Fully Printed and Flexible Patch for Real-Time Wireless Monitoring of Sweating Rate with Physiological Detecting

Abstract

Human sweating rate reflects body hydration status and holds intrinsic significance for monitoring physiological health. This work presents a fully printed sweat rate sensor architecture, where the internal sensing layer is fabricated via aerosol jet printing at micrometer resolution to detect nanoliter-scale sweat volume changes in microfluidic channels. The sensor transduces internal microstructural variations into radiofrequency (RF) signals through energy coupling, enabling wireless transmission to external terminals. Leveraging the RF sensor's wireless compatibility, a pulse wave sensor for monitoring physiological changes is integrated into the system. This allows simultaneous operation with the sweat rate sensor without wired connections, ultimately forming a wireless, and battery-free wearable patch suitable for detecting skin sweating rate and heart rate during human activities. By analyzing the patch's wireless signals and extracting parameters including resonant frequency and amplitude, we develop a dual-mode sensing patch. The system evaluates the effects of daily activities like resting, walking, exercising and environmental factors like temperature on skin perspiration and heart rate. In addition, the fully printed technology adopted in this work provides ideas for the lightweight and low-cost development of wearable sweat sensing system.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
31 Jul 2025
Accepted
15 Dec 2025
First published
03 Jan 2026

Lab Chip, 2026, Accepted Manuscript

Fully Printed and Flexible Patch for Real-Time Wireless Monitoring of Sweating Rate with Physiological Detecting

H. Wen, K. Dong, F. Huang, Z. Gao, Z. An, R. Sun, X. Li, Q. Ye and Q. Liu, Lab Chip, 2026, Accepted Manuscript , DOI: 10.1039/D5LC00755K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements