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Partitioning cells in open nanowells permits high confidence in single cell occupancy and enables

flexibility in the development of different molecular assays. A challenge for this approach however is

to print cells sufficiently quickly to enable experiments of adequate statistical power in a reasonable

time. To address this, we developed a single cell dispensing instrument leveraging inkjet technology

with continuous real-time optical feedback and machine learning algorithms for high-throughput

single cell isolation. The Isolatrix enables rapid partitioning of cells into open substrates such as

nanowell arrays, permitting high-throughput application of custom genomic assays such as direct-

transposition single cell whole genome sequencing (scWGS). We trained the classifier on manually

labelled data with a range of cell sizes and applied the instrument to generate scWGS profiles from

cell lines and primary mouse tissue. Comparison to existing predictive workflows demonstrated that

this reactive approach, featuring machine learning classification of events post-dispensing, gives up to

a 9.69 times increase in isolation speed. Validation via fluorescent imaging of cell lines confirmed a

classification accuracy of 98.7%, at a rate of 0.52 seconds per single cell, under tuned spotting

parameters. Genomic analysis showed low background contamination and high coverage uniformity

across the genome, enabling detection of chromosomal copy number alterations. With data tracing

capabilities and a convenient user interface, we expect the Isolatrix to enable large-scale profiling of

a range of genomic data modalities.

Introduction

Single cell genomics has emerged as a transformative tool for
understanding cellular heterogeneity in health and disease.1–3

By enabling segregation and analysis of individual cells, this
approach uncovers insights into genetic and phenotypic
diversity,4 rare mutations,5 and identification of distinct
cellular subpopulations that are obscured through bulk
sequencing.6,7 Profiling cell-to-cell heterogeneity is
particularly important in cancer studies,8,9 where somatic
mutation and epigenetic rewiring may lead to competing

tumour sub-clones that can contribute to treatment resistance
and metastatic progression.10–12

Commercial instruments for emulsion-based microfluidic
single cell isolation, whereby a cell suspension is randomly
partitioned in aqueous droplets within an oil emulsion,
include the widely-adopted 10× Genomics Chromium
platform. Emulsion-based instruments have popularized
profiling of transcript expression, chromatin accessibility,
and targeted protein abundance. While these microfluidic
systems are widely used due to their ability to rapidly isolate
and encapsulate thousands of cells,13,14 the approach has
limitations.

First, random encapsulation combined with an inability to
verify cell count within individual droplets results in the
inclusion of doublets or multiplets, which can confound
downstream analyses.15 Although bioinformatic tools have
been developed to address these artifacts, they are often
inconsistent and struggle with identifying homotypic
doublets.

The closed architecture of these emulsion-based
instruments limits flexibility in adopting or modifying
protocols. Examples of such emerging single cell library
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preparation protocols include direct-tagmentation whole
genome sequencing,16,17 proteomics,18–20 metabolomics,21,22

and various multiomics protocols.23

Cells that are fragile or tightly linked can be difficult to
dissociate and therefore tend to be missing or
underrepresented in emulsion-based libraries (e.g.
adipocytes, hepatocytes).24–26 Large cells or debris from
primary tissue can clog microfluidic channels, leading to
failed runs.27,28 This has presented, for example, challenges
in the study of various liver diseases including hepatocellular
carcinoma (HCC), the most common form of liver cancer.29

Large-scale single cell atlas studies on the liver have used
different approaches to overcome the challenge of profiling
hepatocytes. Some have ignored this majority cell type
altogether,30 while others acknowledge they are substantially
underrepresented31 or show representation primarily from a
single donor liver.32 Other studies overcome the cell
dissociation challenge by profiling nuclei instead of cells,33,34

but this can reduce sequencing yield, limit the profiling of
some biomolecules and organelles, and preclude
interrogation of cell size and morphology.

Piezoelectric inkjet dispensing is an established
technology for spotting droplets, tunable in the range of 150–
400 picolitres.35,36 These can be delivered at variable
frequencies up to thousands of droplets per second37 or the
inkjet can be operated in drop-on-demand mode.38 The
flexibility of the technique provides utility in a range of
applications from everyday printing to manufacturing
multiplexed biomolecular assays.39–41 Additionally, emerging
clinical applications of bioprinting in fields such as tissue
regeneration or wound healing underscore the potential of
inkjet printing for delivery of bioinks.42,43 Recent integration
of machine learning models into bioprinters has
demonstrated optimization of printing parameters,
enhancing control and accuracy.44,45 Inkjet printheads have
also demonstrated gentle handling of a number of cell types
due to the low shear stress imparted on the particles during
dispensing, achieving high dispensed cell viability.46,47

Inkjet-based spotting, being a low-volume dispensing
modality, can permit reactions in open wells with nanolitre
volumes, where both cells and reagents can be sequentially
added. It should be noted that miniaturization preserves the
robustness of reactions, maintaining the relative
concentration of reagents and input deoxyribonucleic acid
(DNA) from conventional bulk reactions. A single cell with 6
pg of DNA in a ∼100 nl well is proportional to a polymerase
chain reaction (PCR) based bulk library construction with 6
ng of DNA in a ∼100 μl reaction.16 Spotting into open
nanowells enables sequential reagent addition, permitting
implementation of novel protocols, so emerging methods like
single cell whole genome sequencing,16 proteomics,48 or
whole transcript ribonucleic acid (RNA) sequencing49,50 may
be deployed at scale. Another feature of open wells is the
ability to selectively build libraries only on wells of interest,16

as well as selectively recover cells, either individually or in
defined segments of a well plate or nanowell chip.51

Extant commercial inkjet-based single cell dispensing
systems, such as the CellenONE (Cellenion) and F.Sight
(Cytena) use deterministic image-based algorithms to
assess cell size, shape, and position within the nozzle,
aiming to predict single cell capture. They assess a
defined region within the nozzle immediately before each
dispensing event to determine if a single cell should be
deposited on the target substrate or into a waste
receptacle. While this approach enables high single cell
occupancy on the substrate, it has limitations. These
include the setting of strict gating criteria which can lead
to the exclusion of genuine single cells that fall outside
predefined parameters, in addition to potentially
discarding viable single cells due to conditions aimed at
minimizing the risk of doublet capture. Importantly, while
these instruments can dispense into standard well-plates
within reasonable time frames, their cell isolation speeds
present challenges for high-throughput dispensing into
nanowell arrays, as hardware latency associated with
travelling back and forth between the waste receptacle
and target wells compounds across large numbers of cells,
significantly impacting overall throughput at scale. We
hypothesized that improved optics and image analysis
combined with a reactive dispensing protocol to capture
all dispensing events could result in faster cell
partitioning, albeit with the trade-off of variable dispense
volumes per well.

To this end, we developed the Isolatrix, a new inkjet-based
cell dispensing instrument which features a novel printing
algorithm and machine learning classification of events post-
dispensing for rapid and accurate single cell isolation, by
depositing single cells into nanowells, onto glass slides, or
into other discrete compartments. By dispensing empty
droplets onto the same target location until an event is
identified, the Isolatrix printing algorithm reduces cell
isolation time. This is a reactive approach to enumerate
spotting events in contrast to the predictive approach used by
competing instruments, and enables higher cell portioning
rates while preserving the advantages of direct visual
confirmation of partitioning events.

Single cell isolation instrument
Design criteria

The design criteria for this instrument were driven primarily
by improving the throughput of single cell whole genome
sequencing using the direct library preparation (DLP+)
protocol.16 The DLP+ workflow involves cell lysis, heat-
inactivated protease treatment, and direct DNA transposition
within high-density nanowell arrays. A single DLP+
sequencing experiment typically involves isolation of 1000–
3000 cells within 72 × 72 Takara SmartChip™ nanowell
arrays.52 The latter is a 41 mm square aluminium plate with
460 μm diameter wells drilled ∼600 μm deep at a pitch of
542 μm, giving a volume of 100 nl per well. DLP+ in
SmartChips has proven to be robust and scalable,53 but the
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substantive operator-time needed to spot cells has remained
a significant challenge.

The goals of the Isolatrix instrument design were as
follows:

1. Enable single cell throughput of <1 second per cell
2. Provide high confidence in single cell dispense calling
3. Ensure compatibility with common open well plates,

slides, and nanowells
The first design goal, motivated by operator experience,

was to be able to spot ∼1000 cells in the order of minutes,
i.e. one second per cell or less. This was selected to address
the need to ease scheduling, minimize cell exposure to
ambient conditions resulting in a change in cell state or cell
death,54,55 and minimize the risk of cell aggregation from
sedimentation.56–58 The second design goal emphasizes the
importance of verifying single cell spotting events with high
confidence, so as to minimize unidentified cell doublets and
multiplets in constructed libraries. The third design goal was
to enable a diverse range of workflows by ensuring
instrument compatibility with different target substrates,
including the Takara SmartChip™ nanowell array,
microscope slides, and standard microplates.

Single cell instrument hardware

The Isolatrix is designed around the MicroFab MJ-AL-02-080
piezoelectrically actuated inkjet printhead. This printhead is

constructed from a tapered glass capillary with an 80 μm
orifice and can operate in drop-on-demand mode enabling a
machine vision system to guide cell dispensing. The glass
nozzle allows imaging of the inner channel of the printhead
to monitor and control cell dispensing events. The imaging
system, as shown in Fig. 1a, is fixed in line with the inkjet
printhead and continuously monitors cell motions in
response to droplet ejection. The optics consist of a ThorLabs
MVL12X12Z 12× zoom lens configuration and a FLIR Blackfly
S BFS-U3-32S4M greyscale scientific camera with a resolution
of 0.26 pixels per μm and a field of view of 538 × 200 μm into
the nozzle's channel adjacent to the orifice. A light emitting
diode (LED) light source is positioned 100 mm behind the
printhead and is synchronized with droplet ejection and
image capture. A Zaber LSQ Series XY gantry system with a
microstep size of 0.496 μm enables positioning of the
substrate beneath the inkjet nozzle (Fig. 1b).

Dispensing algorithm

The instrument employs a novel cell printing strategy
(Fig. 2a) leveraging machine vision-based feedback with a
trained neural network to achieve single-cell isolation rates
beyond random capture.59 During printing, the printhead is
positioned over a target and droplets are dispensed under
observation by the machine learning model. Cell
encapsulation in a suspension is governed by the Poisson

Fig. 1 a) An imaging module containing a camera and long working distance zoom lens is fixed in-line with the printhead, an LED positioned
behind the printhead provides an illumination source. The camera continuously monitors the events within the glass nozzle of the printhead
capturing a nozzle image after every dispensed droplet. The inset shows an example image of the nozzle (scalebar represents 50 μm), the cells
within the nozzle are highlighted by white circles. The target labware is mounted on an XY gantry stage via bespoke holders. b) During instrument
operation, the designated print area is scanned via a raster pattern below the nozzle. The printhead operating in drop-on-demand mode dispenses
droplets into each well. A machine vision algorithm monitoring for cell dispensing events within the nozzle will provide feedback to the instrument
to optimize single cell yield into the substrate. The inset zooming into the substrate shows a microscopy image of three example wells after cell
printing. The dispensed cells are stained with CSFE and are shown in the green channel of the image. Reflected light imaging shows the features
of the substrate in the gray channel. Scalebar represents 200 μm.
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distribution, so the majority of the droplets will be empty. If
a cell dispensing event is detected, the system records the
event and moves to the next well, otherwise, it repeats the
ejection and analysis cycle as highlighted in Fig. 2b. To

facilitate inference of the captured cell motions within the
nozzle images, the network multiplexes historical data by
combining images from prior droplets into a single input
incorporating cell motion data to identify cell encapsulation

Fig. 2 a) Flowchart of the cell dispensing algorithm: at the beginning of the loop, a droplet is dispensed into the target. An image of the nozzle is
captured to compare with previous images to identify if a cell dispensing event occurred. Feedback from the neural network guides the decision
of the instrument's operation. The length of the linear arrows in each step is proportional to the time required to execute each step. Overall
average time to execute the step including machine movement is 165 ms. b) Data flow diagram of the image capture, pre-processing, inference
and dispensing logic cycle. c) The image series captured by the optics system of the three possible classes. Each nozzle image is captured after a
droplet has been dispensed. Scale bar on nozzle images represents 50 μm. The resulting droplet is captured on a glass microscopy slide. The
droplets are imaged under 10× brightfield and fluorescent microscopy. The HEK cells in the nozzle are stained with CSFE which is shown in the
green channel of the image. The evaporated droplets leave a salt residue on the slide from the PBS in which the cell sample was suspended. Scale
bar on the droplet image represents 100 μm. Historic information is encoded into the neural network's input by incorporating nozzle images from
the four most recent nozzle images. The neural network outputs a prediction score for the image series, scoring the probability of the cell
encapsulation event from the most recently dispensed droplet (between nozzle image t = 0 and t = −1) from: class 0 where no cells were
encapsulated in the droplet, class 1 where a single cell was dispensed with the droplet or class 2 where multiple cells were dispensed with the
droplet. The maximum scoring class is taken as the prediction of the cell encapsulation event for a given image series. The cells to be dispensed in
the nozzle images are highlighted by a white circle.
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events.60 Each image is subtracted from the preceding one to
remove static features, such as debris on the outer capillary
surface. The resulting subtracted images are concatenated
into a single composite image, which is then used as input to
the neural network.

A timeout condition prevents overfilling or reagent
dilution by skipping wells after a user-defined number of
consecutive empty droplet events.

As analysis is performed on images captured after the
droplet has been ejected, the Isolatrix approach aims to
identify post-dispense events, with an example of the three
possible classes given in Fig. 2c. The droplet ejection cycle
was measured to be 25 ms which includes the droplet
actuation, image capture, neural network inference and user
interface (UI) processing. Conversely, the time required for
the gantry to travel 542 μm from well to well was measured
to be 140 ms on average. Therefore, to enable high-
throughput cell dispensing, the algorithm minimizes
machine movement actions by continuously dispensing into
the current target and traversing the grid in a raster pattern.

Cell dispensing event classifier

A neural network was trained to classify droplets into three
classes: class 0 are empty droplets, class 1 are droplets
containing a single cell, and class 2 are droplets containing
multiple cells. A dataset of dispensing event images was
captured and manually labeled, using a variety of cell lines
including 184-hTERT, A549, MCF-7, OCI-AML3 and Huh-7.
The image set consists of 6197 class 0 images, 5317 class 1
images and 1559 class 2 images with an 85 : 15 split for
training and validation. All models were trained with the
same learning rate (0.0001), batch size (64) and dropout rate
(0.5) while varying only architectural hyperparameters such
as the number of layers, filters and nodes.

Two neural networks were deployed on the instrument
equipped with an AMD Ryzen 9 3950X CPU and a NVIDIA
GeForce RTX 3080 GPU with frozen weights. A convolutional
neural network (CNN)61–63 was trained, comprising four 2D
convolutional layers with progressively increasing filter
counts (16, 32, 64, 64), followed by a 64-unit dense layer and
a softmax output layer for three-class classification (Fig. 3a).
With 3 895 395 trainable parameters, the model achieved a
weighted F1 score of 0.84 on the validation dataset and an
inference time of 4.6 ms per event.

A ResNet model64,65 was trained on an expanded dataset
(class 0: 14 033, class 1: 7257, class 2: 2501) and deployed on
the instrument. This model consisted of a series of eight
blocks of convolutional, pooling and feedforward
connections with increasing channel depth from 64 to 512,
before flattening and mapping to a fully connected layer with
64 units outputting to the three classes (Fig. 3b). In total,
there were 7 689 992 trainable parameters in the ResNet
model resulting in an inference time of 9.72 ms per image.
The validation dataset had a weighted F1 score of 0.94.

Dispensed single cell calling

To facilitate manual inspection for cell calling (e.g. for
network training) or to review the algorithm's predictions, a
UI (Fig. 4) aggregates and displays neural network class
probabilities, corresponding nozzle images, and, if available,
fluorescent microscopy images of the well contents. It
displays the neural network's output in real time using color-
coded markers to represent cell count predictions for each
well, simplifying the selection of target wells for downstream
workflows (Fig. 4a). In general, only wells containing single
cells are selected to undergo library construction, along with
positive and negative controls. Wells with only class 0 events
(empty droplets) can be selected as no cell controls (NCCs) to

Fig. 3 Graph of the trained machine learning models deployed on the instrument. a) A traditional convolutional neural network classifier with
sequential connections to identify cell dispensing events. b) The trained ResNet with skip connections, which may facilitate the propagation of
temporal features to deeper layers, aiding in the retention and correlation of learned features.
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allow estimates of the level of background contamination in
the cell suspension fluid, while no template control (NTC)
wells contain neither cells nor cell suspension fluid and can
be used to assess contamination in the library reagents.
Positive cell controls (PCCs) from a well-characterized cell
line can be included alongside genomic DNA (gDNA) wells to
identify issues related to input sample quality. The neural
network's output and corresponding nozzle images are
displayed with UI buttons to label the selected well (Fig. 4b).

Results
Workflow to verify dispensed single cell purity

An experiment was conducted to verify droplet classification
with orthogonal imaging. While dispensing into the nanowell
chip allows for the capture of single cells to be used in one-
pot chemistry workflows such as the DLP+ protocol, the high

aspect ratio of the aluminum wells presents challenging
imaging conditions when differentiating between single or
multiple cells. This makes verification of the single cell purity
of the dried-down contents within the well via microscopy
alone insufficient, necessitating inspection of additional data
such as the captured nozzle images. Dispensing droplets onto
a glass slide enables fluorescent imaging and facilitates
review to differentiate droplets containing single or multiple
cells. Each dispensed position can be associated with a
readout from the instrument. The slide-imaged droplets
(Fig. 5) showed excellent agreement with nozzle images;
100% of 100 manually inspected droplets had the correct cell
count as seen in the corresponding nozzle images. Manually
verified dispensing events were used for network training.

Validation of timeout conditions and comparison to existing
instrumentation using a karyotypically normal cell line

The Isolatrix was evaluated in a whole genome single cell
sequencing experiment using the DLP+ method and the 184-
hTERT normal immortalized breast epithelial cell line, which
is a female cell line with a generally normal karyotype.16 The
goals of this experiment were to enable evaluation of
sequencing quality metrics between 5-droplet and 10-droplet
timeout conditions, as well as a direct comparison with the
current instrument used for DLP+ implementation, the
CellenONE. In comparing the 5-droplet and 10-droplet
timeout conditions, we sought to determine whether the
increased volume of cell suspension fluid (phosphate
buffered saline, PBS) and ambient DNA per well would have

Fig. 4 Dispensing event map and user interface to review cell calling.
a) A map of spotting events. Green wells are class 1, orange are class 2
and blue are empty (timeout condition). White wells contain no
dispensing output (e.g. no-template controls). The intensity of the
colours increases with the number of droplets dispensed into each
well. b) A user interface to aggregate available data to assist in
reviewing single cell calls. In this example, a sample of CSFE-stained
SiHa cells was dispensed using the trained ResNet model. The output
from the ResNet model is displayed along with the fluorescence image
of the cell in the well if the microscopy data is available. By default, the
two most recent nozzle images corresponding to the selected well are
displayed. The dispensed cell is highlighted with a white circle. UI
control elements allow for labelling of the wells to incorporate positive
and negative controls for downstream analysis, including positive cell
control (PCC), genomic DNA (gDNA), single cell (C1), no cell control
(NCC) and no template control (NTC). Additional UI controls enable
scrolling to view historical nozzle images in the well (if available) and
to navigate between wells.

Fig. 5 Using the trained ResNet model, droplets were dispensed on
microscope slides and imaged. The HEK cell suspension was stained
with CSFE (green channel) and the outline of the droplets are salt
remnants due to evaporation of the PBS cell suspension solution (gray
channel). The corresponding ResNet output for the last dispensed
droplet is plotted below each printed target. The scale bar represents
200 μm.
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an adverse impact on sequencing data quality and
contaminating reads. The DLP+ workflow utilizes nanowell

chips pre-spotted with primers containing unique row and
column barcodes which allows for DNA fragments to be

Fig. 6 Cell dispensing validation and comparison to existing instrumentation using the 184-hTERT cell line. a) Chip layout for the normal
immortalized cell line experiment showing control wells (gDNA, NCC, NTC) and single-cell wells dispensed by CellenONE and Isolatrix, with two
Isolatrix timeout conditions (5-droplet, Iso5; and 10-droplet, Iso10). b) Heatmap of total mapped reads to the hg38 reference genome for single
cells across the chip layout. c) Heatmap of copy number quality scores for single cells in the chip layout. d) Box plots showing the distribution of
total mapped reads for control wells (gDNA, NCC, NTC) and single cells dispensed by the CellenONE and Isolatrix conditions. e) Box plots
comparing copy number quality between single cells dispensed by the CellenONE and Isolatrix conditions. Statistical significance was determined
using the Wilcoxon test (ns: p > 0.05, *: p ≤ 0.05, ****: p ≤ 0.0001). f) Examples of copy number profiles for single cells dispensed by the Isolatrix,
showing two high-quality cells (top two rows) and a low-quality cell (bottom row). Colours indicate the copy number states for each genomic bin,
inferred by a hidden Markov model.

Lab on a ChipPaper

Pu
bl

is
he

d 
on

 0
8 

au
gu

st
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

7.
02

.2
02

6 
21

:5
8:

25
. 

View Article Online

https://doi.org/10.1039/d5lc00514k


Lab Chip, 2025, 25, 4972–4985 | 4979This journal is © The Royal Society of Chemistry 2025

associated with their respective cell of origin after
sequencing.

For this experiment, the Isolatrix dispensed 664 single cells
in 14.7 minutes or, on average, 1.46 seconds per cell. The
library-constructed single cells were verified via fluorescence
microscopy of the chip and the captured nozzle images.
Within this, 313 cells were dispensed under the 5-droplet
timeout condition, while 291 cells were dispensed under the
10-droplet timeout condition (Fig. 6a), requiring print times
of 535 s and 347 s respectively. This corresponds to a
throughput of 1.71 seconds per single cell for the 5-droplet
timeout condition and 1.19 seconds per single cell for the 10-
droplet timeout condition. In comparison, the CellenONE
instrument deposited 458 single cells in 38.5 minutes, with a
throughput of 5.04 seconds per single cell (Fig. 6a).

This library was sequenced on an Illumina NovaSeq 6000
and aligned to the hg38 reference genome using Minimap2.66

Sequencing quality metrics, copy number profiles, and copy
number quality scores were derived as previously described.16

Cells dispensed by the Isolatrix demonstrated comparable
sequencing yield to those dispensed by the CellenONE, with
no significant difference in total mapped reads observed
under both the 5-droplet timeout condition (mean = 604 630;
Wilcoxon test, p-value = 0.18) and the 10-droplet timeout
condition (mean = 556 175; Wilcoxon test, p-value = 0.26),
compared to the CellenONE (mean = 562 426) (Fig. 6b and d).
Additional quality control metrics including coverage depth
(CellenONE: 0.016; 5-droplet: 0.017; 10-droplet: 0.016) and
total reads (CellenONE: 643 791; 5-droplet: 680 828.5; 10-
droplet: 633 643.2), were also comparable across all
conditions. While a significant difference was observed in
total mapped reads between NCC wells with increasing
numbers of droplets, particularly under the 10-droplet
condition (mean: 2089.5) compared to the 5-droplet
condition (mean: 1126.2), this background signal remains
negligible relative to wells containing cells (mean: 573 151.7)
(Fig. 6d). The increase in background reads is consistent with
the higher average number of droplets dispensed per well
under the 10-droplet timeout condition (mean: 5.10) versus
the 5-droplet condition (mean: 2.73), increasing the chance
of low-level contamination. Nevertheless, the background
signal remains orders of magnitude lower than signal from
wells with cells and is not expected to impact downstream
copy number analysis or overall data interpretation.

Chromosomal copy number was inferred using
HMMcopy.67 Copy number quality from cells dispensed by
the Isolatrix was significantly higher than that of the
CellenONE (mean = 0.63) under both the 5-droplet timeout
condition (mean = 0.77; Wilcoxon test, p-value <0.001) and
the 10-droplet timeout condition (mean = 0.70; Wilcoxon test,
p-value = 0.03) (Fig. 6c and e).

To illustrate how variations in copy number quality
scores affect confidence in chromosomal copy number calls,
cells R06-C53 and R21-C29, both dispensed by the Isolatrix,
exhibit high-quality copy number profiles (Fig. 6f). As 184-
hTERT is a normal diploid cell line, a consistent copy

number of two is observed across most chromosomes in
these cells. Notably, R21-C29 displays an unexpected copy
number gain on chromosome 8, despite maintaining an
otherwise diploid profile, demonstrating the Isolatrix's
ability to dispense high-quality cells suitable for identifying
rare genomic variations at the chromosomal level. In
contrast, the copy number profile of cell R35-C03, also
dispensed by the Isolatrix, is characterized by increased
noise and high variability, representing a low-quality copy
number profile that fails to accurately recapitulate the
expected diploid copy number of two.

A potential spatial bias in copy number quality was
observed, where the bottom-right region of the chip
dispensed by the CellenONE exhibited lower copy number
quality. However, total mapped reads were not affected in
this region, suggesting that the reduction in copy number
quality may reflect a true biological or technical variance (e.g.
due to longer dispensing time) rather than issues with
sequencing or library construction.

Isolation of primary dissociated mouse liver tissue

To assess the performance of the Isolatrix on primary tissue
samples, we dispensed cells from a primary mouse liver
sample for scWGS using the DLP+ protocol. Hepatocytes are
typically large and fragile cells, exhibiting a propensity to
burst under shear stress,68 presenting challenges for
consistent single cell handling. Unlike cell lines, dissociation
of primary tissue can include substantial cellular debris,
resulting in elevated background contamination. Given low
levels of background contamination in the 184-hTERT
experiment, an input cell concentration of 600 000 cells per
mL and a timeout condition of 20 droplets was used for this
dispensing run. Staining the sample enabled differentiation
between fluorescent live cells and non-fluorescent
extracellular debris via microscopy imaging of the nanowell
chip post-dispensing.

A grid of 30 × 59 wells was selected for dispensing,
yielding 381 live single cells, as verified by nozzle images and
fluorescent signal within the wells. The total print time was
554 seconds. Lower than expected single cell yield was
observed due to the presence of debris within the primary
dissociated sample being misclassified as single cells.
Sequencing was performed on an Illumina NextSeq 2000
instrument and aligned to the mm10 reference genome using
Minimap2.66 On average, each single cell yielded 1 553 884
total reads (SD: 1 191 486) (Fig. 7a). As a positive control,
human genomic DNA (gDNA) was also dispensed and
mapped to the hg38 reference genome. The majority of single
live cell reads (mean = 76.6%, SD = 27.4%) and gDNA reads
(mean = 93.7%, SD = 1.35%) successfully mapped to their
respective references (Fig. 7b).

Copy number profiles were inferred using HMMcopy.67 As
expected, due to the challenging nature of dispensing
primary liver tissue, only 80 out of the 381 dispensed cells
produced high-quality copy number profiles (mean copy
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number quality = 0.45) (Fig. 7c and d). In contrast, all gDNA
control wells achieved high copy number quality (mean =
1.00), indicating that the limitations were specific to the liver
sample rather than the dispensing platform or library
preparation (Fig. 7C). Despite the limited number of high-
quality cells, the liver cells displayed diploid copy number
profiles with one X and one Y chromosome, consistent with a
healthy male mouse (Fig. 7e). Notably, a rare focal copy
number gain was detected at the start of chromosome 14 in
22 of these high-quality live cells (Fig. 7f).

Neural network performance optimization

The DLP+ experiment validated the instrument's variable
volume print strategy which allows optimization to improve
the achievable single-cell throughput and yield. Through
empirical testing with the hTERT cell line, a working input
cell concentration was determined to be in the range of
700 000 cells per ml. This corresponds to an expected value

of 0.112 cells per droplet. Further increasing the input cell
concentration would theoretically improve single cell yield,
but practical limits, such as the increased risk of clogging,
militates against higher concentrations. We note that
appropriate choice of this parameter is sample and cell type
dependent. Samples with smaller cell size may permit higher
input concentrations without compromising droplet
formation or inducing nozzle clogging, while samples with
extracellular debris or large cell size could benefit from lower
cell concentrations. Bioinformatics analysis of the 184-hTERT
experiment also suggests that the timeout condition can be
increased with minimal negative impact on ambient
contamination and chemistry compatibility. As such, for the
mouse liver cell experiment the timeout condition was
increased to 20 droplets. Increasing the timeout condition
will lead to improvements in single cell yield by reducing the
number of empty wells. Using these conditions, the neural
networks were deployed on the instrument and their
performance was benchmarked with the resulting confusion
matrix shown in Fig. 8a.

A test print was conducted with the CNN, dispensing
HEK cells into a 64 × 12 grid within the nanowell chip. An
input cell concentration of 700 000 cells per mL and a
timeout of 20 droplets was used. Manual inspection of
captured nozzle images identified 408 wells containing
isolated single cells, corresponding to 53.1% single cell
occupancy. The weighted F1 score of the test print was
0.899. The total grid print time was recorded on the

Fig. 7 Validation of primary cell dispensing using freshly dissociated
mouse liver tissue. a) Box plots showing the distribution of total reads
for control wells (gDNA, NCC, NTC) and single cells dispensed using
the Isolatrix system. b) Box plots showing the distribution of mapping
percentages for reads from control wells and Isolatrix-dispensed single
cells. c) Box plots comparing copy number quality scores between
single cells dispensed by Isolatrix and control wells. d) Heatmap of
copy number profiles for high-quality cells (copy number quality
>0.75; n = 80), where each row represents a single cell and each
column corresponds to a genomic bin. Color reflects the inferred copy
number state. e and f) Representative copy number profiles of high-
quality primary mouse liver cells.

Fig. 8 Evaluation of neural network performance. a) Confusion matrix
showing the accuracy of dispensed droplets for the two neural
networks deployed on the instrument for operational testing. Each
model was deployed on the instrument and tested with a cell line
before being dispensed onto a glass slide or nanowell chip. The test
print for the CNN was conducted using HEK cells and SiHa cells were
used to test the ResNet. The labels were validated through manual
inspection of both the nozzle images and fluorescence imaging of the
substrate. The normalized percentage by class is indicated, with the
count displayed below in the parenthesis. b) Histogram of the number
of droplets deposited into each single cell containing well from the
ResNet test print.

Lab on a ChipPaper

Pu
bl

is
he

d 
on

 0
8 

au
gu

st
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

7.
02

.2
02

6 
21

:5
8:

25
. 

View Article Online

https://doi.org/10.1039/d5lc00514k


Lab Chip, 2025, 25, 4972–4985 | 4981This journal is © The Royal Society of Chemistry 2025

instrument to take 188.75 seconds, achieving a single cell
throughput of 0.46 seconds per cell.

The experiment was repeated using the trained ResNet
dispensing SiHa cells in an expanded grid of 31 × 61 wells
(1924 wells total) simulating a full-scale DLP+ print run using
the same concentration and timeout conditions. Manual
inspection confirmed 1370 wells with isolated single cells,
corresponding to a 71.2% single-cell occupancy. From this
test print, the weighted F1 score was 0.986, and the grid was
printed in 11 minutes and 43.65 seconds, resulting in a
benchmarked throughput of 0.52 seconds per single cell,
although general performance may vary depending on
experimental conditions.

The CNN demonstrated a slightly higher single cell
throughput compared to the ResNet due to the faster
inference time per image associated with smaller model size
(comparison of model metrics provided in Table S1).
However, its lower accuracy limited the achievable single
cell yield per chip. A limitation of the trained CNN was its
tendency to misclassify class 0 empty droplets as class 1 or
class 2 events containing cells. This increased the number
of erroneously empty wells within the printed area and
reduced overall single cell per well yield. The ResNet
demonstrated high accuracy in distinguishing between
empty droplets and cell dispensing events, leading to fewer
empty wells due to misclassifications which resulted in
higher overall single cell occupancy. This improvement is
critical for enhancing the efficiency of single cell isolation
in large-scale experiments.

While the confusion matrices in Fig. 8 capture the
accuracy of individual droplet dispensing events, we next
evaluated the performance for well occupancy. For
example, an individual well with a correct class prediction
for the final droplet (e.g. class 1) could still contain more
than one cell if a previous droplet deposited in the same
well was a class 1 event misclassified as class 0. Of all
the wells which the neural network labeled as belonging
to class 1, 1345 out of 1538 wells (87.4%) contain a
genuine single cell, as verified via nozzle and fluorescence
microscopy images with an overall accuracy of 98.7%
across all classified events. Of the 1538 wells, 142 wells
were empty but were erroneously classified as class 1
(9.3%). Finally, 51 wells contained multiple cells (3.33%).
For single cell sequencing applications, empty wells do
not significantly negatively impact downstream results, as
they do not produce a signal. The contamination of
multiple cells makes up only 3.3% of the total identified
single-cell containing wells. This may obviate the need for
manual inspection and verification of the single cell purity
of the wells selected for library construction, a time-
consuming step in the current DLP+ workflow. We note a
major advantage of inkjet dispensing systems is the ability
to log comprehensive metadata, allowing for retrospective
review to verify the single cell purity of the sample,
should, for example, an unusual or unexpected cell
population be identified in downstream informatic

analysis. The number of droplets dispensed into each
single cell containing well from the ResNet test print was
counted and plotted in the histogram in Fig. 8b. With a
timeout condition of 20 droplets, the distribution has a
weighted mean of 6.29 droplets before a single cell was
dispensed.

Methods
DLP+ single cell whole genome sequencing experiments

The cell suspension was stained with carboxyfluorescein
succinimidyl ester (CSFE) fluorescent dye, as previously
described,16 and dispensed into individual wells of a
SmartChip™ nanowell array (Takara). The cell suspension
fluid was allowed to evaporate and the chip imaged to
validate the content of each well. Imaging was performed
on a Nikon Eclipse Ti inverted microscope with the chip
flipped over on the stage. A 10× extra-long working
objective lens was focused on the bottom of the nanowell
and each well was imaged under epifluorescence. Selected
target wells are processed for downstream sequencing
library construction.

A head-to-head experiment compared cell dispensing
using the new Isolatrix instrument with the current
implementation of the DLP+ workflow, which uses the
CellenONE platform, to assess compatibility and evaluate
the impacts of the variable volume dispensing algorithm.
The experiment was conducted on a single nanowell chip
segmented into three regions. A region was designated for
gDNA positive controls, a region for conducting current
DLP+ workflow with CellenONE dispensing, and a region
dispensed into using the Isolatrix. This region was further
subdivided into two regions testing two different timeout
conditions of a maximum of 5 and 10 droplets, to
evaluate the trade-offs between single cell yield and
background contamination. The number of wells for each
cell dispensing region were selected with the aim of
capturing an approximately equal number of single cells
per condition. The experiment used a cell suspension
from the 184-hTERT normal immortalized human breast
epithelial cell line, with a measured average cell diameter
of 16.4 μm and an input cell concentration of 400 000
cells per mL. Within the chip's cell dispensing area,
periodic wells were skipped (pitch spacing = 8 wells) to
allow for no template control (NTC) wells to assess
contamination within the reagents. A subset of non-cell
wells which reached the timeout conditions were randomly
selected and libraries constructed for no cell control
(NCC) wells to assess the background DNA contamination
level. A gDNA solution was dispensed using the
instrument in a checkerboard pattern at the bottom
segment of the chip in order to assess any cross-
contamination of the dispensed droplets between wells.

Reagent dispensing for the DLP+ protocol was performed
at Canada's Michael Smith Genome Sciences Centre (GSC)
using a sciFLEXARRAYER S3 instrument, as previously
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described.16 Libraries were sequenced on an Illumina
NovaSeq 6000 with paired-end 150 bp reads.

Bioinformatic analysis

Demultiplexed paired FASTQ files were obtained for each well
from the sequencing core at Canada's Michael Smith
Genome Sciences Centre. For each FASTQ pair, DNA reads
were processed using FASTP (v0.23.4)69 to trim adapters and
poly-G artefacts. The resulting trimmed reads were aligned to
human reference genome (hg38) using Minimap2 (v2.26)66

with the short-read preset parameter (−x sr). The total
number of mapped reads per well was quantified using the
Samtools (v1.19)70 flagstat command, and coverage depth
was measured with Picard CollectWgsMetrics (v2.27.5).71

Copy number profiles and quality metrics for each cell were
generated using HMMcopy (v0.0.80)67 as previously
described.16 Cells were classified as high quality if the copy
number quality score was greater than 0.75 and the total
number of mapped reads exceeded 250 000. Figures were
generated using tidyverse (v2.0.0)72 and ggplot2 (v3.4.4), and
statistical significance was calculated using ggpubr (v0.6.0).73

A link to the full analysis pipeline can be found in the Code
availability section.

Mouse husbandry

All mice used in this study were maintained in accordance
with the University of British Columbia's Animal Care
Committee's standards under specific pathogen-free
conditions. Up to four mice were housed per cage and were
maintained on a regular chow diet and water ad libitum on a
12 hour light–dark cycle. Adult mice used for dissociation
experiments were B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)
Hze/J (Strain #: 00799, The Jackson Laboratory). All mice were
viable and fertile with normal phenotype. All animal
procedures were performed in accordance with and approved
by the University of British Columbia's Animal Care
Committee's standards (Research Ethics Board Certificate
numbers: A24-0215, A24-0204, A20-021, A20-022).

Primary mouse liver sample preparation

An adult mouse liver was dissected, washed in cold PBS and
divided into pieces (UBC Research Ethics Board Certificate:
A24-0215, A24-0204, A20-021, A20-022). Tissue was
enzymatically digested with Liberase (Millipore-Sigma) at 37
°C shaking 2000 rpm for 30 minutes, followed by dissociation
using the gentleMACS Dissociator (Miltenyi Biotec). The
disaggregated sample was passed through a 70 μm strainer
and enriched for hepatocytes by slow centrifugation at 50 g
for 4 min at 4 °C followed by a density gradient using a 25%
Percoll (Sigma-Aldrich) solution and centrifugation at 1250g
for 20 min at 4 °C. Cells were resuspended and red blood cell
lysis performed using ammonium chloride (Stemcell). Cells
were washed three times and then stained with CFSE
(ThermoFisher) before dispensing.

Single cell dispensing validation experiment using glass
slides

The flexure spring on the substrate holder was adapted to
hold a standard 3″ × 1″ × 1 mm microscope slide. A grid of
20 × 72 targets was dispensed at the same pitch spacing of
the nanowell chip. A CSFE stained HEK cell line sample was
prepared and dispensed under normal conditions. The PBS
suspension medium left salt outlines of the dispensed
droplets, enabling clear localization of each droplet under
brightfield microscopy (Nikon Eclipse Ti-E). At a timeout of a
maximum of 20 consecutive droplets, the outline of each
dispensed position did not overlap, maintaining the distinct
feature of each printed target on the glass slide. The slide
was imaged under fluorescence imaging (488 nm excitation,
530 nm emission) to identify any cells within the droplet and
brightfield imaging to resolve the outline of each dispensed
target. The images were composited together and compared
with the predictions of the instrument.

Discussion

The Isolatrix is a new single cell inkjet dispensing instrument
that enables rapid, high-throughput cell isolation under real-
time monitoring. Compared to existing instruments, the
dispensing algorithm results in 9.69× faster isolation times
with consistent dispensing at less than one second per cell.
The trained neural network minimizes labelling errors such
as doublets and ensures high confidence in isolated sample
purity. As such, the reactive printing algorithm enhances
throughput and scalability by improving capture efficiency.
Throughput can be further improved upon by replacing the
current motorized stage with a faster alternative, such as with
an air-bearing system. Notably, parameters such as droplet
frequency and image analysis times are a function of the
instrument's computational performance and can also
benefit from hardware improvements. Direct visual
confirmation via captured nozzle images enhances precision
over emulsion-based microfluidic systems while maintaining
compatibility with a broad range of cell types and sample
plates. The incorporation of information from the captured
nozzle and microscopy images of each cell, post-isolation,
offers robust validation that spotted cells are indeed
singleton. This combination enables the analysis of
thousands of cells per experiment, providing a scalable and
information-driven approach to single cell workflows.

Compared to current emulsion-based platforms where a
lack of capacity for sequential reagent addition limits
available protocols, Isolatrix dispensing into open nanowells
is compatible with a variety of single cell omics protocols.
The dispensing algorithm, speed, and compatibility with
sequencing library chemistry was first validated with a single
cell whole genome sequencing experiment performed in
nanowell chips. Further testing using a dissociated primary
mouse liver sample demonstrated the compatibility of the
low shear stress environment within the inkjet printhead in
maintaining the integrity of the fragile sample. Future work
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can focus on optimizing the tissue dissociation to reduce
debris or expansion of the neural network's detection
capabilities to differentiate debris from cells. This experiment
also validated the use of a higher droplet timeout condition
to improve single cell capture efficiency. We note that given
the stability of DNA, the DLP+ protocol permits complete
evaporation of the deposited cell suspension fluid prior to
sequencing library preparation. The instrument is compatible
with humidity control to prevent evaporation and future
implementation of protocols that target less stable
biomolecules (e.g. RNA) can take advantage this. The system's
performance was tuned, identifying parameters such as the
input cell concentration and timeout conditions which can
improve throughput and single cell occupancy. The neural
networks demonstrated robust generalization across different
cell types. The neural network's output correlated well with
the dispensed outcome as validated by fluorescent imaging,
and the integrated IUI and dispensing summary facilitates
data traceability and provides high confidence in the single
cell purity of the dispensed samples.

Conclusions

The Isolatrix is an inkjet-based single cell dispensing
instrument that uses machine vision feedback and neural
network classification for rapid and accurate cell isolation.
This allows for high-throughput experiments with high
single-cell confidence as validated using the DLP+ whole
genome sequencing workflow. The open-well format opens
the door for future support for scaled implementation of a
range of single cell transcriptomics, epigenomics, and
proteomics workflows, where the precise isolation and rapid
processing of cells are critical for capturing transient signals.
The instrument's flexibility can further enable ease of
development for future multi-omics protocols, filling critical
knowledge gaps and driving new discoveries in the
transformative field of single cell biology.
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