Enhanced detection and annotation of small molecules in metabolomics using molecular-network-oriented parameter optimization†
Abstract
Metabolomics, especially the large-scale untargeted metabolomics, generates massive amounts of data on a regular basis, which often needs to be filtered, screened, analyzed and annotated via a variety of approaches. Data-dependent-acquisition (DDA) mode including inclusion and exclusion rules for tandem mass spectrometry (MS) is routinely used to perform such analyses. While the parameters of data acquisition are important in these processes, there is a lack of systematic studies on these parameters that can be used in data collection to generate metabolic features for molecular-network (MN) analysis on the Global Natural Products Social Molecular Networking (GNPS) platform. To explore the key parameters that impact the formation and quality of MNs, several data-acquisition parameters for metabolomic studies were proposed in this study. The influences of MS1 resolution, normalized collision energy (NCE), intensity threshold, and exclusion time on GNPS analyses were demonstrated. Moreover, an optimization workflow dedicated to Thermo Scientific QE Hybrid Orbitrap instruments is described, and a comparison of phytochemical contents from two forms of black raspberry extract was performed based on the GNPS MN results. Overall, we expect this study to provide additional thoughts on developing a natural-product-analysis workflow using the GNPS network, and to shed some light on future analyses that utilize similar instrumental setups.
- This article is part of the themed collection: Emerging Investigators