Multimodality imaging of naturally active melanin nanoparticles targeting somatostatin receptor subtype 2 in human small-cell lung cancer†
Abstract
Somatostatin receptor subtype 2 (SSTR2) is highly expressed in pulmonary neuroendocrine tumors, which account for approximately 25% of all lung cancers including small-cell lung cancer (SCLC). It is possible to establish SCLC-specific imaging agents for multimodal imaging to obtain tumor integrity information. Herein, we constructed novel multifunctional organic melanin nanoparticles (MNPs) as a carrier and surface-loaded somatostatin analog octreotide to produce a human small-cell lung cancer-targeted nanoprobe OCT-PEG-MNPs. MNPs have an excellent photoacoustic imaging (PAI) function and can be directly chelated with the magnetic resonance contrast agent Mn2+, and N-bromo succinimide (NBS) can be used as an oxidant to label the nanoparticles with the long half-life radionuclide 124I by an electrophilic substitution reaction. Therefore, (124I, Mn) OCT-PEG-MNPs can not only be used for PAI but also be used for positron emission tomography (PET) and magnetic resonance imaging (MRI). The NCI-H69 SCLC tumor xenograft model with high SSTR2 expression was constructed to evaluate the multimodal imaging ability of (124I, Mn) OCT-PEG-MNPs. This nanoprobe showed good imaging abilities in PAI, MRI and PET. The PA images showed that the photoacoustic signal in the NCI-H69 tumor site gradually increased with time, and the NCI-H69 xenograft showed a clear increase in the T1-weighted signal intensity after injection of Mn-OCT-PEG-MNPs at 24 h compared to that in the prescan. MicroPET and biodistribution studies showed that the uptake of NCI-H69 tumors (8.03 ± 0.37% ID g−1) was significantly higher than that in the control A549 model (3.35 ± 0.54% ID g−1) after injection of (124I, Mn) OCT-PEG-MNPs at 24 h. The (124I, Mn) OCT-PEG-MNPs were successfully applied to multimodal imaging in a small-cell lung cancer model with high SSTR2 expression. This nanoprobe may be considered for clinical trials since it combines the numerous advantages of organic nanoparticles.

Please wait while we load your content...