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on g-C3N4 photocatalysts:
minimum loading for maximum activity†

Velu Jeyalakshmi,‡ab Siming Wu,‡a Shanshan Qin, a Xin Zhou,a

Bidyut Bikash Sarma, c Dimitry E. Doronkin, d Jan Kolař́ık,e Miroslav Šoóšb

and Patrik Schmuki *ae

Noblemetal single atoms (SAs) on semiconductors are increasingly explored as co-catalysts to enhance the

efficiency of photocatalytic hydrogen production. In this study, we introduce a “spontaneous deposition”

approach to anchor Pd SAs onto graphitic carbon nitride (g-C3N4) using a highly dilute

tetraaminepalladium(II) chloride precursor. Maximized photocatalytic activity and significantly reduced

charge transfer resistance can be achieved with a remarkably low Pd loading of 0.05 wt% using this

approach. The resulting Pd SA-modified g-C3N4 demonstrates a remarkable hydrogen production

efficiency of 0.24 mmol h−1 mg−1 Pd, which is >50 times larger than that of Pd nanoparticles deposited

on g-C3N4 via conventional photodeposition. This significant enhancement in catalytic performance is

attributed to improved electron transfer facilitated by the optimal coordination of Pd SAs within the g-

C3N4 structure.
Introduction

In recent years, the demand for hydrogen as a clean renewable
energy carrier has grown rapidly, driven by the need to replace
traditional fossil fuels. Photocatalytic water splitting is a prom-
ising and most elegant way to directly convert solar energy into
clean, renewable hydrogen (H2).1,2 Since the pioneering work of
Fujishima et al., titanium dioxide (TiO2) has become the most
extensively studied material for this purpose.3–5 More recently,
graphitic carbon nitride (C3N4) is being increasingly explored as
it shares many advantageous features with TiO2, such as high
stability, abundance, and a suitable band structure for water
splitting but provides the key advantage of strong visible light
absorption, resulting in signicantly enhanced solar light
utilization.6–9

Nevertheless, due to strong kinetic hindrance for the pho-
tocatalytic hydrogen evolution reaction (HER) on the C3N4
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surface, an enhanced efficiency highly depends on the devel-
opment of highly active co-catalysts – typically noble metals
such as Pt, Pd, and Rh need to be deposited on the semi-
conductor surface to obtain a reasonable H2 production rate.
Despite efforts made using non-precious metal HER electro-
catalysts,10 noble metal-based materials remain nearly irre-
placeable due to their superior activity and chemical stability.
However, the scarcity and high cost of these metals pose
signicant challenges to the large-scale application of these
noble metal-based co-catalysts. This has prompted considerable
efforts to minimize noble metal usage while retaining high
catalytic performance. In this context, single-atom catalysts
have garnered wide attention due to their maximized atom
utilization efficiency.11–13

As for many other semiconductors and also for C3N4

substrates, a wide range of noble metal SAs have been success-
fully deposited as nanoparticles, clusters or SA, and accordingly
improvement in photocatalytic H2 production has been
reported.14–21 In search of the most active SA species, Akinaga
et al. conducted a remarkable study on ten transition metal
elements, including Cu, Ni, Pd, Pt, Rh, Ru, Ag and Au, as SAs
anchored on g-C3N4. Among the metals tested, Pd demonstrated
signicantly higher hydrogen evolution activity compared to
other precious metals such as Pt, Rh as well as other transition
metals.14 The authors ascribed the superior activity of Pd on C3N4

to the suitable electronic structure of this metal on C3N4. In their
work, Akinaga et al. used a photodeposition approach to achieve
a relatively high SA loading (>0.5 wt%).

However, for many semiconductors, the activity of SAs in
photocatalysis is extremely dependent on the deposition
© 2025 The Author(s). Published by the Royal Society of Chemistry
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approach.13,21–23 Namely, for Pt SAs on TiO2, it was reported that
“reactive” deposition leads to highly active SA congurations
that can provide maximized H2 production, i.e., a very high
catalytic efficiency can be reached at very low noble-metal
loading. This approach relies on the surface reaction of highly
dilute solutions of suitable noble-metal precursors.24–27

In the present work, we rst explore various Pd precursors
for the feasibility of a reactive SA attachment on C3N4. We nd
that tetraaminepalladium(II) chloride – Pd(NH3)4Cl2 as a Pd
precursor solution with C3N4 allows for an adjustable Pd SA
loading with a wide range of deposition concentrations from
0.04 wt% to 0.75 wt%. Our results show that by the reaction of
a minimal amount of a 0.05 mM precursor, maximum photo-
catalytic efficiency can be obtained. The photocatalytic
hydrogen production activity of such Pd SA-decorated C3N4

achieves a normalized H2 production activity of 0.24 mmol h−1

mg−1 Pd, which is 55 times higher than that observed with Pd
nanoparticle-decorated C3N4 at an effective loading that is more
than 10 times lower than that typically reported in the literature
for Pd on C3N4. The superior activity of Pd SAs/C3N4 is attrib-
uted to the strong coordination of Pd SAs within the C3N4

structure, forming a highly stable and catalytically effective
conguration that drastically reduces the charge transfer
resistance for the HER. These results illustrate how a rened
anchoring of SAs on substrates can enable more cost- and
production-effective use of precious metals in photocatalysis.
Results and discussion

Nanosheets of g-C3N4 were synthesized using a thermal poly-
condensation method starting from an equimolar mixture of
melamine and dicyandiamide, followed by thermal exfoliation,
as described in the literature.28–30 In order to explore the feasi-
bility of direct deposition of a (reactive) SA such as Pd on C3N4,
Fig. 1 (a) SEM image, (b) original HAADF-STEM image, (c) the HAADF-S
circles, (d) HAADF-STEM image and the corresponding EDS mapping (e)

© 2025 The Author(s). Published by the Royal Society of Chemistry
we examined different precursor species, namely tetraammi-
nepalladium(II) chloride (Pd(NH3)4Cl2), palladium(II) chloride
(PdCl2) and ammonium hexachloropalladate(IV) ((NH4)2[-
PdCl6]). To investigate the reactive deposition behavior, we used
three different Pd precursors at a concentration of 2 mM to
decorate Pd on C3N4. We then evaluated the general deposition
behavior with electron microscopy and XPS and also evaluated
the photocatalytic H2 production performance. Among the
samples, XPS results reveal that both PdCl2 and (NH4)2[PdCl6]
lead to relatively high Pd loadings (>1 at%) (Fig. S1a and b†);
however, the strong Cl 2p signals in the XPS spectra (Fig. S1c†)
indicate that most of the Pd precursor did not react with C3N4,
i.e., the precursor is just physically adsorbed on the C3N4

surface. In the SEM images of these two samples (Fig. S2†),
obvious Pd nanoparticles can be seen, due to the agglomeration
caused by high loading. In contrast, the Pd(NH3)4Cl2 sample
shows no visible metal nanoparticle formation in SEM (Fig. 1a),
non-metallic Pd position in XPS (Fig. S1a†) and no detectable Cl
2p signal (Fig. S1b†), indicating a complete reaction of this
particular precursor with the C3N4 surface.

Fig. 1a shows the SEM image of Pd-deposited g-C3N4 (Pd SAs/
C3N4) using Pd(NH3)4Cl2 at a concentration of 0.002 mM, and
Fig. S3† shows the SEM image of neat g-C3N4. The introduction
of Pd SAs does not affect the morphology of C3N4 – both
samples show a sheet-like structure with a thin layer thickness
of approximately 16 nm. The high-angle annular dark-eld
scanning transmission electron microscopy (HAADF-STEM)
image of Pd SAs/g-C3N4 is shown in Fig. 1b and c, which
conrms the presence of individual Pd atoms (highlighted in
Fig. 1c with red dots and yellow circles). Also, in the HAADF-
STEM image (Fig. 1d), there are no observable Pd agglomera-
tion on the g-C3N4 surface. Energy-dispersive X-ray spectroscopy
(EDX) mapping (Fig. 1e–g) further proves the uniform disper-
sion of Pd SAs throughout the g-C3N4 structure. The density of
TEM image with individual Pd SAs highlighted by red dots and yellow
C, (f) N, and (g) Pd of Pd SAs/C3N4.

Chem. Sci., 2025, 16, 4788–4795 | 4789
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Fig. 2 (a) X-ray diffraction pattern, (b–d) XPS spectra of (b) C 1s, (c) N 1s and (d) Pd 3d for C3N4 and Pd SAs/C3N4, (e) XANES spectra of Pd/C3N4 at
Pd K-edge, and (f) Fourier transform extended X-ray absorption fine structure (FT-EXAFS) spectra of Pd SAs/C3N4.
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Pd SAs was calculated as 1.6 × 106 mm−2 from HAADF-STEM
images shown in Fig. S4.†

X-ray diffraction (XRD) patterns of g-C3N4 and Pd SAs/g-C3N4

are presented in Fig. 2a. Both samples display two distinct
diffraction peaks at 13° and 27.6°, corresponding to the (100)
and (002) crystal planes of g-C3N4, respectively.31 Notably, no
diffraction peaks related to metallic Pd are observed in the Pd
SAs/g-C3N4 sample (as is expected for the SA-decorated
sample).14

X-ray photoelectron spectroscopy (XPS) was utilized to
investigate the chemical state of g-C3N4 and Pd SAs on C3N4

(Fig. 2b–d and Table S1†). The high-resolution C 1s XPS spec-
trum (Fig. 2b) of both samples can be tted by three peaks at
4790 | Chem. Sci., 2025, 16, 4788–4795
284.7 eV, 286.2 eV, and 288.1 eV corresponding to C–C, C–N and
N–C]N of the heptazine ring carbon structure, respectively.16

The tted N 1s spectra (Fig. 2c) exhibit peaks at 398.7 eV (N1),
400 eV (N2), and 401.4 eV (N3), representing the sp2 hybridized
aromatic two-coordinated (N2c) nitrogen of the triazine unit
(C]N–C, i.e., pyridinic N) and three coordinated (N3c)
bridging N atoms connected to carbon as N–(C)3 groups and
amino functional (C–NH/NHx) groups respectively.16,32,33 The Pd
3d spectrum of Pd SAs/C3N4 shows two peaks (Fig. 2d), doublets
at 337.6 and 342.9 eV corresponding to Pdd+ 3d5/2 and Pdd+ 3d3/2
(0 < d < 2), respectively.16 For comparison, Pd nanoparticles were
deposited on g-C3N4 (Pd NPs/C3N4) using an established pho-
todeposition method described in the literature.34,35 SEM
© 2025 The Author(s). Published by the Royal Society of Chemistry
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images of Pd NPs/C3N4 (Fig. S5†) clearly show distinct Pd
nanoparticles on the C3N4 surface with their typical diameter in
the range of 7–15 nm. For this sample, the Pd 3d XPS spectra
(Fig. S6†) of Pd NPs/C3N4 exhibit doublets at 335 eV and 340 eV,
which are typically attributed to metallic Pd0.33

The nature of Pd species was further investigated by X-ray
absorption spectroscopy (XAS) and diffuse reectance infrared
Fourier transform spectroscopy (DRIFTS) measurements.
Fig. 2e and f show the absorption near-edge structure (XANES)
and extended X-ray absorption ne structure (EXAFS) spectra of
Pd SAs/C3N4. The X-ray absorption spectrum of Pd SAs/C3N4

measured at the Pd K-edge (24 350 eV) indicates the presence of
Pd atoms that are non-metallic and carry a positive charge.15,16,20

The EXAFS analysis and the corresponding Fourier transformed
(FT) radial distribution function of Pd SAs/C3N4 show a peak at
approximately 1.5 Å (without phase correction), attributed to
the Pd–N bond, and no obvious scattering is observed for the
metallic Pd–Pd bonding.16,20 CO-DRIFT spectra of Pd SAs/C3N4

(Fig. S7†) show a CO vibrational peak at 2125 cm−1, which is
characteristic of linearly bonded CO on a Pd single site (usually
Pd2+).36,37 These results are well in line with the XPS results, i.e.,
Pd SAs are N-coordinated in C3N4 with an oxidation state z 2.

We then used the above deposition approach to place Pd SAs
from Pd(NH3)4Cl2 solutions in the concentration range of
Fig. 3 (a) Pd 3d XPS spectra of Pd SAs/C3N4 at different concentration
evolved H2 at different Pd SA loadings, and (d) normalized H2 evolution
chloride.

© 2025 The Author(s). Published by the Royal Society of Chemistry
0.0005 mM to 10 mM on C3N4. Fig. 3a shows the Pd 3d XPS
spectra for these Pd SAs loaded on C3N4 samples. Notably,
neither metallic Pd peaks nor Cl 2p peaks (Fig. S8†) are observed
under any of the deposition conditions. Instead, the incorpo-
ration of Pd SAs is evident across all samples, as indicated by
the Pd 3d doublet peaks at 337.6 and 342.9 eV. The XPS data
align with the SEM images shown in Fig. S9,† where no Pd
nanoparticles are observed in any of the samples, even at the
highest precursor concentration of 10 mM.

The bulk loading of the samples prepared using different
concentrations of Pd(NH3)4Cl2 solutions was further quantied
by atomic absorption spectroscopy (AAS) – the results are shown
in Table S1.† As the concentration of the Pd precursor increases,
the loading of Pd SAs increases (Fig. S10†), which is consistent
with the XPS data (Table S2†). For the highest precursor
concentration of 10 mM, the Pd SA loading reaches 0.75 wt%.

We then examined for all samples the photocatalytic H2

evolution using a 365 nm LED light source with an intensity of
65 mW cm−2 and an aqueous solution of 10% triethanolamine
(TEOA) as a hole scavenger.19,38,39 From the results shown in
Fig. 3b, it is evident that the decoration of either Pd NPs or Pd
SAs signicantly enhances the H2 production activity compared
to bare C3N4. In the concentration range of 0.0005 mM to
0.05 mM, corresponding to Pd SA loadings from 0.04 wt% to
s of tetraaminepalladium chloride, (b) photocatalytic H2 evolution, (c)
rates for different concentrations Pd SAs using tetraaminepalladium

Chem. Sci., 2025, 16, 4788–4795 | 4791
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0.26 wt% (Fig. S10†), the photocatalytic H2 production activity
increases with loading (Fig. 3c). It is worth mentioning that Pd
SAs deposited through our method, utilizing the Pd(NH3)Cl2-
precursor, lead to the notable nding that even a minimal
loading of 0.05 wt% outperformes Pd NPs synthesized via
photodeposition, the latter having a much higher loading of
1.5 wt% (Table S2†). As a side note, this loading is also much
more efficient than using PdCl2 and (NH4)2PdCl6 precursors
(see Fig. S11†). Also, in this comparison, the photocatalytic H2

production results show that an SA deposition approach using
Pd(NH3)4Cl2 leads to much higher activity, despite the signi-
cantly lower Pd loading compared with PdCl2 and (NH4)2PdCl6.

In general, the data clearly show that the H2 production
amount increases with Pd precursor concentration loading
until reaching a maximum at 0.05 mM (with a Pd SA loading of
0.26 wt%). Beyond this point, a further increase in Pd loading
does not increase the activity any further but even leads to
a slight drop in the activity and in the 10 mM case a very obvious
decrease (Fig. 3c). This is likely due to the decrease in the
density of Pd SAs and the formation of Pd agglomerates, which
may increase charge recombination.40

To further assess and compare the effectiveness of Pd as a co-
catalyst in both single-atom and nanoparticle forms, we
normalized the data from Fig. 3b relative to Pd loading (Table
S1†); the results are shown in Fig. 3d. The analysis reveals that
the highest mass-specic photocatalytic efficiency, resulting in
an H2 production rate of 0.24 mmol h−1 mg−1 Pd, is achieved
with 0.002 mM Pd precursor (0.05 wt%). This efficiency is 55
times higher than that obtained through conventional photo-
deposition of Pd nanoparticles on g-C3N4, highlighting the
superiority of our reactive deposition method for optimizing
photocatalytic H2 production. The exceptional performance of
low Pd SA loading on g-C3N4, prepared using our direct depo-
sition method, is evident when compared to other Pd SA-loaded
g-C3N4 structures reported in the literature for photocatalytic H2

generation. As shown in Table S3,† our work demonstrates the
highest photocatalytic hydrogen evolution per Pd atom.
Notably, even when compared to studies with similar or higher
Pd SA loadings, the Pd SAs obtained through our reactive
Fig. 4 (a) EIS plots of C3N4, Pd SAs/C3N4 and Pd NPs/C3N4 at the volta
equivalent circuit model used for fitting is depicted in the inset of (a). (b

4792 | Chem. Sci., 2025, 16, 4788–4795
deposition method using Pd(NH3)4Cl2 exhibit the highest
efficiency.

To better examine the origin of high activity of our SAs on
C3N4, we evaluated the charge transfer properties of the Pd-
decorated C3N4 photocatalysts by electrochemical impedance
spectroscopy (EIS). The measurements were performed in the
0.1 M Na2SO4 electrolyte at −0.5 V vs. Ag/AgCl, i.e., close to at
band conditions (details are outlined in the ESI-Experimental
section†). Fig. 4a presents the Nyquist plots for bare g-C3N4, and
g-C3N4 decorated with varying amounts of Pd SAs, and g-C3N4

decorated with Pd NPs (see the zoomed-in spectra shown in
Fig. S12†). The Nyquist plots were tted using the classic Ran-
dle's equivalent circuit model (inset of Fig. 4a).41,42 The signi-
cantly smaller radius of the tted curve for Pd SAs/C3N4,
compared to bare C3N4, indicates a substantial reduction in
charge transfer resistance (Rct) upon Pd SA loading. Quantita-
tive tting data in Table S4† show a 98-fold decrease in Rct due
to Pd SA incorporation (already at a concentration of 0.05 mM).
Fig. 4b shows the Rct values plotted against Pd SA loading,
showing that even a minimal amount of Pd SAs (0.03 wt%) can
dramatically enhance the charge transfer of C3N4 to the elec-
trolyte. This aligns with the low loading required to achieve
peak efficiency in photocatalytic H2 production. Conversely, Pd
NPs on C3N4 also reduce Rct compared to bare C3N4 (Fig. 4b) but
require a much higher loading (1.5 wt%) to achieve a similar
reduction in charge transfer resistance, as compared to the Pd
SA-loaded sample, which achieves this with just 0.03 wt%. PEIS
measurements for all the samples were measured using
a 365 nm LED (as described in the ESI Experimental section†).
As shown in Fig. S13,† the results indicated a similar trend to
the EIS data collected in the dark (Fig. 4 and Table S4†),
although Rct values were different. Under illumination, Rct

values decreased due to enhanced charge transfer dynamics in
the presence of light (Fig. S13 and Table S5†). Notably, Pd SAs
demonstrated lower Rct values compared to Pd nanoparticles,
indicating the superior performance of Pd SAs. These results
underscore the effectiveness of small Pd SA quantities in
signicantly improving the charge transfer characteristics of
C3N4.
ge of −0.5 V (vs..Ag/AgCl) in 0.1 M Na2SO4 aqueous electrolyte. The
) Rct vs. Pd loading plot of Pd SAs/C3N4 samples.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Incident photon-to-current conversion efficiency (IPCE)
measurements were also conducted to assess the photo-
electrochemical characteristics of C3N4 and Pd SAs/C3N4.
Fig. S14† shows photocurrent spectra for both samples with
a photocurrent onset in the visible range. The bandgap (deter-
mined from a replot of the photocurrent data according to an
indirect transition, Fig. S14-inset†) was 2.7 eV, consistent with
the typical bandgap of g-C3N4.14,43 Additionally, the photocur-
rent (Fig. S15†) increases aer the decoration of Pd SAs on g-
C3N4 (under near at band conditions), which conrms the
benecial effect of Pd SAs in promoting charge transfer under
illumination conditions.

The enhanced performance of Pd-SAs deposited by our
decoration technique, compared with the literature, must be
attributed to the used precursor Pd(NH3)4

2+ that leads to the
direct formation of active Pd–N congurations (as conrmed by
EXAFS, Fig. 2e and f) – in the literature, such sites are regarded
as premier active sites in C3N4.

16,20,44,45

The presence of NH3 groups in Pd(NH3)4
2+ ions may promote

the formation of such a Pd–N coordination structure compared
to the chloride-coordinated Pd precursors due to suitable ligand
exchange energetics.46,47 Furthermore, the Pd2+ in Pd(NH3)4Cl2
enables stronger interactions with nitrogen atoms in C3N4 than
the Pd4+ in (NH4)2PdCl6 or Pd

2+ in PdCl2.48,49 Evidently, chloro-
coordinated Pd precursors in the Pd2+ or Pd4+ state are either
adsorbed onto the C3N4 surface at less specic sites, as shown
by the XPS Pd 3d spectra (Fig. S1a†) and the signicant presence
of Cl detected in the XPS Cl 2p spectra (Fig. S1b†), or reduced
and form metallic Pd agglomerates, as clearly observed in the
SEM images (Fig. S2†). The tetraammonium complex, on the
other hand, leads without any evident change in the reduction
state to active Pdd+ (d z 2) N-coordinated SAs, accompanied by
the complete loss of Cl coordination during the reaction
(Fig. S8†). Therefore, Pd(NH3)4Cl2 is identied as the most
suitable precursor for direct reactive deposition of Pd SAs on
C3N4.

Considering that many literature studies, particularly those
involving DFT calculations, suggest that Pd in an N4-coordina-
tion on C3N4 exhibits the highest degree of stability and activity,
one may conclude that Pd2⁺ undergoes a ligand exchange
process to form this active Pd–N4 conguration. This means
that the process is of self-homing nature (as described for the
reactive deposition of Pt)23–25,35 i.e., the Pd precursor reacts and
deposits Pd SAs at most active surface sites on g-C3N4, these
sites then provide a maximized electron transfer and thus are
highly catalytically active. This explains why such a low loading
of Pd SAs is sufficient in our work to achieve maximised pho-
tocatalytic H2 production efficiency compared to the higher Pd
loadings required, as reported in most literature studies (Table
S3†).14,45,49,50

The remarkable activity becomes particularly clear if the
present data are compared to the work of Akinaga et al.,14 where
a 0.5 wt% Pd SA loading was required to maximize the photo-
catalytic H2 production activity, i.e., our very low Pd SA loading
of 0.05 wt% demonstrates a tenfold increase in efficiency. This
superior performance highlights the importance of the attach-
ment chemistry and process of Pd SAs within C3N4, i.e.,
© 2025 The Author(s). Published by the Royal Society of Chemistry
processes that lead to Pd SAs located at the most active sites can
lead to maximized efficiency with minimal Pd usage, avoiding
the waste of Pd associated with random Pd SA or NP deposition.

Conclusion

In this work, we successfully integrated Pd SAs onto/into exfo-
liated g-C3N4 via a reactive deposition method, achieving
a controllable uniform loading of highly active Pd SAs in a Pd–N
conguration on g-C3N4. Notably, using reactive deposition
from a Pd(NH3)4Cl2 precursor a low loading of 0.05 wt% Pd SAs
on C3N4 with a density of 1.6 × 106 mm−2 can achieve
a maximum H2 production rate of 0.24 mmol h−1 mg−1 Pd,
signicantly higher than that of Pd nanoparticles decorated on
g-C3N4 and also ten times higher than that of Pd SAs decorated
on g-C3N4 using other reported approaches. Other tested
precursors may also deliver SA attachment but lack the high co-
catalytic activity. These results underline the importance of the
attachment mechanism in creating a SA/substrate coupling
with minimized charge transfer resistance and thus maximized
co-catalytic activity – in a most effective way, the process is self-
homing, i.e., activation takes place where it is most effective.
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44 G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova,
M. Antonietti, N. López and J. Pérez-Ramı́rez, Ein stabiler
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