Themed collection Hot-electron science and microscopic processes in plasmonics and catalysis

33 items
Front/Back Matter

List of participants

Front/Back Matter

Poster list

Editorial

The 300th Faraday Discussion

Paper

Hot electron science in plasmonics and catalysis: what we argue about

This paper summarises the challenges and perspectives arising from the Faraday Discussion on Hot-electron science and microscopic processes in plasmonics and catalysis held in February 2019.

Graphical abstract: Hot electron science in plasmonics and catalysis: what we argue about
Paper

Direct hot-carrier transfer in plasmonic catalysis

An ab initio computational study of direct hot-carrier transfer at metal–molecule interfaces with relevance to plasmonic catalysis.

Graphical abstract: Direct hot-carrier transfer in plasmonic catalysis
Paper

Spiers Memorial Lecture

In these introductory remarks we discuss the generation of nonequilibrium electrons in metals, their properties, and how they can be utilized in two emerging applications: for extending the capabilities of photodetection (left), and for photocatalysis (right), lowering the barriers of chemical reactions.

Graphical abstract: Spiers Memorial Lecture Introductory lecture: Hot-electron science and microscopic processes in plasmonics and catalysis
From the themed collection: The Spiers Memorial Lectures
Paper

Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures

We have developed a method to measure photocurrents produced by photoexcited hot electrons and holes in bulk metal films.

Graphical abstract: Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures
Paper

Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts

Direct electronic transitions act as a preferential dissipation pathway for plasmon energy in multicomponent plasmonic systems.

Graphical abstract: Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts
Open Access Paper

Hot electron effects during reactive scattering of H2 from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature

We use an analytical representation of electronic friction for H2 on Ag(111) to assess the validity and robustness of the MDEF method based on TDPT.

Graphical abstract: Hot electron effects during reactive scattering of H2 from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature
Paper

Hot carriers generated by plasmons: where are they generated and where do they go from there?

A physically transparent unified theory of optically- and plasmon-induced hot carrier generation in metals is developed with all of the relevant mechanisms included.

Graphical abstract: Hot carriers generated by plasmons: where are they generated and where do they go from there?
Paper

Tuning the SERS activity and plasmon-driven reduction of p-nitrothiophenol on a Ag@MoS2 film

The thickness and crystallinity of MoS2 in a Ag@MoS2 hybrid film can strongly affect the Raman enhancement and plasmon-driven chemical reactions.

Graphical abstract: Tuning the SERS activity and plasmon-driven reduction of p-nitrothiophenol on a Ag@MoS2 film
Paper

Plasmon-induced optical control over dithionite-mediated chemical redox reactions

Radicals on-demand with plasmon-mediated in situ dissociation of dithionite “fuel”, for optically controlled redox chemistry.

Graphical abstract: Plasmon-induced optical control over dithionite-mediated chemical redox reactions
Paper

Carrier dynamics and spin–valley–layer effects in bilayer transition metal dichalcogenides

We describe the complex interplay of spin, layer and valley indexing involved in two different stacking orientations of bilayer TMDCs MoS2 and WSe2via an ab initio treatment of electron–electron and electron–phonon interactions.

Graphical abstract: Carrier dynamics and spin–valley–layer effects in bilayer transition metal dichalcogenides
Paper

Enhancing hot electron generation and injection in the near infrared via rational design and controlled synthesis of TiO2–gold nanostructures

We synthesize TiO2-coated gold nanostar- and gold nanorod-based photocatalysts and identify the most important design parameters for the optimization of hot electron-based photocatalysts.

Graphical abstract: Enhancing hot electron generation and injection in the near infrared via rational design and controlled synthesis of TiO2–gold nanostructures
Paper

Photocatalytic ammonia production enhanced by a plasmonic near-field and hot electrons originating from aluminium nanostructures

We report on plasmonic near-field and hot electron enhanced ammonia production.

Graphical abstract: Photocatalytic ammonia production enhanced by a plasmonic near-field and hot electrons originating from aluminium nanostructures
Paper

Plasmonic photocatalysis applied to solar fuels

We show the impact of structural, chemical and interfacial features of gold–titania composites on solar and visible photocatalytic gas phase reduction of CO2 and the specificities of the hot electron-based process.

Graphical abstract: Plasmonic photocatalysis applied to solar fuels
Paper

The impact of optically rectified fields on plasmonic electrocatalysis

Optical rectification of plasmon resonances is shown to induce areas of altered surface charge that affect electrochemical reactivity.

Graphical abstract: The impact of optically rectified fields on plasmonic electrocatalysis
Paper

Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons

We report the enhancement of the plasmon-assisted water oxidation photocurrent in ultrathin (10–20 nm) hematite films.

Graphical abstract: Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons
Paper

Dynamics of electron-emission currents in plasmonic gaps induced by strong fields

Using a combination of quantum calculations and classical modelling we study the dynamics of strong-field emission currents in plasmonic gaps.

Graphical abstract: Dynamics of electron-emission currents in plasmonic gaps induced by strong fields
Paper

Optimizing hot carrier effects in Pt-decorated plasmonic heterostructures

Plasmonic heterostructures were designed to optimize hot carrier extraction by controlling nanoparticle surface states.

Graphical abstract: Optimizing hot carrier effects in Pt-decorated plasmonic heterostructures
Paper

Direct optical excitation of dark plasmons for hot electron generation

We demonstrate the excitation of dark modes and creation of hot electrons using linearly polarized light and scalable, cost-effective plasmonic surfaces.

Graphical abstract: Direct optical excitation of dark plasmons for hot electron generation
Paper

Enhanced hot electron generation by inverse metal–oxide interfaces on catalytic nanodiode

Mechanistic understanding of hot electron dynamics at inverse oxide/metal interfaces from a new catalytic nanodiode that exhibits nanoscale metal–oxide interfaces.

Graphical abstract: Enhanced hot electron generation by inverse metal–oxide interfaces on catalytic nanodiode
Paper

The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering

We look to understand the enhancement and spatial resolution of a tip-enhanced Raman scattering (TERS) system containing a metal tip and plasmonic substrate.

Graphical abstract: The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering
Paper

Assistance of metal nanoparticles in photocatalysis – nothing more than a classical heat source

We show that the number of high energy non-thermal electrons in a metal under CW illumination is very low but much higher than in thermal equilibrium, implying that faster chemical reactions reported previously are extremely likely to originate from a pure thermal effect.

Graphical abstract: Assistance of metal nanoparticles in photocatalysis – nothing more than a classical heat source
Paper

Out-of-equilibrium electron dynamics of silver driven by ultrafast electromagnetic fields – a novel hydrodynamical approach

We investigate the ultrafast nonlinear response of silver upon excitation by infrared electromagnetic radiation pulses with a duration of a few femtoseconds.

Graphical abstract: Out-of-equilibrium electron dynamics of silver driven by ultrafast electromagnetic fields – a novel hydrodynamical approach
Paper

Electron-induced molecular dissociation at a surface leads to reactive collisions at selected impact parameters

A collimated beam of ‘projectiles’ strikes a chemisorbed ‘target’ thereby selecting the impact parameter, achieving an elusive goal of reaction dynamics.

Graphical abstract: Electron-induced molecular dissociation at a surface leads to reactive collisions at selected impact parameters
Paper

Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials

The choice of materials for hot electron generation and injection: peak efficiency or broadband.

Graphical abstract: Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials
Paper

Impact of chemical interface damping on surface plasmon dephasing

We characterized the change in photon absorption and scattering properties of plasmonic Au nanoparticles by chemical interface damping.

Graphical abstract: Impact of chemical interface damping on surface plasmon dephasing
Paper

Monitoring plasmonic hot-carrier chemical reactions at the single particle level

Nanoscopic inspection of reactivity in single plasmonic photocatalysts.

Graphical abstract: Monitoring plasmonic hot-carrier chemical reactions at the single particle level
Discussion

Theory of hot electrons: general discussion

Discussion

Dynamics of hot electron generation in metallic nanostructures: general discussion

Discussion

New materials for hot electron generation: general discussion

Discussion

Applications in catalysis, photochemistry, and photodetection: general discussion

33 items

About this collection

We are delighted to share with you a selection of the papers which will be presented at our Faraday Discussion on Hot-electron science and microscopic processes in plasmonics and catalysis taking place in London, UK in February 2019. More information about the event may be found here: http://rsc.li/plasmonics-fd2019. Additional articles will be added to the collection as they are published. The final versions of all the articles presented and a record of the live discussions will be published after the event.

Over the last decade, plasmonics research has emerged as an extremely promising technology with potential applications in information technologies, energy, high-density data storage, photovoltaics, chemistry, biology, medicine, security and sensing. Sensing, where the intense nanoscale light fields around metallic nanostructures have been utilized for surface-enhanced spectroscopies of molecules, has received particular attention.

Until quite recently the main research focus has been on the ability of plasmonic nanostructures to generate localized regions of highly concentrated electromagnetic fields. Lately it has been realized that the electron part of plasmonic excitations can also be exploited in the physical and chemical sciences. Proof-of-concept applications have shown fascinating applications in areas such as surface-enhanced catalysis (water splitting), photodetectors without bandgaps (Schottky junctions), and nanoscale control over chemical reactions. Meanwhile, theoretical understanding about the generation, transport and extraction of plasmonic hot carriers has also advanced.

This Faraday Discussion presents an unprecedented opportunity to discuss the most recent breakthroughs in this multidisciplinary and emerging field from the perspectives of physicists, chemists and theoreticians. It will allow connections to be made between sub-disciplines, enabling the most challenging problems for the future to be defined, and providing a point of reference for the future development of plasmonics, catalysis, and hot-electron science more generally.

Spotlight

Advertisements