change in NOx between 2020 data and historical data.
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compared to historical values, suggesting that the reduction
in emissions has an inverse effect on O3 concentrations. It's
worth noting that the ML model successfully predicted O3

trends in Lake Elsinore for all three periods. However, the ML
model failed to predict the behavior of O3 in Fontana, as it
estimated a decrease in O3 during the lockdown. The
summary of the machine learning method and its perfor-
mance across different regimes in the SoCAB is illustrated in
Fig. 8.

To illustrate the variations in NOx corresponding to changes
in O3 for three periods (pre-lockdown, lockdown, and post-
lockdown), we calculated the O3 sensitivity using the ratio of
differences in O3 and NOx between 2020 and historical data, as
shown in eqn (8).

O3 sensitivity ¼ dO3

dNOx

¼ 2020 O3 � historical O3

2020NOx � historical NOx

(8)

In the VOC limited regimes, we forecast the sensitivity of O3

to be minimal regarding the changes in NOx. This is evident for
areas with substantial NOx emissions, such as Azusa, Fontana,
and Upland (Fig. 9), where the sensitivities of O3 (dO3/dNOx)
during the lockdown are minimal. Conversely, in NOx limited
regimes, we expect to observe a reduction in O3 corresponding
to the decrease in emissions. Therefore, the sensitivities of O3 in
NOx limited regimes are maximized during the lockdown, as
illustrated in Fig. 9 for Lake Elsinore and Banning. At hour
14:00, O3 concentrations in Lake Elsinore decreased more than
12 ppb per 1 ppb reduction in NOx.

The ML model with interpolation successfully predicted O3

trends by utilizing four meteorological parameters and two
observed ozone precursors (listed in Table 1). It is important
to note that O3 exhibits strong relationships with meteo-
rology, NOx, and VOCs. Due to data availability, VOC data
were omitted from the training set. The current ML model has
some weaknesses for testing the sensitivity of O3 to anoma-
lous precursor levels and meteorology. Our ML model
performs well in predicting O3 levels where the test data
resembles the training data. However, the model struggles to
© 2024 The Author(s). Published by the Royal Society of Chemistry
give accurate predictions when the test data signicantly
differs from the training sets. For instance, during the lock-
down, the model failed to predict the O3 concentrations in the
VOC limited regimes. This suggests that relying on ML
models to predict future scenarios may be unreliable under
new regimes. Considering additional features, such as VOCs
in the training sets, may enhance the model's ability to
predict accurately when extrapolating beyond the feature
space. To our understanding, there are no ML models known
for effective extrapolation of the training data to provide
reliable predictions.
6. Conclusion

This study highlights the advantages of spatial interpolation
methods for ozone predictions during anomalous environ-
mental events. With modern processor architectures (e.g., AMD
Zen 3 or Intel Alder Lake), training the RFR model and
Environ. Sci.: Atmos., 2024, 4, 488–500 | 497

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ea00159h


Environmental Science: Atmospheres Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

6.
10

.2
02

5 
12

:0
9:

13
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
performing high-resolution interpolation over the SoCAB region
for one prediction year took less than ve minutes of walltime
with a 16-core processor. In contrast, CMAQ walltime was 16
days for a year-long simulation for the SoCAB region. Further,
ozone modeling for 2020 was challenging because of unfore-
seen emissions conditions from March to September, during
which traffic volume signicantly decreased (up to 40% reduc-
tion in some locations). We hypothesized that mid-2020 ozone
levels would decrease semi-proportionally due to the decline in
traffic volume. However, the changes in ozone levels in the
SoCAB were small in magnitude, but directionally the changes
were informative for future emissions reductions planning
(increased ozone indicates VOC limitations).

Ordinary kriging interpolation using ML building provided
daily data, addressed data missingness, and captured 2020
ozone trends with low bias despite the sudden change in
emissions. The ML model with the interpolation method
successfully captured ozone trends throughout three periods in
2020, particularly in locations operating under a NOx limited
regime, such as Lake Elsinore. However, it faced challenges in
predicting ozone levels during the lockdown period in areas
characterized by a VOC limited regime, like Fontana. ML
inherently relies on patterns learned from historical data to
make predictions, especially for inputs that resemble past
occurrences. In this study, the ML model struggled to make
accurate predictions for VOC limited regime, suggesting that
events akin to the COVID-19 lockdown had not been encoun-
tered in the past. Unfortunately, due to the unavailability of
speciated VOC data, we didn't incorporate them as a training
feature in the model. Since ozone formation exhibits a non-
linear correlation with both NOx and VOC, the inclusion of
speciated VOC data would likely enhance the model's accuracy,
especially for regions with a VOC limited atmosphere. Our ML
model provides regulators with valuable insights into NOx and
VOC limited regimes across the Southern California domain,
enabling policymakers to devise more effective emission
reduction strategies and improve air quality at hyperlocal
scales.

Data and source codes

All training and evaluating air quality and meteorology data are
available at https://aqs.epa.gov/aqsweb/airdata/
download_les.html#Raw. Weekly traffic observations in
Southern California and emissions are available upon request.
Source codes for ML and interpolation were uploaded to
GitHub: https://github.com/kdo037/Machine-Learning-with-
Spatial-Interpolation.
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