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Despite significant advancements in three-dimensional (3D) cell culture technology and the acquisition of

extensive data, there is an ongoing need for more effective and dependable data analysis methods. These

concerns arise from the continued reliance on manual quantification techniques. In this study, we

introduce a microphysiological system (MPS) that seamlessly integrates 3D cell culture to acquire large-

scale imaging data and employs deep learning-based virtual staining for quantitative angiogenesis analysis.

We utilize a standardized microfluidic device to obtain comprehensive angiogenesis data. Introducing

Angio-Net, a novel solution that replaces conventional immunocytochemistry, we convert brightfield

images into label-free virtual fluorescence images through the fusion of SegNet and cGAN. Moreover, we

develop a tool capable of extracting morphological blood vessel features and automating their

measurement, facilitating precise quantitative analysis. This integrated system proves to be invaluable for

evaluating drug efficacy, including the assessment of anticancer drugs on targets such as the tumor

microenvironment. Additionally, its unique ability to enable live cell imaging without the need for cell

fixation promises to broaden the horizons of pharmaceutical and biological research. Our study pioneers a

powerful approach to high-throughput angiogenesis analysis, marking a significant advancement in MPS.

Introduction

Advances in three-dimensional (3D) cell culture models have
dramatically reshaped the landscape of in vitro research,
providing spatiotemporal data on the human body
microenvironment.1–5 Despite the wealth of data being
generated by researchers, persistent concerns regarding the
reliability and standardization of these datasets act as barriers
to their seamless adoption into real-world preclinical and
clinical applications.6–8

Traditionally, the acquisition of image data from 3D cell
culture models has been incorporated with labor-intensive
processes such as immunofluorescence staining and
subsequent microscopic imaging.9,10 This method not only
imposes economic burdens but also necessitates cell fixation,
imposing limitations on data collection. Moreover, the
inefficiency of staining in thick tissues mandates the use of
powerful lasers, introducing undesirable noise into the
imaging process.

In navigating these challenges, the advent of machine
learning techniques has spurred notable advancements in
image analysis. This paradigm shift ushers in fresh
opportunities to overcome the constraints inherent in
traditional methodologies, presenting a more seamless and
standardized approach to analyzing data derived from 3D cell
culture models. Notably, recent strides in deep neural
networks have found application in image enhancement for
immunocytochemistry research and medical imaging.
Techniques like convolutional neural networks (CNNs) and
generative adversarial networks (GANs) have been deployed
in diverse biomedical contexts,11,12 encompassing super-
resolution microscopy,13,14 tumor segmentation in magnetic
resonance (MR) images,15,16 and virtual histological
staining.2,17,18 Moreover, these techniques apply 3D cell
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culture organ chip and 3D organoid such as OrganoID19 (a
deep learning application for 3d organoid dynamics tracking
and analysis), detection and tracking organoid dynamics,20

and evaluation of cell morphology21,22 and cell–cell
interactions23,24 in MPS. Despite these strides, the broader
integration of deep learning technology in the realm of 3D
cell culture remains somewhat limited, partly due to the
challenges associated with obtaining a substantial volume of
high-quality images for effective training.25–28

In this research, we introduce Angio-Net, an innovative label-
free fluorescence image reconstruction technique employing a
segmentation architecture based on GANs. Using a large
collection of high-quality images obtained from an advanced
high-throughput microfluidic cell culture platform, we focus on
demonstrating the virtual staining of blood vessels—an organ
known for its complex structure in the human body. The
proficient machine learning architecture, powered by a
substantial dataset, skillfully converts brightfield images into
synthetic fluorescence representations, highlighting its potential
usefulness in various disease models and for evaluating the
effectiveness of drugs.

Results
Integration of microphysiological system-based data
acquisition with machine learning-based analysis

Conventional fluorescent staining process for 3D cell culture
models typically encompasses several steps, such as cell
fixation, membrane permeabilization, blocking, and fluorescent
antibody tagging. Moreover, wide-field fluorescent microscopy
faces limitations in detecting 3D tissue structures exceeding 100
mm in height. In contrast, our approach leverages a neural
network architecture and a virtual fluorescent staining process,
eliminating the need for conventional staining or confocal
microscopy. Specifically, our deep learning model is designed to
transform transmitted (brightfield) microscopy images into
fluorescent images, accomplishing this process in a matter of
milliseconds per image (as shown in Fig. 1A).

Typically, machine learning-based image analysis necessitates
hundreds of paired brightfield and fluorescence images, posing a
challenge for acquisition. To address this, we developed Angio-
Net, capable of achieving high-throughput experiments through
deep learning-based virtual staining of large-scale data obtained

Fig. 1 High-throughput screening workflow utilizing deep learning-based virtual fluorescence staining. (A) Comparison of the Angio-Net based
high-throughput experimental approaches with conventional assays. (B) Generation of large-scale image data using a standardized 3D cell culture
platform, the “Angio-Chip” (>1036 pairs of brightfield and fluorescence images). (C) Data processing involving virtual staining of brightfield images
through a deep learning architecture, namely “Angio-Net”. (D) Automated 3D morphology analysis utilizing pattern recognition algorithms (scale
bar = 200 μm).
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from an injection-molded 3D cell culture platform (Angio-Chip).
This single standardized microfluidic chip can accommodate up
to 28 samples, offering the potential for expanded experimental
capacity. Fig. 1B illustrates the internal structure of each well,
comprising three microchannels: the center channel, lower
channel, and upper channel. Briefly, we begin by injecting
acellular fibrinogen solution into the central channel along with
thrombin to initiate polymerization. Subsequently, in the upper
channel, we introduce lung fibroblast, which secretes
angiogenesis-inducing factors, and combine it with the fibrin
polymer within the central channel. Finally, endothelial cells are
introduced into the lower channel to encourage their adhesion to
the fibrin polymer wall within the central channel. In conjunction
with this configuration, the generation of hydrostatic pressure
due to the volume difference in culture medium propels
endothelial proliferation and migration, ultimately resulting in
the observation of angiogenic sprouts (for more details, refer to
the Materials and methods section).

We obtained angiogenesis image data from the Angio-Chip
using confocal microscopy, resulting in 1036 paired, Z-stacked
images (brightfield and fluorescent), each measuring 512 × 512
pixels. A single unit captures three images, which are stitched
together to form a continuous image, resized to 1024 × 384
pixels for effective machine learning processing. The dataset
was divided into training and test sets, encompassing 828 and
208 pairs, respectively.

Establishment in neural network architecture for image
conversion

An encoder–decoder network represents a neural network
architecture characterized by the symmetrical connection of
an encoder and a decoder (Fig. 2). In this architecture, the
encoder is tasked with encoding the input into a specific
state, while the decoder generates the output based on this
state. Encoder–decoder networks find extensive utility in
image conversion tasks, where the input image is
transformed into another image sharing the same
fundamental structure. Typically, the encoder comprises
multiple convolutional layers, mirroring the structure of the
encoder. As the input image traverses the encoder's
successive layers, it undergoes downsampling, which is later
reversed during the decoding phase.

In many image conversion scenarios, the input and output
images share significant commonalities, necessitating the
transmission of this shared information to the output layer
via shortcuts in the network architecture. To achieve this,
network designs that incorporate skip connections into the
encoder–decoder network are used. Notable examples include
U-Net and SegNet, both of which introduce skip connections
that enable the output layer to receive both global
information from the encoded state and local information
from the skipped connection. In the case of U-Net, the output

Fig. 2 SegNet architecture design for the implementation of Angio-Net. The generator adopts an encoder–decoder structure inspired by the
SegNet network, including three paths: a contracting path, expansive path, and skip connection path. The discriminator is equipped to learn a
generative model and an adversarial discriminative model, contributing to the optimization of the perceptual-level loss function.
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of a corresponding layer is relayed through the skip
connection, while SegNet transmits index information from
the max-pooling operation.

GANs are a neural network architecture grounded in
Minmax game theory. It operates by simultaneously
optimizing a generative model and an adversarial
discriminative model to refine perceptual-level loss functions.
GANs have found widespread application in medical image
processing, demonstrating effectiveness in tasks such as
image super-resolution reconstruction and brightfield
holography. Conditional GAN (cGAN) extends the capabilities
of the generative and discriminative models by incorporating
additional information into the GAN framework. The
objective function of cGAN can be expressed as follows:

LcGAN G;Dð Þ ¼  x;y logD x; yð Þ½ � þ  x;z log 1 −D x;G x; zð Þð Þð½ � (1)

In the equation, we have a pair consisting of an image to be
converted (x) and a corresponding target image (y), along
with a random vector (z). The objective function involves the
generative model G striving to minimize it, while the
adversarial discriminator D endeavors to maximize it.
Notably, cGAN takes a different approach compared to
directly comparing the conditioned image with the generated
one. In essence, instead of providing a predefined metric to
gauge the similarity between the generated and target
images, cGAN relies on the discriminator to create such
criteria. Conversely, in the pix2pix network, we incorporate a
loss function directly into the cGAN framework to quantify
difference between traditional images, such as L1-distance.
This approach is feasible when a target image is available,
resulting in the following objective function:

LL1 Gð Þ ¼  x;y;z ∥y −G x; zð Þ∥1½ � (2)

Our final objective is

G* ¼ arg min
G

max
D

LcGAN G;Dð Þ þ λLL1 Gð Þ (3)

Furthermore, the pix2pix network diverges from cGAN by
substituting the random vector z with the dropout layer and
implementing the PatchGAN technique within the
discriminator. Notably, PatchGAN is recognized for directing
the loss function's attention towards specific details rather
than the image's overall context, emphasizing high-frequency
regions. This aligns with the strategy of having the loss
function assess the global content of the image when
comparing the target and generated images, while the
discriminator zeroes in on particular image details.

Assessing loss functions in generating virtual stained images
from complex vascular networks

The loss function primarily consists of GAN loss (LcGAN),
indicating the discriminator's loss, and image loss (Limage),
which measures the disparity between the target and
generated images. The selection of loss function plays a
crucial role in neural network design. Traditional L2-norm,
widely used, tends to produce blurry images. Pix2pix, opting

for the L1 loss function, demonstrated sharper image
outcomes compared to L2. Besides L1 and L2, metrics
addressing perceptional image quality exist, such as
structural similarity index (SSIM) and multiscale structural
similarity index (MS-SSIM). SSIM gauges perceived image
quality by assessing structural changes rather than absolute
error like mean squared error (MSE) or peak signal-to-noise
ratio (PSNR). As the human visual system excels at deriving
structural information, SSIM calculates structural
information, SSIM calculates structural differences by
averaging them over constant-sized windows in the images.
For windows x and y, SSIM is defined as follows: μx and μy
are average pixel values, σ2x and σ2y are pixel value variances,
σxy is covariance, and c1 and c2 are constants to prevent
division by zero errors.

SSIM x; yð Þ ¼
2μxμy þ c1

� �
2σxy þ c2
� �

μ2x þ μ2y þ c1
� �

σ2x þ σ2y þ c2
� � (4)

MS-SSIM, an extension of SSIM, incorporates a scale space
and calculates SSIM at multiple scales, obtaining the final
value through weighting. The loss function considered in our
study can be expressed as follows:

L = wGAN × LGAN + wL1 × LL1 + wL2 × LL2 + wSSIM × LSSIM

+ wMS‐SSIM × LMS‐SSIM (5)

We generated virtually stained images for two SegNet-only
conditions using L1 and L2 loss functions and four
conditions with MS-SSIM, SSIM, L1, L2 loss and GAN loss
added (Fig. 3). These images from Angio-Net are referred to
as “virtual immuno-staining images”. The graph below
illustrates the gradual decrease in loss for each condition as
epochs progress. Significant decline begins around epoch 50,
followed by a gradual decrease, with no significant further
reduction after epoch 150. Virtual immunostaining images
were generated using the weight values at this epoch from
the input image. Identifying these optimal conditions within
the branching and tortuous vascular networks we are
targeting holds the potential for a qualitative improvement in
our results.

Comparative analysis of vascular morphology in virtual
staining

We present the distinctions between the input image, the
ground truth (GT), and the virtual image under six loss
conditions (Fig. 4). The image highlights four key regions—
endpoint, network, branch, and tortuosity—revealing
significant differences. Endpoint signifies the termination
point of angiogenic sprouts (Fig. 4A), while network denotes
the intersection point of vascular networks (Fig. 4B). Branch
represents the line connecting two vessels (Fig. 4C), and
tortuosity (Fig. 4D) is the primary part of the vascular
networks.
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In certain instances, the number of endpoints in the
virtual fluorescent images may appear less distinct than in
the input image. This discrepancy arises because the
endpoints in the input image are typically thinner than the
main vessel. As endpoints traverse the network, information
on their numbers diminishes, causing a deviation from the
GT image, as indicated by the white arrow in Fig. 4A.

Despite these challenges, the virtual image successfully
reproduces the morphology of blood vessels (Fig. 4B and C).
While the virtual blood vessel is accurately rendered when the
input image vessel is thick, details are lost when the vessel in
the input is thin. Minimal error is observed in the main vessel,
with only the minute vessel detail being lost, insignificantly
affecting quantitative analysis. However, the area disappears
entirely due to the neural network's struggle to learn adequately
from the input image's brightness, resulting in a lower overall
area value compared to the actual area (Fig. 4D).

Comparing virtual immunostaining images to GT images,
macroscopic morphology remains similar, but discrepancies
emerge at the local scale. Conditions 1 to 6 display virtual
immunostaining images with varying levels of detail.
Condition 1 and 2 present a general vascular morphology,
but the vessel outlines and interiors appear blurred, with
faint luminance discoloration. Background and endpoint
details remain hazy, making clear distinction challenging.
Condition 3 and 4 feature a brighter interior and a slightly
more defined outline than condition 1 and 2, but endpoint
blurring persists.

Condition 5 and 6, however, closely resemble the GT,
exhibiting a distinct outline and a bright interior. Endpoints

exhibit a well-defined morphology and are easily countable.
Among the conditions, Condition 5 represents the optimal
choice for loss, demonstrating vessel morphology nearly
identical to the GT.

Developing an automated angiogenesis analysis algorithm
based on virtual staining

Conventional 3D cell culture models offer detailed structural
insights. However, challenges arise with thicker tissue
samples, impacting staining efficiency. To overcome this
limitation, high-powered lasers are often employed, but this
can introduce noise, making it challenging to achieve noise-
free results. That is where Angio-Net comes in as a solution.
It allows for the visual refinement of objects through virtual
staining, beginning with a refined brightfield image. In this
study, 208 test images underwent processing, and a
quantification algorithm was applied to determine the results
(Fig. 5A). These results were then normalized against GT
values. Fig. 5B to D illustrate the normalized distribution of
virtual immunostaining images for each loss condition. The
X-axis represents loss conditions (L1, L2, L1 + GAN, L2 +
GAN, SSIM + GAN, and MS-SSIM + GAN), while the Y-axis
represents normalized values, with 1.0 being the GT
standard. The average area values for each condition ranges
from 0.74 to 0.95, with values for all conditions ranging from
0.60 to 1.20 (Fig. 5B). Differences in area levels are attributed
to variations in brightness between the internal area of the
vessel and the GT (Fig. 4). The range of length values is from
0.65 to 1.18, with a mean ranging from 0.77 to 1.00 (Fig. 5C).

Fig. 3 Comparative analysis of virtual immunostaining images generated using diverse loss functions. (A) The table showing the network and the
applied loss function. (B) Graphs depicting the outcomes of training the generator with different loss functions, ranging from L1 and L2 loss
exclusively to a combination of L1, L2, SSIM, and MS SSIM loss, and GAN loss. The values of the loss functions were plotted across each epoch,
reaching up to 300 epochs.
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Notably, the variation in endpoint values exceeds that of the
other two parameters.

To accurately assess the quantitative trends in virtual
staining images, a novel reference point—the endpoint
sprout distribution—was introduced. This metric served to
quantify the actual degree of blood vessel growth, exhibiting
relatively consistent values even with variations in the
number of endpoints. The endpoint sprout distribution was
classified into three cases—A, B, and C—based on sprout
length and area size (Fig. 5D).

Case A, with an average endpoint sprout value of 318.55
for the GT, had the highest among the three cases. When
normalized to GT, the average values for the six conditions
ranged from 88.44 to 94.01%. Case B, with an average GT of
269.92, displayed a distribution across six conditions ranging
from 95.21 to 101.48% when normalized to GT. Case C, with
the lowest average endpoint sprout value of 188.44 for GT,
exhibited a distribution across six conditions ranging from
94.10 to 110.23%. All images of cases A, B, and C with GT
and under six conditions are presented in Fig. S2.† The

Fig. 4 Detailed comparison of input, ground truth, and virtual immunostaining images under varied loss conditions. The figure displays magnified
images contrasting four distinct vessel network structures – endpoint (A), network (B), branch (C), and tortuosity (D) – using different loss functions
(1: L1 loss, 2: L2 loss, 3: L1 loss + GAN, 4: L2 loss + GAN, 5: SSIM + GAN, 6: MSSSIM + GAN). The scale bar represents 200 μm.
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results of the endpoint sprout inclination serve as a metric
for comparing GT with other conditions, providing a
quantified average sprout distribution value across the entire
test set.

Quantitative evaluation of loss functions in virtual staining

The accuracy of loss functions was assessed through image
quality metrics, employing L2 loss for each test set pair and
comprehensive quantification data encompassing area,
length, and endpoint distribution. MSE was adopted as the

image quality evaluation metric, reflecting the difference
between virtual images and GT images (Fig. 6A). The average
MSE value was 0.049, 0.048, 0.053, 0.050, 0.052, and 0.072
across condition 1 to 6, with conditions 1 to 5 exhibiting
similar MSE values between 0.048 to 0.052.

Analyzing the average quantification data for area, length,
and number, revealed that condition 5 demonstrated the
highest accuracy. It achieved normalized values of 0.887,
0.903, and 1.015 for area, length, and number, respectively,
closely approximating the GT value of 1.000. In contrast,
condition 1 recorded values of 0.863, 0.822, and 0.945, while

Fig. 5 Assessment of the predicted model. (A) Illustration of the angiogenesis quantification algorithm process for high-throughput analysis. Box
and whisker plots depicting vessel area (B), angiogenesis length (C), and endpoint sprout distribution (D) for 208 test datasets are shown under
each condition. GT represents the ground truth, and the conditions include: 1: L1 loss, 2: L2 loss, 3: L1 loss + GAN, 4: L2 loss + GAN, 5: SSIM +
GAN, 6: MSSSIM + GAN.

Fig. 6 Assessment of virtual staining performance using deep learning. (A) Box and whisker plot depicting the mean square error between ground
truth images and virtual immunostaining images for image quality measurement. (B) Normalized quantification scores for three key features under
six conditions: (1) L1 loss, (2) L2 loss, (3) L1 loss + GAN, (4) L2 loss + GAN, (5) SSIM + GAN, and (6) MSSSIM + GAN.
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condition 2 exhibited values of 0.951, 0.867, and 0.959.
Condition 3 reported values of 0.748, 0.774, and 0.975;
condition 4 showed values of 0.872, 0.862, and 0.951; and
condition 6 presented values of 0.816, 1.002, and 0.974.
Generally, these values were lower compared to condition 5,
signifying lower accuracy. Condition 5 emerged as the most
accurate among the six conditions for area, length, and
number measurements, boasting the highest values across all
three components. Conversely, the other conditions generally
exhibited lower values, indicating diminished accuracy.

Application of Angio-Net to evaluate anti-angiogenic drug
efficacy

To expeditiously and accurately assess drug efficacy, we
conducted an evaluation of angiogenesis inhibitors using the
pre-trained Angio-Net system. Clinical-grade anti-angiogenic
drugs, namely sunitinib (VEGF inhibitor) and bevacizumab
(anti-VEGF monoclonal antibody), were administered to the
Angio-Chip. We have only trained Angio-Net with vessels that
had sprouted to 0.6 mm or larger. Our objective was to

Fig. 7 Application of Angio-Net in drug treatments. (A) Virtual staining representation for five conditions: control, sunitinib MI (moderate inhibitor,
0.1 μM), sunitinib SI (significant inhibitor 1.0 μM), bevacizumab MI (1 μM), and bevacizumab SI (10 μM), representing brightfield, ground truth
fluorescence (red image), and Angio-Net generated images (green image). (B) Comparative normalization of sunitinib and bevacizumab conditions
for vessel length, area, and tip parameters, including normalization data. Statistics performed by unpaired t-test with Welch's correction,
comparing each condition to control, *p < 0.05, **p < 0.01. (C) Image quality measurement shows mean square error graph between ground
truth images and virtual immunostaining images plotted by box & whiskers. The control, MI and SI conditions' virtual staining score are shown in
three main components.
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determine if we could accurately capture morphological
features, even in vessels inhibited to 50–70% compared to
drug negative controlled group by angiogenesis inhibiters,
and observe morphological changes. For efficient evaluation
of the reconstructed images, we categorized the drug-treated
experimental groups into 1) the control group, 2) the
moderate inhibition group (50–65%), and 3) the significant
inhibition group (65–80%). Following reference guidelines,
we selected drug concentrations of 0.1 μM and 1 μM
(sunitinib) and 1 μM and 10 μM (bevacizumab) for ‘moderate
inhibition group (MI)’ and ‘significant inhibition group (SI)’
and 0.1% DMSO for negative control group.

A series of images displays brightfield, actual immunostained
fluorescent, and virtually stained angiogenesis images from
Angio-Net. While there is a remarkable resemblance in vascular
patterns between the control and drug-treated groups, closer
inspection reveals occasional undetected small vessels and false-
positive features (Fig. 7A). A detailed evaluation of virtually
stained images for each condition reveals significant differences
compared to the control group, demonstrating Angio-Net's
effectiveness in assessing anti-angiogenic drug effects on
angiogenic sprouting with sunitinib and bevacizumab (Fig. 7B).
In the quantification under sunitinib conditions, length values of
approximately 0.75 and 0.55 relative to the control were observed,
while the area had values of 0.74 and 0.65. Finally, the endpoint
was found to have values of 0.78 and 0.65. It is evident that as
the drug concentration increased, the quantitative values of
angiogenesis consistently decreased. Similarly, in the
quantification under bevacizumab conditions, length values of
approximately 0.66 and 0.59 relative to the control were observed,
while the area had values of 0.72 and 0.67. Finally, the endpoint
was found to have values of 0.66 and 0.65. It is quantitatively
confirmed that as the drug concentration increased, the
quantitative values of angiogenesis consistently decreased or
reached saturation. Therefore, when observing the differences in
values according to the drug concentrations, we conclude that we
have appropriately selected the experimental group originally
intended to exhibit inhibition in the range of approximately 50%
to 80%.

We virtually stained these inhibited vessels using Angio-
Net and evaluated the mean squared error (MSE) and scores
in the virtual staining (Fig. 7C). The left graph represents the
results of calculating the MSE between virtual stained images
and immunostained images, while the right graph displays
the vessel feature values (length, endpoint, area) as ratios of
virtual stained/immunostained values. Despite no further
network training and the use of pre-trained weights for image
transformation, it is evident that the MSE remains nearly
identical across the control group, MI group, and SI Group.
Additionally, in this Angio-Net scoring graph, while most
values are slightly higher than 1 (ranging from 1.05 to 1.17),
it demonstrates that there is no significant difference in
scores between the control group and the inhibited group.
Particularly noteworthy is the angiogenic length, which is
found to be predictably accurate across all groups within 5%
error rates.

In our comprehensive analysis, we extended the scope of
our study to encompass a broader range of drug
concentrations, thereby enabling a detailed investigation of
the resultant morphological variations in angiogenesis
images. This expanded analysis is illustrated in Fig. S3,†
where we applied virtual staining techniques to brightfield
images of blood vessels treated with sunitinib (at
concentrations of 10 and 100 μM), wortmannin (50 μM), and
Paclitaxel (50 μM). When comparing the GT images to the
virtually stained images under high concentration conditions,
such as those treated with high dose of sunitinib, the virtual
stained images that were highly like the GT. Furthermore,
even in more extreme scenarios where vascular structures
were extensively disrupted by treatments like wortmannin
and paclitaxel, virtual stained images were like the GT images
(Fig. S3†). We anticipate improved accuracy with a extensive
dataset encompassing images from various drug treatment
groups.

Discussion

Advances in organoid and MPS have shown promise in
shedding light on uncharted territory. While a wealth of
information is being generated by researchers, issues such as
reliability and standardization of this data still leave doubts
over its adoption in clinical and preclinical domains.6 The
data analysis process that 3D cell culture models undergo is
prone to errors due to various factors that affect the image
generation and analysis process. To address this issue,
machine learning techniques are being applied to perform
morphological analysis of cells or organoids with relatively
simple structures.29 In this study, we successfully performed
machine learning-based morphological analysis of complex
blood vessels with tortuous and side branches using Angio-
Chip, which develops robust and reproducible angiogenesis
models, to generate large-scale image data, and Angio-Net,
which trained on this data set. Through our image analysis,
we assessed biochemical changes at the tissue level upon
drug administration by analyzing vascular area, length, and
tip cell count as evaluation metrics. Notably, several anti-
angiogenic drugs including bevacizumab and sunitinib,
employ a mechanism of action centered on inhibiting VEGFR
activation, thereby disrupting endothelial cell proliferation,
migration, and network formation. To decipher these
intricate biochemical transformations, we evaluated cellular
proliferation based on vascular area, quantified cell
migration through tip cell count, and measured vascular
length to comprehensively assess network formation.30–32

When analyzed by conventional fluorescence microscopy,
thicker samples reduce staining efficiency and rely on more
intense lasers to achieve data acquisition, a process that
introduces unnecessary noise and makes it difficult to
acquire data in the desired area. Also, as shown in Fig. S4,†
brightfield images itself pose challenges, featuring
extraneous features such as shadows, channel traces, and
migrated lung fibroblasts intermingled with blood vessels.
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The intricacies of distinguishing between vessels and
artifacts underscore the necessity for a sophisticated
discrimination method, emphasizing the pivotal role of
advanced AI assistance. Virtual staining is a technique that
can free us from these problems. By eliminating the need for
immunocytochemistry, which requires several steps including
cell fixation, samples can be preserved and examination time
can be reduced. In addition, real-time analysis can potentially
be performed by coloring the object as well as the brightfield.
This includes automated analysis algorithms that measure
the morphological characteristics of angiogenesis without
human intervention, leading to significant time savings and
error reduction by establishing standardized protocols.

Our study developed a high-throughput analysis process
that uses widely adopted removal, skeletonization, and
binarization techniques. The algorithm analyzes the number
of endpoints, length, and area of angiogenesis, which are
standard metrics for vascular morphology analysis. We
validated the algorithm's results with image generated by
deep learning. A deep learning architecture with six objective
functions generated 208 pairs of test images. Qualitative
evaluation showed that most images in the six conditions
retained their overall morphology and branching structure,
even though with some loss of detail compared to the GT
images. The models without GAN loss weighting showed
significant differences from the actual fluorescence images,
while the models with GAN loss weighting were
indistinguishable from the actual stained image, especially
for the SSIM and MS-SSIM loss models (Fig. 4).

Traditional manual counting methods and commonly
used angiogenesis assessment tools (e.g., AngioTool33,34) are
labor-intensive and subjective, requiring different parameters
for each image. In addition, these tools are also limited to
planar 2D blood vessels, making it difficult to evaluate 3D
blood vessel data. Angio-Net provides specialized analysis
tools for 3D blood vessels, from imaging to quantification.
The system's method can replace immunocytochemical
processes, allowing for non-destructive real-time imaging,
which is useful for high-throughput screening and creating
visible microenvironments. Additionally, non-destructive real-
time imaging enables end-users to continuously track the
growth of 3D vascular networks while collecting quantitative
data.

Angio-Net has demonstrated as an invaluable tool for
rapidly validating the efficacy of anti-angiogenic drugs.
However, when processing images with excessively high drug
concentrations, there is a risk of inducing a “ghosting”
effect,35 generating vessel-like contours that do not actually
present. Previous studies on a similar platform36–38 revealed
that sunitinib (0.1 μM and 1 μM) and bevacizumab (1 μM
and 10 μM) resulted in a 30–70% reduction in tip cells,
length, and area compared to control conditions. In Fig. 7C,
the analysis of actual fluorescent staining images aligns with
the anticipated 50% reduction. While the virtual staining
data in this experiment show slightly increased values (10–
15%) over immunostained data, it is crucial to note that the

network's weights were not trained on drug experiment data
but solely on normal blood vessels. The ghosting effect also
count for increased end point and vessel area in our drug test
experiments. This is attributed to the lack of diversity in the
training data, and we anticipate that it can be controlled by
further training with various drug-treated datasets. This
result serves as evidence of its potential when applied to
images of blood vessels under diverse conditions.

Recently, various research groups employing in vitro
platforms have embraced the integration of AI for visual
analysis and classification. However, the majority of these
studies have been constrained to relatively simple structures,
such as contour extraction of organoids or virtual staining
limited to single cell level.25,39 Notably, there has been a lack
of effective analytical tools for dissecting complex tissues,
such as vascular networks or tumor microenvironments,
using deep learning. Our contribution lies in pioneering the
training of complex vascular tissue obtained through
confocal microscopy. This work enables the transformation
of brightfield images into virtual stained images. We
implemented our network structure based on the well-
established pix2pix, a conditional Generative Adversarial
Network widely used and validated in conventional image
transformations. To achieve fine pixel-level accuracy, we
employed SegNet as the generator, aiming for an accessible
research approach. Through this study, we anticipate
opening a new avenue in the field of image transformation
and analysis within Microphysiological Systems (MPS) using
deep learning. This work lays the foundation for virtual
staining in diverse tissues, holding the potential to
contribute significantly to the advancement of MPS research.
Furthermore, we have developed an algorithm for extracting
quantitative morphological features from these transformed
images. While the virtual stained image may not provide
values as precise as the immunostained image, it serves as a
valuable tool for decision-making and evaluation before
immunostaining by presenting an image closely resembling
the real one.

Conclusions

This study aimed to advance high-throughput analysis by
introducing the innovative Angio-Net system. This system
enables the acquisition of large-scale bright-field images of
objects without requiring fluorescent staining. Leveraging
deep learning-based virtual staining, these images are
characterized, mimicking the process of traditional methods.
The algorithmic measurement tools are optimized for
automated morphological analysis, eliminating the need for
manual intervention. The feasibility and efficacy of this
approach have been successfully demonstrated, particularly
in its application to the intricate structure of 3D blood
vessels. The proposed model holds the potential to instill
reliability and standardization in data analysis across various
domains of cell culture research.
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Materials and methods
Design and fabrication of microfluidic devices

The Angio-Chip is designed with a well layout that aligns
with the standard 384-well plate, featuring a 4.5 mm pitch
between wells in the column and a 9 mm pitch in the row.
Utilizing a common slide glass size of 3″ by 1″, each Angio-
Chip accommodates 28 individual wells for cell culture. The
chip's compatibility with automated machinery and
microscopes facilitates high-throughput angiogenesis
experiments. The well structure, as illustrated in Fig. 1C,
comprises three distinct channels. These include the central
channel, the lower channel, and the upper channel. The
angiogenic sprouting process primarily occurs within the
central channel, characterized by dimensions of 3 mm in
width, 1 mm in length, and a depth of 100 μm. The Angio-
Chip was produced using injection molding technique,
specifically with polystyrene (PS) injection molding (R&D
Factory, Korea). The aluminum alloy mold core underwent
machining, which included processing and polishing. During
the injection process, a clamping force of 130 tons was
applied, with a maximum injection pressure of 55 bar, a cycle
time of 15 s, and a nozzle temperature of 220 °C. The device
was assembled by securely attaching a film substrate to the
injection molded PS microfluidic body. The design of the
alloy mold core was created using Solidworks software
(Dassault System).

Cell preparation

Human umbilical vein endothelial cells (HUVECs; Lonza,
Switzerland) were cultured in endothelial growth medium 2
(EGM-2; Lonza) at passage numbers 4 to 5 for the
experiments. Lung fibroblasts (LFs; Lonza) were cultured in
fibroblast growth medium 2 (FGM-2; Lonza) at passage
numbers 5 to 6 for the experiments. Cells were incubated at
37 °C with 5.0% CO2 for 2–3 days before seeding onto the
Angio-Chip. Prior to seeding, HUVECs and LFs were detached
from the culture dish using 0.25% trypsin–EDTA (HyClone,
USA). The cells were subsequently re-suspended in bovine
fibrinogen solutions at the concentrations tailored to each
experimental model.

Hydrogel and cell seeding

Prior to cell seeding, each device underwent a plasma surface
treatment at 70 W for three minutes to promote surface
hydrophilicity (Femto Science, Korea). In the central channel,
1 μl of acellular bovine fibrinogen solution (Sigma, USA) with
a concentration of 2.5 mg ml−1 was introduced. The upper
channel was filled with 3 μl of fibrinogen embedded with LFs
at a cell concentration of 6.0 million cells per ml. The
fibrinogen hydrogel in the central and upper channel was
mixed with a 2.0% of bovine thrombin solution (0.5 U ml−1,
Sigma) and allowed to undergo polymerization. Subsequently,
after hydrogel polymerization, the lower channel was seeded
with 3 μl of HUVECs diluted in the culture medium to a

concentration of 3.0 million cells per ml. The devices,
following cell seeding, were tilted until HUVECs were
completely adhered to the central acellular fibrin hydrogel
interface. Each media reservoir was filled with 100 μl of the
growth medium after 15 minutes, and the growth medium
was changed daily. To induce shear stress and interstitial
flow, all medium from the lower reservoir was removed, and
100 μl of medium was added solely into the upper reservoir.40

In the angiogenesis inhibitor treatment experiments, we
treated sunitinib at concentrations of 1 μM and 0.1 μM, and
bevacizumab at 10 μM and 1 μM in 0.1% dimethyl sulfoxide
(DMSO) solution respectively. All treatments were conducted
on culture day 3, followed by fixation and staining on day 5.

Immunocytochemistry

The samples within the device were fixed with 4.0% (w/v)
paraformaldehyde (Biosesang, Korea) in PBS (Gibco, USA) for
15 minutes, followed by permeabilization through immersion
in 0.15% Triton X-100 (Sigma) for 20 minutes. Subsequently,
the samples were treated with 3.0% BSA (Sigma) for a hour.
To achieve endothelial cell-specific staining, 488 fluorescein-
labeled Ulex Europaeus agglutinin I (Vector, UK) was utilized,
prepared at a 1 : 500 ratio of dye in BSA and incubated for 12
hours at 4.0 °C.

Imaging and data acquisition

Imaging was conducted with a confocal microscope (Nikon
Ti-2, Japan) to capture both slice and Z-stackable images of
angiogenesis, enabling the creation of paired brightfield and
fluorescent images. For efficient data management and high-
speed acquisition in a well-plate format, high-throughput
imaging software (Nikon High Content NIS-Elements
Package, Japan) was used. Subsequently, the confocal images
were analyzed using Fiji (https://www.fiji.sc), an open-access
software. The confocal 3D images were converted to 2D
images through Z-projection and then cropped to a defined
region of interest.

Image preprocessing and quantification algorithm

To enhance data quantification accuracy, preprocessing of
fluorescence angiogenesis images was necessary due to
inherent noise caused by variation in brightness, contrast
difference, and tiny particles. Fig. S1† depicts the complete
image quantification process. The initial step involved noise
reduction through image blurring, including methods such
as averaging filtering, median filtering, and Gaussian
filtering. Specifically, Gaussian filtering, implemented using
the Python OpenCV library, was chosen as it effectively
preserved the blood vessel contours' values, essential for
maintaining the original blood vessel shape. Gaussian
filtering primarily aimed to improve value uniformity in
fluorescent angiogenesis images, which exhibited non-
uniform values. Subsequently, an appropriate binary
threshold was applied to isolate the actual vessel area,
compensating value spread from blurring and removing low
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fluorescence noise. Even after Gaussian filtering and binary
thresholding, the angiogenesis images still contained
multiple black and white blobs due to value non-uniformity
within the angiogenesis area and external factors.

To address this, the OpenCV algorithm, with the Find-
contour library, was utilized to remove small islands or
particle blobs below a specified area threshold. Furthermore,
a skeletonization algorithm was applied to extract a 1 pixel-
wide skeleton from the binary blood vessel image.41 This
angiogenesis skeleton image facilitated the determination of
the total number of vessels and angiogenesis endpoints. To
ensure accurate endpoint counting, our algorithm calculated
the average distances of points from the baseline in the top
20% of endpoints, setting 50% of this average as the
reference point for prioritizing the endpoints that higher
growth rates. This analytical algorithm enabled the
automated quantification of various parameter trends in
angiogenesis images. The resulting quantified data were
plotted using PRISM (GraphPad Prism 9).

Angio-Net network architecture

In Angio-Net, we utilize a network structure based on the
pix2pix model to transform unstained images into their
stained counterparts. Our network is configured with a
SegNet architecture instead of U-Net. Both SegNet and U-Net
share a common encoder–decoder structure comprising three
distinct paths: (i) the first path, known as the contracting
path, involves a series of convolutional layers and max-
pooling layers. It serves the purpose of capturing the overall
context information of the image while progressively
reducing its size through downsampling; (ii) the second path
is the expansion path, which mirrors the structure of the
contracting path. It aims to up-sample the previously down-
sampled image back to its original dimensions while
traversing through the contracting path; (iii) the third path,
known as the skip connection path and indicated by the red
arrows connecting the contracting and expansive paths,
facilitates the transfer of information from corresponding
layers in the contracting path to the corresponding layer in
the expansive path. This one-to-one correspondence between
the layers ensures that local information is retained when
performing upsampling.42,43

The primary difference between U-Net and SegNet lies in
the information conveyed through the connection path. In U-
Net, the output of the corresponding layer in the
downsampling path is combined with the output of the
previous layer in the upsampling path through the
connection path.43 In contrast, SegNet transfers the index
information from the max-pooling operation performed in
the corresponding layer of the downsampling path to the
corresponding layer in the upsampling path. The upsampling
in the expansive path is accomplished by inversely applying
the index information.

We made minimal modifications to input and output layer
sizes to accommodate our data. Furthermore, we leveraged the

encoder layers of SegNet, which are consistent with the well-
known VGG16 network, and performed transfer learning by
applying the pre-trained weights from the VGG16 network.44 To
serve as the activation function for the final layer, we employed
the hyperbolic tangent function (tanh). To enhance the
discriminator's capabilities, we implemented the PatchedGAN
technique. PatchedGAN involves dividing the image into smaller
patches, evaluating the authenticity of each patch, and
subsequently averaging the discriminant values.45
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