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e mass spectrometry and
lipidomics to uncover specific membrane protein–
lipid interactions from natural lipid sources†

Yun Zhu,‡a Melanie T. Odenkirk, ‡b Pei Qiao,‡a Tianqi Zhang,a

Samantha Schrecke, a Ming Zhou, c Michael T. Marty, d Erin S. Baker *e

and Arthur Laganowsky *a

While it is known that lipids play an essential role in regulating membrane protein structure and function, it

remains challenging to identify specific protein–lipid interactions. Here, we present an innovative approach

that combines native mass spectrometry (MS) and lipidomics to identify lipids retained by membrane

proteins from natural lipid extracts. Our results reveal that the bacterial ammonia channel (AmtB)

enriches specific cardiolipin (CDL) and phosphatidylethanolamine (PE) from natural headgroup extracts.

When the two extracts are mixed, AmtB retains more species, wherein selectivity is tuned to bias

headgroup selection. Using a series of natural headgroup extracts, we show TRAAK, a two-pore domain

K+ channel (K2P), retains specific acyl chains that is independent of the headgroup. A brain polar lipid

extract was then combined with the K2Ps, TRAAK and TREK2, to understand lipid specificity. More than

a hundred lipids demonstrated affinity for each protein, and both channels were found to retain specific

fatty acids and lysophospholipids known to stimulate channel activity, even after several column washes.

Natural lipid extracts provide the unique opportunity to not only present natural lipid diversity to purified

membrane proteins but also identify lipids that may be important for membrane protein structure and

function.
Introduction

Structural and functional studies continue to unveil the crucial
roles lipids play in the folding, structure, and function of
membrane proteins.1–7 Several examples include cholesterol
having a critical role in promoting the function of the nicotinic
acetylcholine receptor from Torpedo;8–10 lactose permease
requiring phosphatidylethanolamine (PE) for proper topology
and function;4 the co-purication of KcsA, a pH-regulated
potassium channel from the Gram-positive bacterium Strepto-
myces lividans, with a lipid which was later identied to be
essential for potassium conductivity;11 and the requirement of
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for activating
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all inward rectifying potassium channels.12–16 While these
studies highlight the importance of lipids for membrane
protein structure, it is challenging to characterize specic
membrane protein–lipid interactions and identify lipids
important for protein function.

Native or non-denaturing mass spectrometry (MS) has
emerged as a powerful way of studying membrane protein–
ligand interactions by preserving intact, non-covalent
complexes for mass analysis.1,17–19 It is an indispensable
biophysical technique for investigating membrane proteins
and their interactions with other molecules, such as lipids.20

More specically, native MS over the past decade has revealed
that specic protein–lipid interactions can stabilize
membrane protein complexes,1,21,22 allosterically modulate
other interactions with proteins,23,24 lipids,25 and drugs,19,26–28

and identify lipids important for function,1,26–30 such as
revealing a new lipid binding site for the ATP-binding cassette
transporter MsbA.31 Another advantage of using native MS to
study protein–lipid interactions over other biophysical tech-
niques, such as BRET/FRET-based approaches,20 is that natu-
rally occurring lipids can be used directly instead of modied
forms, such as those conjugated to a uorophore. To date,
most native MS studies have been limited to synthetic lipids
due to the structural diversity of natural lipid extracts. Thus,
technological developments are warranted to provide insight
© 2023 The Author(s). Published by the Royal Society of Chemistry
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into lipids from natural sources that bind specically to
membrane proteins.

To date, many lipidomic studies can routinely evaluate
around ∼500–700 lipids with low false discovery rates. Lipid
extraction methods such as the Folch, or Folch-like tech-
niques,32 rely heavily on releasing lipids into organic solvents.
These methods are effective for monitoring the general
composition of the lipids but can omit information on protein–
lipid interactions. Recently, we illustrated that TRAAK–phos-
phatidylserine interactions can be modulated by Cu2+, which
would be overlooked if studied by lipid extracts alone.33 Another
approach to identifying essential lipids is to extract the
membrane protein along with its surrounding lipids, but the co-
puried lipids were shown to be dependent on the type of
detergent used in the extraction process.34 Styrene maleic-acid
lipid particles (SMALPs) have been used to determine the
lipid surrounding multiple proteins in different cell lines.35–37

However, one downside to copolymers is their low solubility in
the presence of divalent ions, which are essential for the activity
of many membrane proteins such as ABC transporters.38,39

However, it is important to note that these methods do not
directly report on lipid–protein interactions, making it difficult
to ascertain which lipids bind directly to the membrane
proteins.

In the past decade, comprehensive lipidomic measurements
have been incorporated into other omic evaluations. However,
these workows typically generate singular omic datasets that
are integrated into data analysis stages to assess interactions.
Here, we combine native MS and lipidomics to characterize
lipids that membrane proteins retain from natural lipid sour-
ces. More specically, native MS is performed to measure the
masses of lipids bound to the target membrane protein. The
lipids are then released for the comprehensive identication of
lipids through a multi-dimensional LC-IMS-CID-MS lipidomics
method. The integrated approach provides novel opportunities
to explore lipid specicity of membrane proteins. Furthermore,
it enriches the capabilities of current protein–lipid studies,
which oen use a subset of synthetic lipids.

Method
Expression constructs

The expression plasmid for AmtB has been previously described
and further modied.40,41 The N-terminal maltose binding
protein (MBP) was removed, resulting in an N-terminal secre-
tion signal followed by a TEV protease cleavable N-terminal His6
affinity tag. The K2P4.1 gene (TRAAK, residues 1–295, Uniprot
Q9NYG8-2), K2P10.1 gene (TREK2, residues 55–335, Uniprot
P57789), and Kir3.2 gene (GIRK2, residues 48–378 Uniprot
P48051) from Homo sapiens were either synthesized as gBlock
fragments (Integrated DNA Technologies) or cDNA purchased
from DNASU were subcloned into a modied pACE vector
(Geneva Biotech), resulting in expression of the target protein
with a C-terminal StrepTag II. TRAAK and TREK2 contained
N104Q/N108Q and N84Q mutations to remove N-linked glyco-
sylation, respectively. All expression constructs were veried by
DNA sequencing.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Protein expression

The AmtB expression plasmid was transformed into E. coli
C43(DE3) chemical competent cells (Lucigen) by heat shock.
The cells with recombinant DNA were inoculated in terric
broth (TB) at 37 °C until the OD600 reached 0.6–0.8, and then
induced with 0.5 mM IPTG at 25 °C overnight. The recombinant
pACEBac1 vectors for TRAAK and TREK2 were transformed into
DH10EMBacY chemical competent cells (Geneva Biotech)
following the manufacturer's protocol. DH10EmBacY cells
successfully incorporated by the recombinant vectors were
identied and isolated by white/blue colony screening. Bacmid
DNA was puried using HiPure Plasmid Midiprep Kit (Invi-
trogen), and DNA (30 mg) was mixed with transfection reagent
polyethyleneimine (PEI) Max (60 mL, 1 mg mL−1) and PBS (2 ml)
before transfecting Spodoptera frugiperda (Sf9) cells (30 ml, 0.8
× 106 cell per ml, Expression Systems). The transfected Sf9 cells
were inoculated at 27 °C for seven days to produce the P1 virus.
The P1 virus was claried with centrifugation (4000g, 20 min)
under sterile conditions. P1 (5 ml) was used infect Trichoplusia
ni (Tni) cells (50 ml, 2 × 106 cell per ml, Expression system) for
protein expression. The infected Tni cells were incubated at 27 °
C for two days before harvesting by centrifugation (4000g for
20 min at 4 °C).
Purication and delipidation

AmtB. The cell pellet for AmtB was resuspended in lysis
buffer A (NaCl 300 mM, Tris 30 mM, pH 7.4) and lysed by three
passages through a microuidizer (M-110 PS, Microuidics
Inc.) operating at 25 000 psi. The cell lysate was claried by
centrifugation at 25 000g for 20 min. The supernatant was
subjected to ultra-centrifugation (100 000g, 2 hours) to harvest
the membranes. The membrane pellet containing overex-
pressed AmtB was resuspended in membrane resuspension
buffer RBA (NaCl 150 mM, Tris 50 mM, glycerol 10%, pH 7.4)
and homogenized using a glass homogenizer (Wheaton). AmtB
was extracted from membranes by the addition of 2% n-
Dodecyl-b-D-Maltoside (DDM, m/v). The supernatant was clari-
ed by centrifugation (40 000g, 20 min), and the supernatant
was loaded onto a column containing nickel-charged affinity
resin (HisTrap) equilibrated in NHA buffer (RBA with 0.025%
DDM and 20 mM imidazole). Aer sample application, AmtB
was washed with 5 column volume (CV) of buffer NHA. Aer-
ward, AmtB was washed with 5CV of NHB buffer (NHA with
DDM replaced by 0.5% C8E4). Protein was eluted off the column
using NHC buffer (NHB with 500 mM imidazole). The eluted
AmtB protein was loaded onto a pre-equilibrated HiTrap
desalting column (GE) to remove the high-concentration imid-
azole. The purication and delipidation of TRAAK and TREK2
have been previously described.33 In brief, Tni cells over-
expressing TRAAK and TREK2 proteins were harvested using
centrifugation, resuspended, and lysed in KCl-lysis buffer (KCl
200 mM, Tris 50 mM, pH 7.4). The supernatant was centrifuged
at 100 000g for 2 h at 4 °C. The membrane was resuspended in
KCl-lysis buffer and was extracted with 1% DDM at 4 °C for 2
hours. The extracted protein was claried by centrifugation (20
000g for 5 min) followed by syringe ltration (Whatman, 0.45
Chem. Sci., 2023, 14, 8570–8582 | 8571
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mm). The ltrate was loaded onto a StrepTrap HP (GE), washed
with SPK-DM (KCl 150 mM, Tris 50 mM, glycerol 10%, pH 7.4,
0.2% DM), exchanged into SPK-C10E5 (SPK with 0.062% C10E5),
and eluted with SPK-C10E5-DTB (SPK-C10E5 with 3 mM D-des-
thiobiotin). Similar to TRAAK, TREK2 was lysed and extracted in
KCl-lysis buffer with 1% OGNG (2,2-dihexylpropane-1,3-bis-b-D-
glucopyranoside), puried with SPK-OGNG (SPK with 0.12%
OGNG) and SPK-OGNG-DTB (supplemented with 3 mM D-des-
thiobiotin). The puried TREK2 protein was treated with Endo
H (New England Biolabs) overnight at 4 °C to reduce glycan
heterogeneity. Aerward, TREK2 was repuried on a StrepTrap
HP to remove glycans and buffer exchanged into SPK-C10E5.
Both TRAAK and TREK2 were desalted using a HiPrep 26/10
Desalting column (GE).

Washing and preferential retention of lipids from extracts

Lipid extracts were purchased from Avanti Polar Lipid (Table
S1†) and prepared as previously described.42 In brief, dried lipid
lms were rehydrated in MilliQ water to desired concentrations.
For lipid wash studies of AmtB, E. coli AmtB (1 mM) was incu-
bated with either phosphatidylethanolamine (EcPE, 10 mg
ml−1), E. coli cardiolipin (EcCDL, 10 mg ml−1) or a 1 : 1 mixture
of the two extracts at room temperature for 1 hour. The protein–
lipid mixture was then loaded onto a HisTrap pre-equilibrated
in NHB and washed with NHC. AmtB protein was eluted with
NHC. For lipid headgroup extracts affinity experiments with
TRAAK (2.2 mM), the method was modied to include the
addition of the lipid headgroup extract aer 2 column volume
(CV) washes. Two additional washes were used to elute any non-
preferential lipid binding. TRAAK (2.2 mM) and TREK2 (2.2 mM)
were individually incubated with brain extract polar lipid (BEP)
(1.2 mg ml−1) for 0.5 h before loaded onto a in-house prepared
strep-column (∼200 mL bed volume, Strep-Tactin sepharose
resin, iba). Immobilized lipid-protein complexes were washed
with SPK-C10E5 for desired amount of CV washes and were
eluted with SPK-C10E5-DTB. Similar experiments were con-
ducted for headgroup extracts. All lipid extracts were selected as
a proof of concept to demonstrate the ability of native MS and
lipidomics to dene protein–lipid interactions in complex lipid
environments.

Native MS

Membrane protein samples were buffer-exchanged into
aqueous ammonium acetate (200 mM, pH 7.4 adjusted with
ammonium hydroxide) supplemented with 0.5% C8E4 (AA C8E4)
for AmtB or 0.065% C10E5 (AA C10E5) for the other proteins
using a centrifugal desalting column (Micro Bio-Spin 6, Bio-
Rad). The protein–lipid mixtures were loaded into a gold-
coated glass emitter (prepared in-house) and introduced into
a Q Exactive UHMR Hybrid Quadrupole-Orbitrap mass spec-
trometer (Thermo). The instrument parameters were set as
follows: For AmtB, capillary voltage of 1.50 kV; capillary
temperature of 200 °C; Collision-Induced Dissociation (CID) of
50 V; Collision Energy (CE) of 80 V; trapping gas pressure setting
to 3.0; source DC offset of 20 V; injection atapole DC of 10 V;
inter atapole lens of 6 V; Bent atapole DC of 4 V; transfer
8572 | Chem. Sci., 2023, 14, 8570–8582
multipole DC of 6 V. For TRAAK and TREK2, capillary voltage of
1.50 kV; capillary temperature set to 300 °C; CID of 50 V; CE of
50 V; trapping gas pressure set to 5.0; source DC offset of 40 V;
injection atapole DC of 8 V; inter atapole lens of 4 V; bent
atapole DC of 3 V; transfer multipole DC of 3 V. The MS data
collected from native MS were deconvoluted using UniDec and
Protein Metric soware.43,44 Mass error was determined for the
bound lipids based on the center of each peak.45
Lipidomics

The comprehensive identication of retained lipids from
membrane protein samples was completed on an Agilent 1290
Innity II UHPLC (Santa Clara, CA) coupled to an Agilent 6560
IM-QTOF MS platform (Santa Clara, CA) following a 1 : 100
sample dilution in methanol. 10 mL injections of each sample
were initially separated at a ow rate of 250 mL min−1 on
a reversed-phase Waters CSH column (3.0 mm × 150 mm × 1.7
mm particle size). The 34 minute gradient (MPA : ACN/H2O (40 :
60) with 10 mM NH4Ac and MPB : ACN/IPA (10 : 90) with 10 mM
NH4Ac) and subsequent 4 minute wash and re-equilibration
steps are detailed in Tables S2 and S3 in the ESI.† For anionic
lipid class extracts including PE, CDL, PG, and PS, IMS-MS data
was collected solely with negative ESI from 50 to 1700 m/z. BEP
and PC lipid extracts were conversely measured across the same
mass window in both positive and negative ionization modes.
MS operation also included an alternating scan method of no
fragmentation (MS1) and all-ions data-independent acquisition
(DIA) to simultaneously capture MS and MS/MS spectra. To
optimize fragmentation across complex samples, a ramped
collision-induced dissociation (CID) method was employed
based on IMS dri times.46,47 Additionally, all analyses were
conducted with a cycle time of 1 s per spectra to enhance the low
abundant ion signal.

Skyline was used to deconvolve spectra and assign lipid
identications for the multidimensional LC-IMS-CID-MS lip-
idomic analysis conducted herein.48–50 For brain lipid extract
samples, an in-house library of 623 lipids with experimentally
validated LC, IMS, and MS information was used to assign all
identications.48,51,52 For class-based extracts, LipidCreator was
used to enumerate all the potential identications for 2-tailed
lipids and lysolipids that contained fatty acyls with a length
between 12-22 carbons and 0–6 double bonds.53 These libraries
were then uploaded into Skyline to rst identify precursor mass
matches with #5 ppm mass error for representative isomers.
Alignment of computational collision cross-section and reten-
tion times was subsequently used to assign the correct fatty acyl
composition for all precursor matches.52 The resulting specia-
tion of identications typically included both head group and
fatty acyl assignments (i.e. PE(16 : 0_18 : 1)) except for car-
diolipins and other lipids with ambiguous fatty acyl assign-
ments that were instead reported with summed fatty acyl
composition (i.e. CL(70 : 3)). Precursor peak areas of all identi-
ed lipids were normalized to the total ion current and log2
transformed. Transformed data of each sample is presented in
ESI Tables S4–S10.† For inquiries into natural lipid preference
across membrane protein experiments, comparisons were
© 2023 The Author(s). Published by the Royal Society of Chemistry
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completed through a qualitative analysis of lipid identications
unless otherwise noted. For visualization of fatty acyl
trends across head groups, an additional normalization to
the analyte with the highest signal within each class was
also completed. Membrane-protein lipid affinities were
visually assessed for both head group and fatty acyl trends with
various components of the Structural-based Connectivity Omic
Phenotype Evaluations (SCOPE) cheminformatics toolbox.54

Additional enrichment analysis of lipid species was completed
with Lipid Mini-on.55
Results
Overview of the approach

As natural products have been exploited to identify small
molecules for drug discovery,56 we set out to develop a new
method to identify specic membrane protein–lipid interac-
tions retained from various natural lipid sources (Fig. 1), such
as a brain polar lipid extract or natural headgroup extracts. This
method uniquely combines native mass spectrometry with lip-
idomics to probe both the protein and lipid components. To
begin, the target membrane protein sample should be devoid of
major co-puried contaminants, such as co-puried lipids,
which can be conrmed by a native mass measurement (ESI
Fig. 1†). Co-puried contaminants may inadvertently inuence
the preference of lipids from natural extracts, so their absence is
essential. The target membrane protein solubilized in detergent
is then mixed and incubated with a natural lipid extract
(Fig. 1a). This mixture is applied to a drip column containing
affinity resin to capture the tagged, target membrane protein
Fig. 1 Overview of the method to identify lipids enriched by an immobil
membrane protein is first incubated with a natural lipid extract followe
immobilized protein–lipid complexes are (c) washed with different co
number of washes, the (d) eluted protein–lipid complexes are buffer ex
mass spectrometry to determine the masses of lipids bound to the target
to lipidomic analyses, cataloguing the enriched lipids. (g) The masses d
idomics, pinning down the most tightly-associated lipids.

© 2023 The Author(s). Published by the Royal Society of Chemistry
(Fig. 1b). For example, a membrane protein can be fused to
a poly histidine sequence, typically six in total, to enable puri-
cation of the affinity tagged protein using immobilized metal
affinity chromatography and subsequently eluted using imid-
azole (see Methods for details). The immobilized target protein
is washed with different column volumes of buffer containing
detergent (Fig. 1c), thereby washing away loosely associated
lipids. Multiple drip columns can be used in parallel to obtain
different column volume washes in one step. The eluted
protein–lipid samples are then buffer exchanged into ammo-
nium acetate with detergent at two times the critical micelle
concentration (2× CMC) for native MS studies (Fig. 1d). Native
mass spectra are then recorded to provide a direct measurement
of the associated lipids and their masses (Fig. 1e). Orthogonally,
the same sample is also subjected to lipidomic analyses (Fig. 1f)
to identify lipids that bind to the target protein. Furthermore,
the lipid masses from the native MS studies aid in ltering the
lipids identied in the lipidomic studies (Fig. 1g). This repre-
sents the unique aspect of our method, wherein lipid binding to
the protein is conrmed (native MS) and each lipid is compre-
hensively identied (lipidomics).

PE modulates AmtB–CDL interactions

Since interactions of the bacterial ammonia channel (AmtB)
with cardiolipin (CDL) are known to be enhanced in the pres-
ence of phosphoethanolamine (PE),25we used this system in our
rst analysis. The native mass measurements of apo AmtB
revealed the pelB secretion signal was cleaved at two positions,
resulting in different masses of the trimeric complex (ESI
Fig. S1†). While this complicates the mass spectrum, it does not
ized target membrane protein from natural lipid extracts. (a) The target
d by (b) loading onto different, pre-equilibrated affinity columns. The
lumn volumes (CV) of the detergent-containing buffer. After a given
changed into 200 mM ammonium acetate and (e) analyzed by native
protein. The same samples used for native MS studies are (f) subjected
etermined from native MS are used to filter the lipids identified in lip-

Chem. Sci., 2023, 14, 8570–8582 | 8573
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Fig. 2 The ammonia channel (AmtB) enriches specific lipids from E. coli PE and CDL extracts. (a) Representative mass spectra (left) and zero
charge spectra (right) of AmtB and mixed with E. coli PE extract, E. coli CDL extract, and a mixture of the two headgroup extracts. The secretion
signal of AmtB was found to be processed at two locations, giving rise to different masses for apo AmtB and denoted by an asterisk. (b)
Deconvoluted mass spectra of AmtB incubated with a mixture of E. coli PE and CDL extracts followed by 0 to 2 CV wash with detergent-
containing buffer. (c) Plot of the mole fraction of apo AmtB for incubation in different lipid extracts and washed with 0 to 2 CV of the buffer. The
presence of the PE extract enhances the enrichment of CDL species. (d) Lipidomic analyses of lipids enriched from E. coli PE extract, E. coli CDL
extract, and a mixture of the two bacterial headgroup extracts.

8574 | Chem. Sci., 2023, 14, 8570–8582 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 TRAAK selectively enriches lipids with distinct acyl chains from natural headgroup extracts. (A) Representative native mass spectrum of
TRAAK incubatedwith (a) brain PC extract and (b) deconvolution, (c) brain PE extract and (d) deconvolution, (e) egg PG extract and (f) deconvolution,
or (g) brain PS extract and (h) deconvolution followed by 2 CV wash. The deconvoluted mass spectrum is shown underneath with adduct masses
annotated. (i) Heatmap of lipid identifications from the lipidomic analyses of each lipid class extract (rows) and their corresponding fatty acyl content
(columns). Empty cells represent undetected pairs while the colored heatmap reflects the normalized abundance of an individual lipid identification
(i.e. the top corner box of PC(14 : 0_16 : 0)). This visualization reveals different lipid species retained from lipid headgroup extracts. (j) Native mass
measurements filter results from lipidomics to identify specifically retained lipids. Abbreviations are listed in Table S1.†

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 8570–8582 | 8575
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preclude us from characterizing protein–lipid interactions.
AmtB mixed with an E. coli CDL extract (EcCDL) followed by 1
CV wash shows up to 3 lipids bound (Fig. 2a). Application of 3
CV wash removes the majority of bound EcCDL species from
AmtB. However, AmtB holds onto EcCDL with a mass of 1373 ±

60 Da. Similar observations were made for the E. coli PE extract
(EcPE). Up to 2 bound lipids were observed for EcPE when the
mixture of AmtB and EcPE was treated with 1 CV wash. EcPE
species with amass of 757± 55 Da were bound to AmtB aer the
application of a 2 CV wash.

Interestingly, incubation with a mixture of both headgroup
extracts enhanced the retention of both lipid extracts, which
was more pronounced for EcCDL (Fig. 2b and c). The lipidomic
analysis also showed the preference of more EcPE and EcCDL
species (Fig. 2d and Table S4†), consistent with the native MS
results that illustrated the broadening of the mass spectral
peaks (Fig. 2b). Interestingly, 10 PE species and 5 CDL species
were retained from the incubation of each respective extract
with AmtB. The mixture however exhibited nearly double the
number of identied lipids for each class (19 PE and 10 CDL) to
a total of 29 species. In the extract mixture, the new lipid species
AmtB retained were two CDL species (62 : 1 and 64 : 1 CDL) and
two tri-unsaturated species (67 : 3 and 68 : 3 CDL). For the PE
species, AmtB retained 9 new species that all contained at least
one fatty acyl chain with a length $20, and one double bond.
Notably, ve of these lipids contained a polyunsaturated-fatty
acyl (PUFA) chain (Table S4†). Distinctly, PE (16 : 0_22 : 4) is
detected when EcPE is used alone but absent when the mixed
extract is used. In short, PE modulation of AmtB–CDL interac-
tions results in the enhancement of headgroup recognition but
not acyl chain selectivity (Fig. 2d).
TRAAK and lipid headgroup extracts

Next, we focused on the use of natural headgroup extracts to
investigate whether specic acyl chains can be retained. TRAAK
is a mammalian two-pore domain potassium channel known to
be modulated by lipids, such as stimulated by A rachidonic
A cid as illustrated by the AA in TRAAK,57 and expressed
predominantly in the central and peripheral nervous system.58,59

TRAAK was incubated with different natural headgroup lipid
extracts: brain PC extract, brain PE extract, egg PG extract, and
brain PS extract. Aer a 2 CV wash, TRAAK retained three lipids
from the PC extract with masses of 760 ± 2, 787 ± 2, and 833 ±

2 Da (Fig. 3a and b). TRAAK contains a C-terminal strep-tag,
which can affinity puried using immobilized Strep-Tactin.60

For the two-ligand bound state, masses corresponding to
different combinations of the three PC lipids are observed
(Fig. 3b). For the brain PE extract, TRAAK retained more than 5
PE species (702 ± 2, 729 ± 2, 750 ± 2, 773 ± 3, and 793 ± 3 Da)
that could be assigned for the 1st lipid-bound state. The mass
spectral peak of subsequent binding events was too broad to
assign masses for distinct PE combinations (Fig. 3c and d and
ESI S2c and d†). For the PG extract, the rst bound lipid was
predominated by two species (747 ± 2 Da and 776 ± 3 Da), and
subsequent binding events resulted in broad mass spectral
peaks inhibiting the ability to assign masses. A weak signal was
8576 | Chem. Sci., 2023, 14, 8570–8582
also observed for two lipids with masses of 795 Da and 820 Da
(ESI Fig. S2f†). Lastly, TRAAK retained three major species from
the PS extract: 791 ± 2 Da, 841 ± 10 Da, and 899 ± 2 Da (Fig. 3g
and h). Additional studies illustrated that the 841 Da peak was
the result of two overlapping peaks, which could be resolved
when the data was acquired using a higher mass resolution
setting on the instrument (Fig. S2h†). The peak splitting is due
to the binding of Cu2+, which we have recently shown speci-
cally modulates TRAAK–PS interactions.33 In short, these results
illustrate that TRAAK retains distinct masses from the natural
headgroup extracts.

Native MS alone provides a mass accuracy that reects
a broad window of potential bound lipid species. For example,
the 760 ± 2 Da window dened by the native MS analysis of
TRAAK mixed with a PC lipid extract matches a total of 98
unique PC lipids in the LipidMaps database for this mass
tolerance.61 These 98 potential identications reect lipids
identied at the head group and individual fatty acyl level with
no information on double bond position or geometry and sn-
positioning. Therefore, ambiguity lies in the annotation of
lipids from native MS alone. Conversely, comprehensive lip-
idomics requires a sacrice of local molecular interactions to
provide detailed lipid speciation and holistic coverage of lip-
idome composition. To provide further lipid identication
following the discovery of TRAAK enriching specic lipids from
various headgroup extracts, a comprehensive LC-IMS-CID-MS
lipidomic analysis was used to further speciate bound lipids
based on mass additions observed in native MS experiments.
For the PC extract, we identied a total of 32 lipid species and
reduced the 760 ± 2 Da lipid pool from native MS to three
potential lipids: PC(16 : 0_18 : 2), PC(16 : 0_18 : 1), and PC(16 :
0_18 : 0), highlighting the complementarity of these two tech-
niques and signicantly reducing the number of potential lipid
candidates for additional follow-up experiments. The remain-
ing 788 ± 2 Da adduct includes both PC(18 : 0_18 : 1) and
PC(18 : 1/18 : 1) as potential bound lipid candidates (Fig. 3i and
Table S5†). The largest PC species (833 ± 2 Da) was mapped to
PC(18 : 0_22 : 6), however, it is also plausible this species could
also be a 787± 2 Da lipid with a K+ adduct (ESI Fig. S2a and b†).

Native MS of the PE extract exhibited 5 bound lipid masses.
Notably, plasmalogen lipids were the only lipids identied in
the mass windows derived from native MS. The 747 ± 2 Da PG
matched two potential lipids, PG(16 : 0_18 : 1) and PG(16 :
0_18 : 2), whereas the 776 ± 3 Da species matched three lipid
isomers (PG(16 : 0_20 : 1), PG(18 : 0_18 : 2) and PG(18 : 1/18 : 1))
that were distinguishable from our lipidomics analysis (Fig. 3e,
f and Table S7†). For the PS extract, the 791± 2 Da is assigned as
matching PS(18 : 1/18 : 1), PS(18 : 0_18 : 1), and PS(18 : 0/18 : 0).
The nal 841 ± 10 Da species corresponds to PS(18 : 0_22 : 6),
PS(18 : 0_22 : 5), and PS(18 : 0_22 : 4). We also note the relative
intensity of each adduct is like those detected in the natural
lipid extracts (ESI Fig. S2 and S3†). Notably, many of the
retained lipid species identied by lipidomic analysis matched
the masses measured for the lipids bound to TRAAK deduced
from native MS measurements (Fig. 3i).

Next, we sought to elucidate global trends of TRAAK's affinity
for specic lipids. To facilitate the visualization of fatty acyl
© 2023 The Author(s). Published by the Royal Society of Chemistry
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trends across the various head group class extracts investigated
here, we employed the SCOPE cheminformatics toolbox to
create a heatmap of normalized lipid abundance for all unique
fatty acyl combinations across each lipid class extract (Fig. 3j).54

This allowed us to explore general trends for all the identied
lipids across each class. Here, we noted several re-occurring
fatty acyl motifs across lipid classes. This included a height-
ened preference for 16 : 0_18 : 1 and 18 : 0_18 : 1 lipid species
within each class extract. The only exceptions to this were
longer-chain PUFA-containing lipids and alkyl/alkenyl ether (O/
Fig. 4 Selective enrichment of lipids from a brain polar lipid extract using
TRAAK or (b) TREK2 incubated with brain polar extract followed by differen
and d) Lipidomic analyses of lipids retained from a brain polar extrac
Abbreviations are listed in Table S1.† Full lipid identifications and log 2 ar

© 2023 The Author(s). Published by the Royal Society of Chemistry
P) lipids detected in the PC and PE lipid extracts. Globally, we
also noted that of the identied species, TRAAK showed pref-
erence for PUFA-containing lipids, specically when their
counterpart was an 18 : 0 or 18 : 1 acyl chain. In our previous
study using synthetic lipids, TRAAK–lipid interactions showed
a preference toward the acyl chain chemistry, as well as the sn1
fatty acid linkage.42 While these sn isomers cannot be deni-
tively annotated on the lipidomic analysis platform leveraged
here, the separation of these species by chromatography is
plausible. Here, we observed four lipid isomers pairs (denoted A
immobilized TRAAK and TREK2. (a and b) Native mass spectrum of (a)
t CVwashes. The deconvolutedmass spectra are shown to the right. (c

t by (c) TRAAK and (d) TREK2. The different CV washes are labeled.
ea values are presented in Tables S9 and S10.†
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and B) across class extracts. Notably, isobars PC(14 : 0_18 : 1);
PC(16 : 0_16 : 1) and PE(16 : 0_22 : 5); PE(18 : 1_20 : 4) showed
relatively similar responses, while A and B isomers of PG(16 :
1_18 : 2) and PE(P-18 : 0/22 : 5) showed differing relative abun-
dance. Taken together, these results demonstrate that TRAAK
retains lipids with specic acyl chains independent of the
headgroup.
TRAAK and TREK2 lipid affinities in natural mammalian
extracts

Moving beyond natural headgroup extracts, we investigated
whether membrane proteins would retain specic lipids from
a brain polar lipid extract (BEP). For these studies, we used
TRAAK and TREK2, a K2P that shares ∼45% sequence identity
with TRAAK.57,62 Again, both channels were incubated with BEP
and underwent multiple CV washes to elute lipids with various
affinities. For both channels, the native mass spectra showed
that most lipids were washed away aer 2 CV washes, and nearly
all adducts were removed aer 4 CVs (Fig. 4a and b). A group of
adducts centered around 791 Da was detected for the rst lipid-
bound state of TRAAK aer a 2 CV wash. However, higher lipid-
bound states were more heterogeneous, hindering the accurate
assignment of adduct masses (Fig. 4a and ESI Fig. S4a and b†).
Aer a 4 CV wash of immobilized TRAAK, the underlying
broadness was decreased as well as the adduct signals. This
allowed for some adduct masses to be assigned (637 Da, 677 Da,
752 Da, 793 Da, 838 Da, and 886 Da). Interestingly, the 791 Da
species were retained aer 2 and 4 CV washes (ESI Fig. S4a and
b†). The 677 Da retained by TRAAK aer 4 CV wash is consistent
with the mass of PA(16 : 0_18 : 1), a lipid that binds tightly to
TRAAK.42

In contrast, TREK2 displayed more dened peaks aer 2 CV
washes (Fig. 4b and ESI Fig. S4e and f†). Like TRAAK, most of
the retained lipids were depleted from TREK2 aer the appli-
cation of a 4 CV wash. Masses could be determined for many
lipid-bound states of TREK2 (729 Da, 753 Da, 790 Da, 838 Da,
891, and 1047 Da). TREK2 also retained a species of 1048 Da
that is consistent with phosphorylated phosphatidylinositol,
which is known to regulate TREK2.63,64 However, this lipid was
not observed in the lipidomic analysis. Interestingly, both
channels retained a subset of lipids with similar masses and at
a relatively similar ratio. These results demonstrate that
immobilized membrane proteins can enrich specic lipids
from a complex lipid extract, such as BEP.

To provide a holistic view of TRAAK and TREK2 lipid
enrichment, we also performed a comprehensive lipidomic
analysis. The resulting identications were assessed based on
structural motifs to further characterize the lipid environment
changes for each CV wash.55 In the analysis of CV washes for
TRAAK and TREK2, a total of 206 and 165 lipids were identied
across 16 and 19 lipid classes (Fig. 4c and d). Globally, lipidomic
analysis of subsequent CV washes for both potassium channels
showed a decrease in the number of unique identications
while also displaying unique lipid affinities. For TRAAK, the
wash prole for 1 CV initially included 148 species, largely
across triacylglycerols (TGs), phospholipids, and free fatty acids
8578 | Chem. Sci., 2023, 14, 8570–8582
(FFAs). With each wash step, we observed a decrease in the
number of lipid signals except for 3 CVs, where an inux of
diacyl phospholipid species specically within PI lipids
occurred and the total number of identied lipids slightly
increased from 110 to 119 identications. In the nal wash step,
a signicant number of FFA species in addition to lyso PC (LPC)
and PE lipids were observed. This nal wash also contained
a surprising amount of TG signal and few diacyl phospholipid
species (Table S9†).

Like TRAAK, the 1 CV lipid prole of TREK2 contained lipids
across TGs, phospholipids, and FFAs in addition to a height-
ened presence of SM species. As the number of washes
increased, a signicant amount of anionic phospholipid signal
was retained. Contrasting the TRAAK proles, LPC and PE
species were only observed in the 1 CV wash for TREK2. Addi-
tionally, we observed signal for lyso-PG (LPG) and lyso-PA (LPA)
species that remained present across all wash steps. To further
survey lipid associations of TRAAK and TREK2, enrichment
analysis of lipid ontology for all wash steps was conducted
relative to the lipid library queried in this study. This allowed us
to ascertain several additional associations of lipids with shared
structural motifs to either membrane protein. Namely, TRAAK,
PS, and PE lipids were uniquely enriched in 2 CV and 4 CV
washes. FFAs were also enriched in the rst and last CV wash
steps. We also observed an enrichment of lipids with saturated
fatty acids in 2 CV and 4 CV with 18:0-containing lipids being
uniquely enriched in the last wash step. Interestingly, PUFAs
were enriched by TRAAK aer a 4 CV wash. Conversely,
enrichment analysis for TREK2 washes favored fatty acyl
content, including enrichment of several 20:4-containing diacyl
species aer 1 and 2-column washes and PS class enrichment.
In subsequent washes, this trend was later reversed, showing
predominantly saturated fatty acids and enrichment of TG and
FFA classes. A table of all enriched structural motifs is pre-
sented in Tables S9 and S10.† Data has been deposited at
Panorama and can accessed at https://doi.org/10.6069/ermp-
tp39.

Discussion

Previous work has shown AmtB interactions with TOCDL (all
18 : 1 tails) are allosterically modulated in the presence of
PE(16 : 0/18 : 1),25 which is recapitulated here using EcPE and
EcCDL extracts. The global lipidomic analysis shows that AmtB
presented with an EcPE and EcCDL mixture retains nearly two-
fold more lipid species when compared to the individual class
extracts. The additional PE lipids identied contained poly- and
mono-unsaturated fatty acyl chains. A notable exception was
PE(16 : 0_22 : 4), which was only observed in the EcPE extract,
indicating AmtB is also selective to acyl chains of PE. Like PE,
we identied double the number of cardiolipin species
compared to the EcCDL extract alone. This included two mon-
osaturated and two tri-saturated species. Interestingly, the
lipids that were exclusively retained from the lipid extract
mixture corresponded to those containing one or more unsat-
urated bonds. The presence of double bonds and their stereo-
chemistry can inuence membrane uidity.65,66 While AmtB-PE
© 2023 The Author(s). Published by the Royal Society of Chemistry
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interactions have previously been shown to be rather non-
selective, AmtB in the presence of both EcPE and EcCDL
results in increased binding to both of these lipids. This
enhancement is the result of altering the selectivity toward the
headgroup at the cost of acyl chain preference. Taken together,
these results demonstrate a lipid can enhance specic
membrane protein–lipid interactions by tuning the selectivity
toward the headgroup, which will result in enhanced lipid
binding as observed for the EcPE and EcCDL mixture. This also
suggests the opposite could occur, that is specic membrane
protein–lipid interactions can be tuned by altering the selec-
tivity to the acyl chains of the specic lipid.

An important question to address is how acyl chain chem-
istry inuences membrane protein–lipid interactions. Different
headgroup extracts (PC, PE, PG, PS) show TRAAK retains
specic acyl chains within each class. Previous work charac-
terizing TRAAK binding synthetic lipids containing 1-palmitoyl-
2-oleoyl (16 : 0_18 : 1, PO) acyl chains illustrated POPS to be the
weakest binder among the headgroups investigated.67 The PS
extract had the lowest number of identications (10 in total),
a result consistent with the low affinity of TRAAK for POPS.
Interestingly, the PS species identied contained long acyl
chains ($18). For the remaining lipid classes, lipids containing
either 16 : 0 or 18 : 0 and one PUFA were predominant among
the different head groups. Previous work has shown TRAAK has
a stronger preference for PE and PA lipids, and binding affinity
can be highly variable and also dependent on the headgroup.42

Examples of this include the anticipated lipid binding across
each class observed from native MS measurements. For
example, we observed that 16 : 0_18 : 1 and 18 : 0_18 : 1 con-
taining lipids were abundant across multiple lipid classes.
While the use of synthetic lipids can be informative, our
approach has identied new acyl chain preferences for TRAAK.
In addition, the preference for specic acyl chains was not
dependent on the headgroup. In short, natural headgroup
extracts provide the unique opportunity to display varied acyl
chain chemistry to better understand requirements that
underly specic membrane protein–lipid binding sites.

Following the observed allosteric effects for AmtB–lipid
interactions and the identication of acyl chain preferences for
TRAAK, we next sought to explore if select membrane proteins
TRAAK and TREK2 would retain species from mammalian lipid
extracts.68 To further understand the affinities of each protein
for selecting lipids, four serial wash steps were used to remove
lipids sequentially, i.e. washing away the weakly binding lipids.
Native MS provided some insight into the masses for the rst
lipid however subsequent binding events displayed broad
distributions. These results indicate that TRAAK and TREK2 can
retain a subset of lipids from the complex brain polar extract. To
identify the retained lipids, our analysis rst considered the
global prole of lipids observed relative to an established library
developed in-house for identifying lipids in LC-IMS-CID-MS
data.50,51 Overall, a total of 206 and 165 identications were
made from the library consisting of 623 lipids for TRAAK and
TREK2.48 As was anticipated with subsequent wash steps,
a gradual decline in the number of lipid identications was
observed. This result demonstrates the approach can be useful
© 2023 The Author(s). Published by the Royal Society of Chemistry
in identifying lipids that readily associate with the target
membrane protein.

Here, TRAAK and TREK2 initially contained 146 and 118
lipids in the rst CV wash and then 105 and 73 lipids in the four-
column wash step. These proles were then subjected to
enrichment analysis relative to the library used to develop lipid
identications.55 For both TRAAK and TREK2, we observed
several trends over sequential CV washes that pertained to the
respective class of each lipid. Namely, PC and TG lipids were
continually over-represented in TRAAK, while classes including
SM, FFA, PS, and PE P- were uniquely high in specic CV wash
steps. Conversely, TREK2 showed few preferential head groups
except for PS lipids in early wash steps and TG, FFA, SM, PC, and
PE P- in the later CVs. Previously, TRAAK displays a lack of
specicity to PS acyl chains. Here, a mix of unsaturated and
saturated PS species is identied across multiple wash steps.33

While TG and plasmalogen PE species are not actively empha-
sized for their role in cell membranes, both classes have
a presence in cellular membranes and are linked to increased
membrane uidity due to increased curvature.69–71 We also note
a possibility of lipid–lipid interactions that may be inuencing
the retention of these lipids. Fatty acyl enrichments also
exhibited several trends including a signicant bias of acyl
composition of TREK2 enrichment compared to TRAAK. While
both proteins showed enrichment of saturated fatty acids in
later wash steps, TREK2 enrichment was initially characterized
by 20 : 4 and 18 : 1-containing lipids. Arachidonic acid (20 : 4) is
known to stimulate both TRAAK and TREK2.72,73 These results
show that indeed membrane proteins can enrich specic lipids
from complex, natural extracts.

TREK channels are known to be stimulated by fatty acids and
lysolipids.57,74–76 Here, we found enrichment of fatty acids and
lysolipids across the different wash steps. Regardless of the CV
wash, TREK2 consistently enriched LPG(18 : 1), a lipid known to
stimulate the channel.74–76 Additionally, it should also be noted
that for both TRAAK and TREK2, we observed a heightened
enrichment of FFA. Both channels are known to be stimulated
by FFAs.57,77 While lipidomics identies the retention of FFAs,
intact masses measured by native MS do not show strong
signals for bound FFA that could be the result of dissociation of
these hydrophobically-bound molecules. In short, TRAAK and
TREK2 can retain specic lipid species that are known to
stimulate activity.

In summary, we describe an approach using immobilized
membrane proteins to examine lipid binding from natural
headgroup extracts and more complex lipid extracts, such as
BEP. The use of natural headgroup extracts can be useful to
discern how acyl chain chemistry impacts the binding of
specic lipid types to the protein. As shown above, for TRAAK
and TREK2, membrane proteins can enrich lipids from
complex, natural lipid sources. In some cases, we observed the
enrichment of lipids known to regulate TRAAK and TREK2.
While the complexity of membrane protein–lipid interactions
requires extensive validation to verify specicity, the results
presented in this work demonstrate the approach will be useful
for identifying lipids that regulate other membrane proteins. It
is unclear the driving factor(s) for the selective enrichment of
Chem. Sci., 2023, 14, 8570–8582 | 8579
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lipid classes across CV wash steps and warrants further study.
Another contributing factor can be the inuence of lipid-protein
interactions that in turn inuence interaction with other lipids.
For example, the presence of PE enhances AmtB–CDL interac-
tions. While we focus here on commercially available lipid
extracts, a future direction is the use of tissue- and/or
membrane/organelle-specic lipid extracts, e.g. a plasma
membrane lipid extract for a target membrane protein that
resides in the plasma membrane. Thus, the combination of
native MS and lipidomics provides a new means to better
understand how the lipid environment modulates the structure
and function of membrane proteins.
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