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Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous hydrophobic environmental contaminants with
carcinogenic properties. Due to their persistent nature, they can be present in diverse ecosystems,
making their extraction and accurate assessment from contaminated environmental samples vital for
quantification before implementing remediation strategies. Thus, this review explores the major
sources of PAH pollution and their assessment techniques such as SPME, LPME, HF-LPME, and
USAEME, which facilitate faster PAH extraction while minimizing the use of organic solvents. In recent
years, there has been growing interest in nature-based, eco-friendly soil remediation approaches as
compared to chemical and physical approaches. Rhizoremediation has emerged as a leading
bioremediation method due to its effectiveness in field applications. However, understanding the
interactions between the plant rhizosphere and its microbiome is essential, especially since current
research predominantly focuses on in situ bioremediation and degradation of PAH compounds
through plant-microbe partnerships. In natural environments, PAHs are present in intricate mixtures,
and microorganisms operate within interconnected communities. Thus, this review explores the
detailed mechanisms of plant-microbe interactions and the role of advanced omics approaches,
including genomics, proteomics, and metagenomics, in enhancing the efficacy of rhizoremediation.
Rhizoremediation not only aids in the removal of contaminants but also promotes biomass
production, thereby enhancing soil fertility and productivity, leading to improved agronomic results.
This article also reviews the ongoing advancements in PAH remediation techniques, evidenced by

increased patent filings and innovative approaches, contributing to substantial growth in global
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Accepted 14th April 2025 bioeconomy revenue. Nevertheless, the widespread adoption of rhizoremediation faces hurdles

related to marketing and commercialization. Furthermore, this review delves into strategies such as
DOI: 10.1039/d4va00203b rhizosphere engineering and genetic modifications aimed at expediting rhizoremediation processes in

rsc.li/esadvances PAH polluted soils.

Environmental significance

The presence of polycyclic aromatic hydrocarbon (PAH) contamination results in degradation of soil and other ecosystems. PAHs are persistent and ubiquitous
in nature and are considered highly carcinogenic, ranking among the most hazardous organic contaminants. Rhizoremediation is a highly effective nature-
based technique, using plant-driven remediation mechanisms to restore contaminated air, soil, and water. However, toxic substances in contaminated envi-
ronments can hinder plant growth and slow remediation, a challenge that can be addressed by introducing an efficient microbial consortium alongside plants.
Plant roots provide essential nutrients to microbes in contaminated environments, while microbes, in turn, produce plant growth promoting metabolites and
degrade PAHSs, preventing their accumulation in plant tissues. This synergistic interaction enhances remediation efficiency.

1. Introduction

“Soil and Environmental Microbiology Lab, Department of Microbiology, Assam Polyaromatic hydrocarbons (PAHs) are a class of organic
University, Silchar, 788011, Assam, India. E-mail: piyushddn@gmail.com compounds primarily formed as byproducts of the incomplete
*Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama  combustion of fossil fuels such as coal, oil, and natural gas, as

Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India well as biomass sources like wood, waste materials, and
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tobacco.' Due to their semi-volatile nature, PAHs exist in both
gaseous and particulate phases under ambient conditions. They
are characterized by their non-polar and lipophilic nature,
planar molecular structures, and lack of electrical charge, with
many exhibiting no chromatic properties.> Naphthalene, con-
sisting of two fused aromatic rings, is the simplest PAH. PAHs
exhibit a distinctive ability to generate radicals and anions
when treated with alkali metals. In environmental contexts,
PAHs are typically classified based on the number of fused
benzene rings, ranging from two (naphthalene) to seven (coro-
nene) (Karadakov et al, 2023), although PAHs with higher
numbers of rings can also be found.® PAHs are further catego-
rized based on their sources: pyrogenic PAHs result from fossil
fuel combustion and are heavily alkylated and oxygenated,
leading to the formation of PAH quinones;* petrogenic PAHs, on
the other hand, are associated with crude oil and can enter
aquatic environments following oil spills.*

A global study documented a broad spectrum of concentra-
tions for 15 PAH homologues in soils, varying from less than 1
ng g~ to 7840 ng per g dry weight (dw) of soil.® Further, in the
past decade, PAH concentrations ranging from 10 ° to 107> g
kg™' have been observed on almost every continent.® The
highest concentrations were found in Europe, followed by
North America, Asia, Oceania, Africa, and South America.
Vehicular emissions are recognized as a major anthropogenic
source of PAHs in urban environments.” A study conducted in
the United States reported that motor vehicle exhausts
contribute approximately 36% of the total annual PAH
emissions.®

Elevated levels of PAHs were associated with locations near
long-term emission sources and significant atmospheric
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deposition inputs. Major contributors to PAH emissions
include industries such as waste incineration, iron and steel
production, coal-tar pitch manufacturing, dye and rubber
production, asphalt industries, power generation, and diesel or
gasoline-powered machinery.” Additionally, long-term emis-
sions from exhaust produced by aircraft, ships, trains, and
vehicles further contribute to PAH pollution.” Atmospheric
deposition introduces PAH residues into terrestrial and aquatic
ecosystems, primarily from fossil fuel combustion and indus-
trial activities.” A study on the wet deposition of PAHs in
Central South China (2014-2017) reported that coal combus-
tion, petroleum sources, and vehicular emissions contributed
58%, 12%, and 30%, respectively.”* Similarly, road vehicle
emissions, accounting for 658 metric tons, along with atmo-
spheric deposition, played a significant role in PAH accumula-
tion in Haizhou Bay, China."” Furthermore, anthropogenic
activities emitted nearly 191.5 tonnes of PAH compounds into
the atmosphere in Germany.*

Additionally, a positive correlation was observed between
microbial population density and PAH concentrations in soil, as
well as between soil organic matter (SOM) and black carbon.™
Anthropogenic activities account for approximately 85% of PAH
emissions and 99% of related fatalities, with significant
disparities in emissions and health effects across different
regions.” Human exposure to PAHs poses substantial health
risks, primarily cancer, including skin, lung, bladder, liver, and
stomach malignancies, as evidenced by animal studies.'
Additionally, PAH exposure may lead to cardiovascular disease
and adversely affect foetal development.””

Biological systems are fundamental to PAH degradation,
with plants and microorganisms serving as key contributors
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due to their diverse metabolic capabilities and pollutant
detoxification mechanisms." Microorganisms in both terres-
trial and aquatic ecosystems exhibit adaptive potential,
enabling them to degrade various PAHs over time.' Rhizor-
emediation, a bioremediation technique, relies on the mutual-
istic relationship between plants and microorganisms to
sustainably clean environmental pollutants. This process is
dependent on plant-microbe interactions with hydrocarbon-
degrading capabilities.”® Plant roots offer extensive surface
areas for microbial growth and can penetrate soil to depths of
10-15 meters, aiding in contaminant degradation.*'??

In the field of environmental management, bioremediation
initially represented only a small segment of the broader market
for hazardous waste treatment until the late 1990s. In the
United States, the bioremediation industry was valued at
approximately $60 million in 1990, which grew to between $175
million and $300 million by 1995.>® Today, bioremediation has
significantly expanded, with revenues reaching $46 865.2
million and projected to grow to $333 470.0 million by 2027,
according to Emergen Research (2020).2* Bioremediation, along
with bioeconomy, provides a common platform for researchers
across various disciplines to develop sustainable solutions to
environmental challenges.*

This review explores the application of rhizoremediation
techniques for the degradation of PAH contaminants and their
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implications for the global market. It highlights the necessity of
developing innovative rhizoremediation strategies to effectively
remove PAH pollutants from soil, thereby protecting ecosystems
and preserving biodiversity. The review emphasizes the role of
plant-microbe interactions in enhancing the remediation of
PAH-contaminated soils and discusses advanced molecular
approaches aimed at improving rhizoremediation efficiency.
Additionally, it provides insights into patent activities within
the bioremediation sector, underscoring potential contribu-
tions from both governmental agencies and private enterprises
in advancing this field.

2. Exposure, toxicity, and assessment
of PAH contamination in soil

To date, more than 200 distinct PAHs have been identified in
almost every ecosystem.*® Their ubiquity facilitates their
adsorption onto suspended particulates in the environment.>®
Studies have demonstrated that elevated PAH concentrations in
soils and sediments from estuaries, lakes, and marine envi-
ronments can exert toxic effects on living organisms.””** Given
their high toxicity, mutagenic potential, and carcinogenic
properties, PAHs represent a significant environmental
concern. Their toxicity is influenced by factors such as their
molecular structure, the biological species exposed, and the
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specific pathways of exposure.*® Therefore, assessing PAH
contamination is crucial for implementing targeted remedia-
tion strategies, evaluating toxicity levels, and determining
removal efficiency.

2.1 Exposure to PAH compounds

Over 90% of the PAHs present in soils and sediments are
predominantly bound to the solid phase, particularly to organic
materials. PAHs in soil are retained by soil particles, which
reduces their mobility and availability for microbial break-
down.** PAHs exhibit persistent bioaccumulation and
biotransformation characteristics, which contribute to the
stability of organic matter components and enhance the resis-
tance of soil-bound PAHs to degradation.*” PAHs present in the
air can be deposited into the soil and potentially infiltrate water
systems via wet and dry deposition as well as precipitation.
Furthermore, PAHs have a high affinity for soil particles and can
disperse widely due to their hydrophobic nature.*® They have
been detected in remote regions, far from industrial activity,
because of their persistence and atmospheric transport. For
example, PAHs were found in tropical soils (0.5 to 49 mg per kg
dw) and even in Arctic environments, despite the absence of
local industrial emissions (186-11,600 mg per kg dw of soil).**
Further, regional economic development, energy production,
and population density significantly influence the existence and
dispersion of soil PAHs in the environment.*® Implementing
a risk assessment strategy identifies potential contaminants
and receptors at risk, determining the probability of adverse
effects from exposure to specific substances or mixtures in
a given area.*® The detected range of 0.6 to 10 mg kg™ of PAHs
in soil signifies varying levels of contamination. PAH-
contaminated soils are categorized based on concentration
levels as follows: uncontaminated (<0.200 mg kg™ "), minimally
contaminated (0.200-0.600 mg kg™ "), moderately contaminated
(0.600-1.000 mg kg™ '), and highly contaminated (>1.000 mg
kg ). Sites exhibiting PAH concentrations exceeding 10 mg
kg are classified as severely contaminated, posing significant
risks to agricultural systems by reducing crop productivity,
inhibiting seed germination, and decreasing plant longevity.**
Over the past three decades, there has been a substantial
escalation in soil PAH concentrations, particularly in industri-
alized regions worldwide. It is anticipated that these concen-
trations will continue to rise over the next five years and beyond,
primarily due to the ongoing expansion of anthropogenic
emissions of PAHs into the environment.*® Soil samples from
such industrialised sites exhibit a wide spectrum of PAH
contamination levels, with concentrations spanning from 0.001
to 300 000 mg kg~ * of total PAHs.* In non-industrial regions,
PAH contamination is notably concentrated along roadsides,
with PAH levels ranging from approximately 0.5 to 49 mg kg™*
of total PAHs.** Conversely, forested areas typically exhibit lower
levels of PAH contamination, with concentrations ranging from
approximately 0.2 to 1 mg kg™ of total PAHs.** Residential
areas tend to exhibit even lower PAH levels, typically falling
within the range of approximately 0.1 to 4 mg kg ' of total
PAHs.*

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Potential exposure to PAHs may arise via several routes, such
as inhalation, ingestion, and direct skin contact. Research
conducted on occupational exposure has provided evidence of
various adverse health impacts resulting from elevated
concentrations of PAHs, such as the onset of carcinogenesis.**
The ingestion of PAHs has the potential to disrupt the normal
functioning of cellular membranes and several enzyme systems.
The primary focus of PAHs is the potential interaction between
the epoxides and dihydrodiols with cellular proteins and DNA,
resulting in physiological disturbances, cellular damage,
genetic variations, and developmental abnormalities.** The
extended use of industrial effluent combined with the utiliza-
tion of municipal wastewater for irrigation has resulted in the
excessive buildup of PAHs in agricultural soil. Crops cultivated
in soil affected by wastewater contamination have the capacity
to take up substantial quantities of these pollutants.”® In fact,
vegetables in PAH-contaminated soils have been reported to
accumulate PAHs, with their concentrations ranging from
508.9 mg kg™ ' to 197.3 mg kg~ ' in home gardens and 589.9 mg
kg ' to 171.3 mg kg~ " in agricultural fields.*

2.2 Toxicity of PAH compounds

Various PAHs exhibit toxicity, mutagenicity, carcinogenicity,
and teratogenicity. Due to their high lipophilicity, PAHs are
efficiently absorbed into the gastrointestinal tract of animals
and living beings.*” The processing methods, such as smoking,
drying, and heating, are the primary cause of contamination by
PAHSs. The quantity of PAHs in charcoal-grilled meals can reach
up to 320 pg kg~ '. Seven PAHs have been identified by the
Environmental Protection Agency (EPA) as potentially carcino-
genic to humans: indeno[1,2,3-cd|pyrene, benzo[b]fluo-
ranthene, benz[a]anthracene, benzo[a]pyrene, benzo[k]
fluoranthene, dibenz[ah]anthracene, and chrysene.*® Experi-
ments demonstrated the embryotoxic effects and early preg-
nancy associated with the several PAHs, including naphthalene,
benzo[a]pyrene, and benzo[a]anthracene.” Benzo[a]pyrene is
the first chemical carcinogen to be identified® and the
predominant PAH responsible for inducing carcinogenesis in
organisms. The effects of PAHs on aquatic species are deter-
mined by their metabolic and photo-oxidation processes, with
increased toxicity observed in the presence of UV light.
Furthermore, PAHs demonstrate a significant level of acute
toxicity towards aquatic organisms and avian lifeforms.>"*
The effects of PAHs on plants include disruption of
membrane-related physiological and biochemical processes
such as changes in membrane permeability, enzyme malfunc-
tion, and interference with photosynthesis.® PAHs typically
distribute into thylakoids, which may affect the chloroplasts
and disrupt the electron transport system. The various effects of
PAHs on treated plants show that thylakoid membranes accu-
mulate hydrophobic PAHs.** According to reports, anthracene
has been found to have inhibitory effects on the process of
carbon fixation, leading to a reduction in net photosynthesis.*
PAHs such as phenanthrene and pyrene, have been observed to
have a negative impact on the overall process of net photosyn-
thesis.*® Exposure to phenanthrene and pyrene in higher plants
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resulted in a reduction in growth, levels of photosynthetic
pigments, stomatal conductance, the maximal quantum yield,
the effective quantum yield of Photosystem II (PSII), and the
photochemical quenching coefficient.>®

The presence of PAHs in the top layers of agricultural soils
may have an impact on the overall quality of the habitat,
resulting in a reduction of its biological characteristics, such as
enzyme activity and microbial populations.®® PAHs can easily be
absorbed into the soil, causing the aggregation of soil particles
and reducing porosity.”” Prolonged exposure to contaminants
can have an impact on the geochemical characteristics of soils,
including changes in Atterberg limits (a fundamental indicator
of the crucial moisture levels in soils with fine particles),
permeability, conductivity, and parameters related to strength,
consolidation behaviour, compaction properties, infiltration
capacity, and shear strength.*® Furthermore, PAH contamina-
tion can alter the biological structure of soils, leading to
changes in biomass levels and microbial activity. A scientific
study reported a significant decline in the relative abundance of
microbial phyla, including Alphaproteobacteria, Actinobacteria,
Chloroflexi, Crenarchaeota, and Deltaproteobacteria, following
exposure to PAH contamination.*

Additionally, the deposition of PAHs onto the soil surface is
contingent upon their octanol-water partition coefficient (Koyw)-
A higher K, value correlates with reduced water solubility of
PAH compounds, resulting in an augmented affinity for
absorption onto soil particles.®® This partitioning behaviour
contributes to the retention and sequestration of PAHs in the
soil environment. Soil productivity can decline due to PAH
contamination, leading to reduced crop yields, with reports up
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to a 50% decrease in yields.** Several consequences of PAH
contamination, including biodiversity loss, adverse effects on
human health, carcinogenicity, alterations in soil structure and
geochemical cycling, increased greenhouse gas emissions
contributing to climate change, reduced crop productivity, and
disruptions in microbial diversity, are illustrated in Fig. 1.

2.3 Assessment of PAH compounds

Two advanced analytical techniques, such as microextraction
and miniaturized extraction methods, have been employed for
the extraction of PAHs from different samples.®” Micro-
extraction, including solid-phase microextraction (SPME), is
a single-step, highly sensitive, and efficient method of sample
preparation that eliminates the need for solvents, making it
suitable for a diverse array of chemicals across multiple
matrices.® Dispersive solid-phase extraction (d-SPE) is a variant
of SPME, where the sorbent is introduced directly into the
sample’s aqueous solution, resulting in dispersion.®* Ambade
et al.*® analysed PAH distribution in surface water and sedi-
ments from the Damodar River Basin using GC-FID and GC-
MS,® reporting PAH concentrations between 0.036 mg kg™ ' and
582 mg kg ', with acenaphthylene (ACY) and benzo(a)anthra-
cene (BaA) as the most abundant. Xue et al.®® developed a cost-
effective method for PAH quantification in soils using
ultrasonic-assisted extraction, solid-phase microextraction, and
GC-MS. The 100-um PDMS fiber exhibited superior perfor-
mance with high repeatability, low detection limits, and a broad
linear range, achieving recoveries above 79.3% in spiked
samples and proving effective for field analysis of 16 PAHs.

Plant uptake of
PAH compounds
results in reduce
1 crop production
\f/) and plant growth

-
(=) &
4 [N
] Q@
209
o™

Leads to genetic
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Fig.1 Adverse effects of PAH contamination encompass biodiversity depletion, detrimental impacts on human health, carcinogenic properties,
modifications in the soil structure and geochemical cycles, heightened greenhouse gas emissions exacerbating climate change, diminished

agricultural yield, and reduction in microbial diversity.
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Furthermore, among the various liquid-phase extraction
(LPME) methods, such as single-drop microextraction (SDME),
hollow fibre liquid-phase microextraction (HF-LPME), and
ultrasound-assisted emulsification microextraction (USAEME),
dispersive liquid-liquid microextraction (DLLME) is the most
widely utilised technique.®” The small volume (5 mm?®) within
the microsyringe, along with the rapid equilibrium between
gaseous analytes and the organic solvent film, SDME enabled
the use of high vapor pressure solvents like cyclohexane without
significant solvent loss during extraction.®® HF-LPME employs
disposable polypropylene porous hollow fibers filled with
a minimal amount of extracting solvent, known as the acceptor
phase.®® The target analytes are extracted by immersing the
fibers into the aqueous sample solution, termed the donor
phase. Various DLLME techniques have been developed for
PAH extraction.” Rezaee et al.”* introduced a method using
tetrachloroethylene and acetone for PAH quantification in
surface water, though its reliance on high-density solvents
limits efficiency. Guo et al.”*> developed a low-density solvent-
based demulsification approach using n-hexane and acetone,
eliminating the need for centrifugation and reducing extraction
time to 2-3 minutes. Hosseini et al.” explored air flotation-
assisted phase separation with toluene, further simplifying
the process. The integration of ultrasound and vortex radiation
has also improved mass transfer and extraction efficiency by
reducing the diffusion distance and increasing the interfacial
area. Fernandez et al” developed a laboratory-based valve
DLLME technique for PAH extraction, followed by analysis
using HPLC-FLD, and the automated system improved effi-
ciency, achieving enhancement factors of 86-95%. Further,
fabric phase sorptive extraction (FPSE), magnetic solid-phase
extraction (MSPE), flow injection solid-phase extraction (FI-
SPE), and in-syringe solid-phase extraction of PAHs are novel
miniaturized extraction methods of PAHs from different envi-
ronmental samples.” FPSE utilizes a fabric substrate coated
with a sol-gel organic-inorganic hybrid sorbent as the extrac-
tion medium. The coated FPSE medium is first cleaned with
solvents and deionized water and then immersed in the sample
solution with magnetic stirring to facilitate analyte adsorp-
tion.”® After extraction, the FPSE medium is removed, and the
analytes are eluted into a vial with an appropriate solvent for
analysis following centrifugation or filtration. A trace-level
analysis of specific PAHs in environmental water samples uti-
lising FPSE before their quantification by HPLC-FLD has been
documented.”” FPSE-HPLC-FLD has been demonstrated to be
direct, effective, rapid, sensitive, environmentally friendly, cost-
effective, and dependable for the trace level analysis of signifi-
cant PAHs.”® Furthermore,” gas chromatography-mass spec-
trometry (GC-MS), high-performance liquid chromatography
(HPLC), and ultra-high-pressure liquid chromatography
(UHPLC) in conjunction with various detection techniques such
as diode-array detectors (DAD), tandem mass spectrometry (MS/
MS) detectors, flame ionization detectors (FIDs), fluorescence
detectors (FDs), and ultraviolet (UV) detectors are the most
widely applied PAH detection methods.*® Wu et al.** proposed
the use of flow injection solid-phase extraction (FI-SPE) for the
extraction of PAHs from environmental samples, employing
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novel sorbents. Wu's research utilized a micro-column packed
with multi-walled carbon nanotubes (MWCNTs) for PAH
extraction, followed by gas chromatography-mass spectrometry
(GC-MS) analysis. In contrast, Manousi and Zachariadis®
synthesized a copper(u) isonicotinate coordination polymer as
a pre-column sorbent, with subsequent high-performance
liquid chromatography-diode array detection (HPLC-DAD)
analysis. Both methods exhibited efficient extraction perfor-
mance. For GC-MS detection, eluates from the FI-SPE process
were manually injected, whereas for HPLC-DAD analysis, on-
line elution in backflush mode allowed direct transfer of ana-
Iytes into the chromatographic column, streamlining the
analytical workflow. Mirzaee and Sartaj** demonstrated the
effectiveness of magnetic granular activated carbon (MGAC) in
removing PAHs from contaminated soil via an optimized soil
washing process. XRD analysis confirmed the successful
incorporation of Fe;O, nanoparticles onto MGAC. Moreover,
SEM-EDX and fluorescence microscopy used for the determi-
nation of PAH removal efficiency of Medicago sativa showed
a dissipation rate of 96.2%, followed by Helianthus annuus and
Tagetes erecta.®* Ma et al.** employed Fourier transform infrared
(FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS),
and thermogravimetric-mass spectrometry (TG-MS) to investi-
gate the composition and structure of soil aggregates (SAs) of
varying particle sizes. The study revealed that partitioning
played a dominant role in phenanthrene sorption in SAs larger
than 0.002 mm, while adsorption was more pronounced in finer
SAs (<0.002 mm), which exhibited the highest sorption coeffi-
cient (Kgq). Lower aqueous equilibrium concentrations of
phenanthrene further enhanced adsorption. Morphological
and structural analyses indicated that micropores, soil organic
matter (SOM), and minerals contributed to PAH sorption, while
TG-MS demonstrated that SOM inhibited PAH release during
heating. These findings improve the understanding of PAH-soil
interactions and interface modelling.

3. Different remediation strategies
used for remediation of PAHs from soil

The remediation of PAHs in soil possesses significant environ-
mental challenges, necessitating the application of physical,
chemical, and biological approaches. Among the physical
remediation techniques, solvent-based soil washing and
membrane filtration technologies, including ultrafiltration,
microfiltration, nanofiltration, and reverse osmosis, have
demonstrated effectiveness in the extraction of PAHs from
contaminated soil matrices.*® Thermal methods such as incin-
eration and iz situ thermal desorption (ISTD) are also employed
to remediate PAH-contaminated soils.*” Incineration is a highly
effective strategy that utilizes temperatures between 900 and
1200 °C to eliminate PAHs. Despite its efficiency, incineration is
an energy-intensive and costly remediation technique, largely
due to the necessity for stringent control measures to manage
off-gas emissions.*® Similarly, in situ thermal desorption (ISTD),
which involves heating the soil in place to volatilize and remove
PAHs, encounters comparable challenges related to high energy
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consumption and operational costs.*>*® Physical remediation
techniques, such as solvent extraction and electrokinetic
remediation, are relatively simple to implement and often
utilize non-toxic materials.”* However, their major drawback
lies in the necessity for repeated treatments to achieve effective
contaminant removal. Additionally, these methods frequently
require post-treatment measures to manage gaseous byprod-
ucts generated during the remediation process.

Chemical remediation of PAH-contaminated soil primarily
relies on oxidation processes. Oxidizing agents such as ozone
(0O3) and Fenton reagents (Fe**/H,0,) are widely utilized due to
their high efficiency in breaking down PAH compounds.®>** In
situ chemical oxidation (ISCO) represents another chemical
remediation approach, particularly effective for both low-
molecular-weight (LMW) and high-molecular-weight (HMW)
PAHs in agricultural soils. ISCO involves injecting oxidants
directly into the soil to break down PAHs. Despite its potential,
ISCO can also generate toxic secondary intermediates, posing
additional environmental risks.** Moreover, solvent extraction
(SE) and soil washing (SW) are widely employed for the reme-
diation of soils contaminated with HMW PAHSs. These methods
utilize solvents to dissolve and extract PAHs from the soil
matrix, facilitating their removal and subsequent treatment.
However, due to the hydrophobic nature of HMW PAHs and
their strong binding to the soil matrix, SE/SW is not fully
effective in removing all PAHs.”® Furthermore, physical and
chemical remediation methods for PAH-contaminated envi-
ronments often fail to achieve complete removal of pollutants.
These approaches may also lead to the formation of secondary
intermediates, some of which can exhibit greater environ-
mental toxicity than the original PAH compounds.® These PAH
derivatives include oxygen (O-PAHs), nitrogen (N-PAHs and
azarenes AZA), or sulphur (PASHs) inside the aromatic ring. The
incorporation of oxygen, nitrogen, or sulphur into the aromatic
rings of PAHs increases their toxicity.®” Lundstedt et al.®® illus-
trated that O-PAHs possess greater mobility compared to their
parent PAHs, attributed to their polarity. Knecht et al.*® inves-
tigated the toxicity of 38 oxygenated PAHs (O-PAHs) on zebrafish
embryos (Danio rerio), revealing that structural variations
significantly influence toxicity levels. O-PAHs with adjacent
diones on 6-carbon moieties or terminal para-diones on multi-
ring structures exhibited varying degrees of toxicity, whereas 5-
carbon moieties with adjacent diones were the least toxic. The
study further demonstrated that the toxicity of selected O-PAHs
was differentially dependent on the aryl hydrocarbon receptor
(AHR), emphasizing the role of oxidative stress in their toxico-
logical mechanisms. Additionally, B[a]A or benzanthraquinone
in zebrafish resulted in detrimental effects on protein biosyn-
thesis, mitochondrial and cardiac function, and neural and
vascular development.'® Further, 3-nitrobenzanthrone (3-NBA),
a derivative of benzanthrone, demonstrated superior toxicity
relative to 1-nitropyrene (1-NP) or benzo[a]pyrene (B[a]P). This
substance also caused an increase of cells in the S-phase, fol-
lowed by the typical process of apoptotic cell death. The pres-
ence of 3-NBA triggers a substantial DNA response via the
phosphorylation of the ataxia-telangiectasia mutant, check-
point kinase (Chk) 2/Chk1, H2AX, and p53.'*" Similarly, Wang
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et al. demonstrated through in vitro and in vivo studies that 1-
hydroxypyrene, 1-nitropyrene, and 1-methylpyrene, derivatives
of pyrene, exhibit greater toxicity to lung health than the parent
compound. Derivatives of benzo[a]anthracene, particularly 7-
methylbenz[a]anthracene, exhibited the highest tumorigenic
activity among the compounds analysed, leading to the devel-
opment of subcutaneous sarcomas and multiple tumors in the
lungs and liver.'** Additionally, 7-bromomethyl-12-methylbenz
[a]lanthracene demonstrated comparable tumorigenic effects in
the lung and liver. In contrast, 4-chloro-7-bromomethylbenz[a]
anthracene exhibited minimal activity, with only a slight
increase in liver tumor incidence in male mice.'*

Bioremediation is considered a highly effective and envi-
ronmentally friendly method for addressing PAH contamina-
tion in soil. It offers numerous benefits, including minimal
energy usage, limited secondary pollution, and cost-effective-
ness.'” Bioremediation of PAH-contaminated soil utilizes
microorganisms, including bacteria, fungi, and plants, to
degrade and transform hydrocarbon compounds.’® In recent
years, various bioremediation strategies have demonstrated
significant efficacy in the removal of PAHs from polluted
environments'**** (Table 1). Guo et al.'® isolated a bacterial
consortium from PAH-contaminated soil capable of utilizing
pyrene (PYR) as the sole carbon source, achieving 76% degra-
dation in a liquid medium within 10 days. Xiong et al.** re-
ported that Mycobacterium gilvum, isolated from PAH-
contaminated soil, exhibited high efficiency in PYR removal,
degrading 98% within just 5 days. Additionally, Zafra et al.***
constructed a bacterial consortium that effectively degraded
phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) in
soil, achieving 92% removal of PHE, 64% of PYR, and 65% of
BaP within 14 days.

During the degradation process, these bacteria utilize PAHs
as a carbon source for energy production and growth. Specific
bacteria, such as Mycobacterium sp., can oxidatively degrade
PAHs via the cytochrome P450 monooxygenase enzyme,
producing trans-dihydrodiols."*> The phylum Proteobacteria is
often predominant in hydrocarbon-contaminated environ-
ments.”*® Reports indicate that bacterial communities rapidly
adapt to fuel contamination by shifting towards hydrocarbon-
degrading species.” " Utilizing indigenous microorganisms
for ecological restoration is a widely adopted method for in situ
bioremediation, where pollutants are converted into non-toxic
compounds.”® Conversely, ex situ bioremediation techniques,
while effective, can be more costly, potentially less environ-
mentally sustainable, and may increase the risk of secondary
contamination compared to in situ methods.'*

The primary metabolic pathways for the degradation of
aromatic compounds begin with the ortho- and meta-cleavage of
catechol molecules. Oxygen is essential for several steps in the
aerobic degradation of PAHs by bacteria, including ring
hydroxylation, ring cleavage, and the final electron uptake.**'*
Pyrene mineralization can occur at the C-1 and C-2 positions or
at the C-4 and C-5 positions of the aromatic ring due to the
action of dioxygenase enzymes.">'** Numerous Dbacteria,
including those from the genera Pseudomonas and Rhodococcus,
can oxidize PAHs using dioxygenase enzymes."**'*> Several

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Different PAH bioremediation techniques and their applications

SI. no

Bioremediation techniques

Application

References

10

11

12

13

14

15

Microbial bioremediation

Phytoremediation

Microbe-assisted phytoremediation

Electro-bioremediation

Electrokinetic-phytoremediation

Enzymatic remediation

Microbial fuel cells

Wetland's construction
Nano-bioremediation
Natural attenuation

Biostimulation

Bioaugmentation

Composting

Bioreactor

Vermiremediation

Uses microorganisms (bacteria, fungi, archaea, and algae) for organic
pollutant remediation

Involves plant-based in situ remediation, including methods like
phytoextraction, phytofiltration, phytostabilization, phytovolatilization,
phytodegradation, rhizodegradation, and phytodesalination

The utilization of a bioremediation technique involves the
establishment of a mutualistic relationship between plants and bacteria,
such as rhizobacteria and endophytes. This association is employed to
augment the effectiveness of remediation processes in contaminated
environments

This approach employs a hybrid technology that combines
bioremediation with electrokinetic mechanisms for the treatment of
environmental pollutants. Electrokinetic phenomena play a crucial role
in expediting and directing the transportation of environmental
contaminants and microorganisms for the purpose of biological
remediation

It is a hybrid technology that combines phytoremediation with
electrokinetic remediation. This method increases the metal mobility in
polluted soil to facilitate their plant uptake

Utilizes catabolic enzymes to increase the degradation and
detoxification of pollutants

The bio-electrochemical device harnesses the capabilities of aerobic
microorganisms to efficiently convert organic substrates found in
wastewater and other contaminants into electrical energy

Natural treatment involving wetland vegetation and microbes to
improve soil quality

Integrated method using nanoparticles alongside bioremediation for
sustainable remediation

Enhances indigenous microbiome's degradation capacity by improving
soil conditions

This technique involves enhancing the indigenous microbial activity in
contaminated soil by introducing nutrients, fertilizers, humic acid,
organic wastes, etc. These additions serve to stimulate the growth and
activities of microorganisms, thereby promoting the remediation
process

The introduction of a highly efficient microbial consortium into soil
contaminated with pollutants aims to enhance the degradation of these
contaminants and enhance the catabolic capabilities of the existing
native microbiome

Cost-effective method of increasing soil organic content and fertility,
leading to enhanced degradation

A controlled ex situ system is utilized, incorporating the use of
surfactants, bioaugmentation, and biostimulation techniques for the
purpose of bioremediating PAHs

Interactions between plants and microorganisms are employed for the
purpose of PAH removal from fine soil with pore sizes smaller than
0.1 mm. PAHs that have accumulated within small pores exhibit limited
accessibility for biodegradation. Through their burrowing, earthworms
make soil pores bigger, which makes it easier for microbes and plant
roots to get into the soil and break down PAHs

110

111-114

115

116

117 and
118

119 and
120
121
121
122
123 and

124
125

110

126

127

128

bacteria have been identified to have a bifunctional enzyme
encoded by the paaZ gene. This enzyme features an N-terminal
aldehyde dehydrogenase domain and a C-terminal enoyl-CoA
hydratase domain.**® The dioxygenase enzyme facilitates the
breakdown of catechol through several pathways, ultimately
leading to the production of succinyl-CoA, which then enters
the TCA cycle.’” Metagenomic function profiling indicates
a high abundance of key enzymes involved in the central
metabolism of petroleum contaminants, including catechol 1,2-

© 2025 The Author(s). Published by the Royal Society of Chemistry

dioxygenase, catechol 2,3-dioxygenase, muconolactone p-isom-
erase, 3-oxoadipate enol-lactonase, and 4-oxalocrotonate tau-
tomerase."'>**® Various species such as Bacillus subtilis,
Rhodococcus erythropolis, Ochrobactrum, Hyphomonas spp., and
Actinomycete sp. have been identified for their ability to degrade
n-alkanes and aromatic hydrocarbons.”**** The degradation
pathways of PAHs in microbes are illustrated in Fig. 3. These
pathways involve enzymatic transformations mediated by
dioxygenases, monooxygenases, and oxidoreductases, leading
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to the breakdown of complex PAH structures into less toxic
intermediates and ultimately mineralization into CO, and H,O.

Despite its advantages, on-site bioremediation is often con-
strained by several limiting factors, including high contami-
nation levels, low nutrient availability, restricted microbial
proliferation due to limited soil space, and competition among
microbial populations. In such cases, rhizoremediation
emerges as an effective strategy by leveraging plant-microbe
interactions. Plants facilitate microbial proliferation by
supplying nutrients and root exudates, while microbes enhance
plant resilience in contaminated environments by degrading
pollutants and improving soil conditions.

4. Rhizoremediation as a method for
restoring natural ecosystems

According to the UN Environment Programme (2022), the esti-
mated annual global loss of ecosystem services between 1997
and 2011 ranged from €3.5 to €18.5 trillion."* The primary
focus of ecological restoration research has been on community
and ecosystem ecology, with a significant emphasis on plant-
based restoration efforts. Restoring degraded ecosystems
plays a pivotal role in achieving the Sustainable Development
Goals (SDGs),'* particularly those related to climate change
mitigation, poverty alleviation, and food security. Furthermore,
a substantial £14 billion ($19.2 billion) has been allocated by
public and private sectors to advance the SDGs, as reported by
the United Nations in 2022.'*° Therefore, to tackle such envi-
ronmental consequences, rhizoremediation is acknowledged as
an effective approach for ecosystem restoration, resulting in
substantial decreases in PAH concentrations, increased
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Industrial effluents

Natural and anthropogenic
events of crude oil contamination

Fig. 2

Plant based bioremediation
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microbial degradation activity, and better soil health metrics in
diverse polluted environments.”” The synergistic interactions
between microorganisms and plants in contaminant remedia-
tion represent a nature-based approach for producing envi-
ronmentally safe end products. This method not only facilitates
effective pollutant degradation but also contributes to the
restoration of impaired ecosystems, promoting ecological
balance and sustainability.”>* Bisht et al.*>* demonstrated that
Bacillus sp. SBER3 degraded 83.4% of anthracene and 75.1% of
naphthalene under laboratory conditions, while anthracene
degradation in the rhizosphere of Populus deltoides was 45.6%.
Liste** reported that pyrene degradation reached 74% in
vegetated soil, compared to 40% in unplanted soil over an eight-
week period. Rostami et al.*®® further investigated the role of
cysteine in enhancing Festuca resilience to PAH-induced stress,
demonstrating that pyrene and phenanthrene (200-400 mg
kg™ 1), in the presence of (100-200 mg kg™ ) cysteine, exhibited
removal efficiencies of 47.78-93.31% and 55.95-98.16%,
respectively.

Rhizoremediation, a specialized form of phytoremediation,
leverages the symbiotic relationship between plants and
microorganisms to environmentally remediate various waste
materials.”*® The efficacy of this technique hinges on the
synergistic interaction between plants and microorganisms
capable of degrading pollutants, notably PAHs." The extensive
root system of plants offers a substantial surface area,
promoting microbial proliferation and enabling the degrada-
tion of contaminants even at depths of 10-15 meters below the
soil surface.’® Plant growth-promoting rhizobacteria (PGPR)
are pivotal in rhizoremediation, as they not only aid in pollutant
degradation but also enhance plant growth through organic
acid and hormone secretion.'” PGPR strains provide resilience
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Illustrations of various PAH-contaminated sources and diverse plant-based remediation mechanisms, including phytovolatilization,

phytoaccumulation, phytoextraction, rhizodegradation, rhizoaccumulation, and rhizofiltration.
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to environmental stresses and offer additional benefits such as
metal detoxification, nitrogen fixation, and phosphate solubi-
lization.*® The use of PGPR in rhizoremediation enhances
pollutant degradation, highlighting the multiple benefits of this
practical, non-destructive, and cost-effective approach to envi-
ronmental remediation.'®* Various PAH-contaminated sources
and different plant-based remediation mechanisms, including
phytovolatilization, phytoaccumulation, phytoextraction, rhi-
zodegradation, rhizoaccumulation, and rhizofiltration, have
been illustrated in Fig. 2. Further, Table 2 shows the compar-
ison of different rhizoremediation methods to decontaminate
PAH and petroleum hydrocarbons.

4.1. Plant-microbe interaction to degrade PAHs in soil

Sayyed et al.*** highlighted the stimulation of microbial activity
by root exudates, a phenomenon termed the “rhizospheric
effect,” which enhances the degradation of organic compounds
by plants. The rhizosphere plays a pivotal role in facilitating
crucial processes such as primary and secondary metabolism,
as well as the establishment, survival, and ecological interac-
tions with other organisms.”® Plants in contaminated sites
stimulate the accumulation of rhizospheric microorganisms
near their roots through the release of nutrient-rich root
exudates.”® This microbial aggregation supports plant growth
and promotes a healthy root system in contaminated
environments.**

Hou et al'® conducted a study where they observed an
increase in the biomass of Festuca arundinacea L. and the
degradation of PAHs in oil-contaminated soil. This was ach-
ieved through bioaugmentation using bacteria that have plant
growth-promoting properties and the ability to produce bio-
surfactants. Moreover, the concentration of bacteria specialized
in the degradation of PAHs was observed to be significantly
greater in the rhizosphere region of plant species in comparison
to soil sites devoid of plant presence.'® Sampaio et al.*** showed
that bacterial sp., Bacillus sp. and Pseudomonas aeruginosa
effectively colonized the roots ofRhizophora mangle L. In addi-
tion to colonization, these bacterial strains played a crucial role
in providing protection to the plant, enhancing propagule
germination, and achieving the degradation of over 80% of
PAHs present in sediment. In a field study conducted on
a former coal mine site, researchers evaluated the ability of
different legume tree species, including Cassia siamea, Albizia
lebbeck, Delonix regia, and Dalbergia sissoo, to lower soil PAH
levels. According to the findings, the degradation rates among
the tested trees ranged from 51.5% to 81.6%."** The rhizosphere
of Zea mays (maize) and Sorghum sudanense (Sudan grass),
cultivated in the presence of benzo[a]pyrene (BaP) and pyrene
(PYR), along with Stenotrophomonas sp. MAL1, Arthrobacter sp.
MAL3, and Microbacterium sp. MAL2, showed complete PYR
degradation and 38.7% BaP degradation over 10 to 14 days,
when supplemented with low molecular weight organic acids
(LMWOAs).' Further, Singha et al.*** demonstrated the effec-
tiveness of rhizoremediation in pyrene-contaminated soils
through interactions between Oryza sativa (rice) plants and
microbial consortia. A bacterial consortium of Klebsiella
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pneumoniae AWD5 and Pseudomonas aeruginosa PDB1 achieved
60% pyrene degradation. Similarly, Kotoky and Pandey'
investigated the rhizodegradation of benzo[a]pyrene (BaP)
using a bacterial consortium (Bacillus subtilis SR1, Serratia
marcescens S217, andStaphylococcus arlettae S111) in the rhizo-
sphere of Melia azedarach. BaP degradation reached 88% in the
rhizosphere after 60 days, compared to 68.22% in bulk soil. In
a separate study, Bacillus flexus S1126 and Paenibacillus sp. S118
enhanced benzo[a]pyrene (BaP) solubilization by 24.41%, with
pot trials, demonstrating even higher rhizosphere degradation
efficiencies of 87.42% and 86.08%, respectively.'® Mukho-
padhyay and Masto'®® evaluated PAH degradation in coal mine
sites, where Cassia siamea achieved the highest PAH reduction
(81.6%), followed by Albizia lebbeck (55.6%), Delonix regia
(51.9%), and Dalbergia sissoo (51.5%). Somtrakoon et al.'®
evaluated the impact of plant growth regulators on the phytor-
emediation potential of sweet grass (Pennisetum purpureum cv.
Mahasarakham) in PAH-contaminated soil. The presence of
sweet grass led to reductions in acenaphthylene (4.69 £ 0.50%),
acenaphthene (10.69 + 1.47%), and phenanthrene (3.61 +
0.07%), whereas unplanted soil showed PAH reductions
exceeding 30%, in field studies. Zhao et al.*® further investi-
gated the role of an indigenous BaP degrader, Stenotrophomonas
BaP-1, in the ryegrass rhizosphere. Following bioaugmentation,
the residual BaP mass in ryegrass and bioaugmented micro-
cosms was 2.38 &+ 0.10 mg kg~' and 2.33 £+ 0.07 mg kg™,
respectively. Additionally, the degradation rates of X15PAHSs
after 45 days ranged from 32.80% to 74.35% with the applica-
tion of the consortium to alfalfa plants. Similarly, Gawryluk
et al.™* observed an 8% increase in phenanthrene elimination
in the rhizosphere after 14 days of ryegrass cultivation. Pyrene
degradation in the rhizosphere of Festuca arundinacea (tall
fescue) was 8.85-20.7% higher than that in non-plant soils. Dai
et al.' reported a 21.8-28.0% increase in ) PAH elimination
(pyrene, chrysene, benzo(b)fluoranthene, and benzo(k)fluo-
ranthene) in the rhizosphere of ryegrass as compared to
unplanted soils.

Root-associated niches play a crucial role in pollutant dissi-
pation, with phenanthrene and pyrene removal decreasing from
the rhizoplane to the rhizosphere and near-rhizosphere soil (0-
8 mm) after 40-50 days of ryegrass growth.'®> Moreover, rhizo-
sphere activity significantly enhances the degradation of freshly
spiked PAHs compared to weathered PAHs." For instance,
a phenanthrene dissipation rate of 86% was observed in the
rhizosphere just one week after wheat planting.*** Additionally,
the elimination rates of phenanthrene in the rhizosphere of
Lolium perenne exceeded those of Elsholtzia splendens under low
copper (Cu) treatment. However, Elsholtzia splendens demon-
strated higher phenanthrene degradation under elevated Cu
treatment." Examples of efficient plant-microbe pairs utilized
for the degradation of PAH compounds are listed in Table 4.

Plant growth-promoting microorganisms (PGPMOs) have
gained recognition for their substantial influence on the
rhizosphere environment. They augment the production of
growth-promoting hormones, enzymes, siderophores, bio-
surfactants, and ACC deaminase.'**'®” Moreover, there are
microorganisms referred to as “superbugs” capable of
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biodegrading a diverse array of contaminants. Consortia of
microorganisms, wherein individual strains fulfil complemen-
tary functions, also exhibit advantageous characteristics. The
rhizosphere effect, driven by the secretion of PAH compounds,
biosurfactants, and organic molecules, positively influences
microbial diversity, activity, and the rhizoremediation
process.*®® Biosurfactants, amphiphilic molecules produced by
microorganisms, form micelles in the presence of hydrophobic
PAHs, increasing their bioavailability and promoting biodeg-
radation.™ Microbes generate organic acids, which lower soil
pH and enhance PAH solubility. Additionally, enzymatic
synthesis of degradative agents, like oxidoreductases, signifi-
cantly boosts the degradation process.”® The application of
Verbascum sinuatum L. and a microbial consortium effectively
remediated polluted soils, reducing PAHs and 6-ring
compounds by up to 68%.7" Mehmannavaz et al.>** found that
the introduction of Sinorhizobium meliloti strain A-025, a rhizo-
bacterium that forms a symbiotic relationship with alfalfa and
fixes nitrogen, increased the conversion of several poly-
chlorinated biphenyls (PCBs). A wide range of bacterial genera,
including Pseudoxanthomonas, Burkholderia, Mycobacterium,
Prevotella, Cellulomonas, Actinobacillus, Anaeromyxobacter, Par-
aburkholderia, Sphingomonas, Novosphingobium, Acetivibrio,
Acetobacter, Cycloclasticus, Microbulbifer, Gordonia, and Micro-
coccus, have been identified as involved in the degradation of
PAHs in the rhizosphere.?*->%

4.2. Role of plant-root exudates in shaping microbial
diversity in PAH contaminated soil

The presence of root exudates plays a crucial role in shaping the
composition and population of microorganisms in the rhizo-
sphere, while also playing an essential role in the growth and
development of the rhizosphere.””” The chemical composition
of root exudates is influenced by the specific type of plant and
various environmental factors.>”® Root exudates play a crucial
role in regulating the soil rhizosphere microbiome, promoting
beneficial symbiotic interactions, suppressing the growth of
competitive organisms, and enhancing the chemical and
physical conditions of the so0il.** Root exudates can be cat-
egorised into different groups depending on their chemical
composition, such as passive root exudates, root tissue lysates,
mucilage chemicals, and secondary metabolites.**

Plants develop various interactions, both beneficial and
harmful, through the release of root exudates. These interac-
tions influence relationships among different plants as well as
interactions with microorganisms, shaping the rhizosphere
environment and affecting processes like nutrient cycling,
microbial colonization, and contaminant degradation.*** Soil
amended with root exudates containing high concentrations of
organic acids has been found to have a reduced capacity for
absorbing organic pollutants.’®*** Rajkumari et al**® found
that the application of certain substances, such as organic
acids, glucose, and serine, can significantly improve the
degradation of PAHs. The presence of glucose in the root
exudates triggers the production of dehydrogenase enzyme,
which aids in the breakdown of pyrene and promotes the
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growth of Mycobacterium sp. A study conducted by Jin et al.***
found that Arabidopsis plants with enhanced phenolic exudate
secretion experienced significant changes in the microorgan-
isms present in the rhizosphere. The biodegradation of phen-
anthrene was observed to be most effective within a distance of
3 mm from the roots, with a degradation rate of 86%. However,
the degradation rate decreased to 48% at a distance of 3-6 mm
and further declined to 36% at a distance of 6-9 mm. There is
a positive relationship between the proximity to the roots and
the abundance of heterotrophs and PAH-degrading bacteria. In
the rhizosphere of perennial ryegrass (Lolium perenne L.) grown
in soil contaminated with petroleum hydrocarbons, a majority
of the hydrocarbon degraders were found within a 3 mm
distance.””® Muungo®® showed that Pseudomonas and Arthro-
bacter exhibited the highest levels of activity in degrading
phenanthrene. Interestingly, this was observed both in the
presence and absence of artificial root exudates. The area
surrounding the roots of perennial ryegrass, known as the
rhizosphere, exhibited the highest levels of microbial activity
and contamination.?” The microbial community responsible
for phenanthrene degradation shifted when ryegrass exudates
were applied. Initially, Pseudoxanthomonas spp. and Micro-
bacterium spp. were identified as the main phenanthrene
degraders. However, after the application of ryegrass exudates,
the dominant species changed to Arthrobacter spp. and Pseu-
domonas stutzeri.'® A variety of microbial species have the
ability to utilise both root exudates and hydrocarbons as their
source of carbon.**® Table 2 shows the different plant-microbe
pairs to degrade PAH in soil. Yergeau et al.>*® found that key
bacterial groups, including Alphaproteobacteria, Betaproteobac-
teria, Gammaproteobacteria, and Acidobacteria, exhibited
increased activity in the willow rhizosphere, while most showed
reduced activity in bulk soil. Additionally, fungi such as Basi-
diomycota, Ascomycota, and Glomeromycota were notably more
active in the rhizosphere than in bulk soil. Microbial taxa in the
rhizosphere exposed to PAHs became dominant, with Euro-
tiomycetes increasing from 20.6% to 52.2% and Eurotiales from
20.4% to 51.8%, suggesting their role as primary PAH
degraders.’” Rhizosphere stimulation varied significantly
depending on soil pollution levels,> and it enhances PAH-
degrading bacterial populations in the rhizosphere compared
to bulk soil.** Bacterial taxa such as Sphingobacteriia and Acti-
nobacteria, along with genera including Pseudomonas, Rhizo-
bium, Sphingomonas, Ilumatobacter, Singulisphaera, and Ensifer
meliloti, exhibit increased relative abundances in the rhizo-
sphere of ryegrass and lucerne.””® DNA-SIP studies confirm their
role in PAH degradation, as demonstrated by 13°-PAH-labeled
components.**®?**  Additionally, certain indigenous herb
species from coking facility soils promote PAH-degrading
bacterial communities like Sphingomonas, Pedomicrobium, and
Pseudomonas in the rhizosphere.”” Research indicates that over
90% of phenanthrene and more than 60% of pyrene were
eliminated from planted soils after 40 to 80 days of develop-
ment, surpassing the removal levels in non-planted soils.?** For
instance, phenanthrene removal efficiency in the rhizosphere
increased by 8% following 14 days of ryegrass cultivation,***
while pyrene removal efficiency in the rhizosphere of tall fescue
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(Festuca arundinacea) was elevated by 8.85% to 20.7% compared
to non-planted soils.**®

Huang et al.*** found that different subspecies of Arabidopsis
release unique exudates that specifically target the microbiome
in the rhizosphere. These exudates play a significant role in
altering the microbial community in the root zone. Kimani
et al.” showed that the phenolic substance has the ability to
alter the microbial composition, distinguishing it from other
compounds like sugar and carbohydrates. In addition to
phenolic compounds, the exudates from cucumber roots,
specifically p-coumaric acid and vanillic acid, have been found
to impact the microbiome in the rhizosphere, leading to alter-
ations and increased abundance.”®® Certain compounds found
in root exudates have the ability to imitate the signalling
molecules known as bacterial quorum-sensing N-acyl homo-
serine lactones (AHLs).””” These compounds play a role in
regulating the interaction between plants and microbes. Addi-
tionally, the bacterial functions in the host plant can be regu-
lated by inducing the gene for host infection, promoting the
production of biofilms and biosurfactants, enhancing nitrogen
fixation, and increasing the production of degrading
enzymes.*”® Some plant species, like Coronilla varia, Pisum sat-
ivum, and Oryza sativa, release compounds similar to AHLs
found in certain microbes. These compounds help these plants
regulate the population of microbes in the rhizosphere, while
also repelling others.?”” Enzymes like peroxidase, laccases, and
phenol oxidases produced by plants play a crucial role in the
oxidation of hydrocarbon products into intermediate deriva-
tives.”** Singha et al.**' showed Pseudomonas fragi DBC and
Jatropha curcas interacted for pyrene biodegradation, with yfc
upregulation under pyrene stress in the presence of artificial
root exudates, enhancing plant growth and stress response in
Jatropha roots mediated by P. fragi DBC. The release of flavonoid
compounds from plant roots can trigger the co-metabolism of
polyaromatic hydrocarbons. This is because flavonoids have
a similar structure to aromatic compounds, which enhances the
degradation and mineralization process carried out by micro-
organisms.”®” The degradation of non-aromatic plant
compounds, specifically linoleic acid-induced pyrene and benzo
[a]lpyrene, by Gram-positive microorganisms has also been
investigated. Various studies have highlighted the enhanced
bioavailability of xenobiotic compounds when plant roots
secrete low molecular weight organic acids like malic acid, citric
acid, succinic acid, tartaric acid, and oxalic acid.>*

Despite these beneficial approaches, very few large-scale and
long-term studies have been conducted on the rhizoremediation
of PAH-contaminated soils. Most existing studies are limited to
greenhouse conditions and focus primarily on bioremediation
strategies involving microbial populations. Therefore, there is an
urgent need to promote awareness and popularize rhizor-
emediation techniques for global applications. Table 3 provides
examples of large-scale field studies on bioremediation, specifi-
cally addressing TPH and PAH remediation.

The rhizoremediation of PAHs using plants and microbes in
the soil is illustrated in Fig. 3. Root exudates, such as carbohy-
drates, flavonoids, and amino acids, facilitate interactions with
rhizospheric microbes, enhancing the microbial degradation of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Details of field case studies on bioremediation conducted worldwide

SI. no Sites

Type of remediation

Degradation efficiency References

1 University of Calabar (spiked with crude oil)

2 University of Port Harcourt spiked with
crude oil

3 Former oil refinery site in Montreal, Canada

4 Kuwait

5 Crude oil polluted farmland in Bodo

6 Northern France

7 China

8 Shengli Oil Field in Dongying City, China

9 India

10 Jianghan Oil Field, China

PAH compounds. Additionally, the secretion of various
compounds such as indole acetic acid (IAA), siderophores, ACC
deaminase, and phytohormones promotes plant growth and
provides protection in contaminated environments. Microbial
cells contribute to PAH degradation by producing enzymes such
as dioxygenases, monooxygenases, and oxidoreductases, which
break down complex PAH structures into less toxic intermediates
and ultimately lead to their mineralization into CO, and H,O.
Similarly, plants produce enzymes like peroxidases, laccases, and
phenol oxidases, which play a crucial role in the oxidation of
hydrocarbon compounds into intermediate derivatives, further
facilitating PAH degradation and accumulation.

4.3. Genetic attributes for rhizoremediation of PAHs

The rhizosphere enriched both PAH-degrading microorganisms
and functional genes associated with PAH degradation.>*® The
alteration in the chemical properties of PAHs, such as their
hydrophobic or hydrophilic character, affects their absorption
by microbial communities and plant cells. The use of Tricho-
derma virens-derived glutathione transferase (GST) enhanced
the effectiveness of phytoremediation for recalcitrant PAHs,
such as anthracene, by genetically incorporating the gene into
Nicotiana tabacum (tobacco) plants.?** Ibafiez et al.>*® found that
the use of TPX1 (tobacco transgenic hairy roots) in conjunction
with arbuscular mycorrhizal fungus (AMF) enhanced the

© 2025 The Author(s). Published by the Royal Society of Chemistry

Bioremediation

Biostimulation and
phytoremediation
Rhizoremediation
Native microbial species
bioremediation
Phytoremediation

Phytoremediation

Phytoremediation

Rhizoremediation

Rhizoremediation

Bioremediation

Bacillus, Pseudomonas, Vibrio, Micrococcus, 234
and Alcaligenes reduced crude oil from
26.7% to 43.3% after 16 days
Biostimulation of soil with NPK was more
effective than phytoremediation using
Vigna sp.

Willow plantations showed a 60-80%
reduction in organic contaminants and
heavy metals

Over a 12-month period, reduction of TPH
up to 82.5% and 90.5% of alkanes

In 90 days, M. alternifolius and F. ferruginea
showed 99% TPH removal and 78% PAH
removal

Miscanthus x giganteus. 3.19-53.85%
removal of PAHs

7 month rhizoremediation using alfalfa
and tall fescue. 7.5-17.2% 5(+6)-ring PAH
removal by alfalfa and 25.1—-30.1% in tall
fescue

In 150 days, the removal rate of > 8 PAHs
was up to 99.40% using Fire Phoenix
Populus deltoides with Kurthia sp. SBA4,
Micrococcus varians SBAS, Deinococcus
radiodurans SBA6 and Bacillus circulans
SBA12 degraded 43.6% of PAHs in 120
days

Pseudomonas sp., with rice husk and
plowing, showed 95% TPH degradation in
150 days

235

236

237

238

239

240

241

242

243

efficiency of phenol phytoremediation as compared to only
relying on transgenic hairy root technology. AMF-enhanced
transgenic tobacco hairy roots have a notable capacity to with-
stand elevated concentrations of phenol. This may be attributed
to the existence of strong anti-oxidative enzyme systems that
protect against oxidative damage caused by phenol. Horizontal
gene transfer is a common occurrence in the endophytic niche,
where microbial communities adapt to environmental
stress.>®**%® For instance, the plasmid pTOM-Bu61, which
carries genes for enzymes that break down toluene, may spon-
taneously transfer to many types of plant endophytes. This
transfer has played a significant role in facilitating the effective
breakdown of toluene in poplar plants. Pseudomonas endo-
phytes carrying plasmids pWWO and pNAH7 exhibited signifi-
cant levels of horizontal transfer to other endophytes.”® In
a separate study, Barac et al*® documented the process of
conjugative transformation of natural endophytes to improve
the degradation of toluene. The expression of the bphA gene,
which encodes biphenyl dioxygenase in Pseudomonas sp., is
apparently induced by the presence of salicylate in root
exudates during the degradation of PCBs.>”* Enhanced variants
of bphA, which demonstrate improved PCB degradation capa-
bilities, were generated from Burkholderia cepacia strain LB400,
Comamonas testosteroni B-365, and Rhodococcus globerulus P6
using a family of shuffling technique.””> In the context of

Environ. Sci.: Adv., 2025, 4, 842-883 | 855
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Table 4 Plant-microbe association in rhizoremediation of pollutants
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SI. no Plant species Microbial species Type of contaminant References
1 Hordeum vulgare Burkholderia cepacia 2,4-Dichlorophenoxyacetic 244
acid
2 Populus deltoides Actinomycete Amycolata sp. 1,4-Dioxane 245
CB1190
3 Populus deltoides Sphingomonas yanoikuyae Benzo[a]pyrene 246
4 Spartina alterniflora Gram-negative bacteria and Phenanthrene, pyrene 247
endophytes
5 Glycine max Glomus caledonium GM24, Pyrene and others 248
Glomus intraradices GG31,
Glomus coronatum GU53,
Pseudomonas fluorescens
PA28, Pseudomonas borealis
PA29, Bacillus subtilis BA41
6 Cucumis sativus, Daucus Mixed culture Total 16 PAH 249
carota, Allium cepa,
Cucurbita, Petroselinum
sativum
7 Lotus corniculatus L., Rhizobium, Pseudomonas, Hydrocarbon 250
Oenothera biennis L. Stenotrophomonas
Rhodococcus
8 Trifolium repens, Lolium AMF Glomus mosseae PAH 251
perenne
9 Festuca arundinacea, Fulvivirga Phenanthrene, fluoranthene 252
Sorghum x drummondii kasyanovii,Massilia and pyrene
Lolium perenne, Lolium niabensis,Novosphingobium
multiflorum indicum
10 Jatropha curcas Pseudomonas aeruginosa Pyrene 253
PDB1
11 Vallisneria spiralis Mixed consortium Phenanthrene and pyrene 254
12 Melia azedarach B. subtilis SR1, B. subtilis Benzo(a)pyrene (BaP) 182
S1126, Paenibacillus sp. S118
and S. arlettae S111
13 Populus deltoides Kurthia sp., Micrococcus Chrysene, benzene, toluene, 255
varians, Deinococcus xylene, anthracene and
radiodurans and Bacillus naphthalene
circulans
14 Vigna unguiculata, Pseudomonas sphingomonas Mixed PAH 256
Helianthus annus,
Austrodanthonia caespitosa,
Zea mays, Sorghum
sudanense, Vetiveria
zizanoides
15 Italian ryegrass Pseudomonas poae, Hydrocarbon contamination 257
Actinobacter bouvetii,
Stenotrophomonas rhizophila,
Pseudomonas rhizosphaerae
16 Lolium perenne, Medicago Mixed culture Pyrene 258
sativa
17 Populus deltoides Burkholderia fungorum DBT1 Dibenzothiophene, 259
naphthalene, fluorene and
phenanthrene
18 T. patula, M. jalapa Mixed culture Benzo[a]pyrene 260
19 Brassica napus L. Rhodoccocus equi, B- Petroleum hydrocarbon 261
proteobacterium,
Enterobacter sp.,
Acinetobacter calcoaceticus,
Comamonas sp.,
Pseudomonas alcaligenes
20 Medicago sativa L. Sinorhizobium meliloti strain Dioxin-like PCB 262
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Fig. 3 The microbe-associated rhizoremediation of PAHs is a multistep process involving complex plant-microbe interactions. Root exudates
secreted by plant roots enhance both plant growth and microbial degradation of contaminants. In the rhizospheric space, plants and microbes
engage in chemical signalling and quorum sensing to facilitate cross-talk. In PAH-contaminated soil, microbial populations increase the

bioavailability of hydrocarbon contaminants and metabolize them as a carbon source. Additionally, plants can directly absorb and store simpler
forms of these contaminants in their biomass, contributing to the overall remediation process.

hydrocarbon remediation, several genes, including alkB, have
been identified as contributing to stress tolerance.””” In Pseu-
domonas sp., additional genes such as nah, pah, and phn
enhanced microbe-assisted phytoremediation.””**”* Nie et al.*”
studied the Dietzia genome, focusing on the alkB and CYP153
genes, which encode alkane monooxygenase and P450 alkane
hydroxylase potential for PAH phytoremediation. The expres-
sion of NahAa, NahAb, NahAc, and NahAd genes in Pseudomonas
putida G7 (flavoprotein reductase, ferredoxin, and terminal
dioxygenase subunits, respectively) was shown to enhance
phenanthrene rhizoremediation in Arabidopsis thaliana and
Oryza sativa. Enzymes such as nahAc and C230 (catechol 2,3-
dioxygenase) play a vital role in starting the conversion of BaP,
as they have evolved over time due to prolonged contact with
petroleum.>”® Research has demonstrated that certain micro-
organisms, including Pseudomonas sp., Burkholderia sp., Myco-
bacterium sp., and Sphingomonas sp., harbour highly conserved
catabolic gene clusters (nah, phd, nid, and phn) that encode
enzymes responsible for PAH degradation.””” Studies have
shown the enrichment of key PAH-degrading genes in the plant
rhizosphere, including PAH-RHD (PAH-ring hydroxylating
dioxygenase), phtA (phthalate dioxygenase), P340 (proto-
catechuate 3,4-dioxygenase), and C120/C230 (catechol dioxy-
genases).>®® These genes were elevated by 6.93-8.33-fold in 13°-
DNA metagenomes of the rhizosphere compared to bulk soil.**
The PAH-RHD gene showed a significantly higher abundance in
ryegrass rhizospheres exposed to benzo[a]pyrene,'® while tall
fescue enhanced PAH-RHDo Gram-negative gene expression.>”®

© 2025 The Author(s). Published by the Royal Society of Chemistry

Predominant PAH-degrading genes, including those encoding
PAH dioxygenase and ring-cleavage dioxygenase, were more
abundant in rhizospheres of Betula pendula in PAH-
contaminated soil than in bulk soil.*** Additionally, C120 and
C230 gene expression in tall fescue rhizospheres increased 1.2-
1.9 times relative to bulk soil.>”* The relative abundances of
PAH-RHD« genes showed a strong correlation with the degra-
dation rates of 13°-phenanthrene, highlighting their role in
PAH biodegradation. The current understanding of the genetic
basis of PAH degradation in the rhizosphere remains limited,
particularly in comparison to non-rhizosphere environments.*””
There is a need for further investigation into additional func-
tional genes associated with PAH biodegradation to enhance
rhizoremediation efforts. Multi-omics approaches, such as
metagenomics, metatranscriptomics, and metabolomics, as
explained in the following sections, can provide deeper insights
into the functional diversity, metabolic pathways, and regula-
tory mechanisms involved in microbial PAH degradation.
Different peripheral and central metabolic pathways related to
PAH metabolism in bacterial systems are illustrated in Fig. 4.
Aerobic degradation pathways involve dioxygenase-catalyzed
oxidation of aromatic rings, leading to the formation of dihy-
drodiol intermediates. These intermediates undergo further
cleavage via the ortho or meta pathways, generating key inter-
mediates such as protocatechuates and catechols, which are
subsequently integrated into the tricarboxylic acid (TCA) cycle
for complete mineralization.

Environ. Sci.: Adv., 2025, 4, 842-883 | 857
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5. Microbial diversity and functional
analysis of PAH contaminated soil

A significant and persistent challenge in the study of the
microbial role in PAH rhizoremediation lies in the restricted
knowledge to discern the majority of microbial taxa within the
community.*®® To address this limitation, emerging methodol-
ogies and advanced omics technologies have been developed to
explore the physiological, metabolic, and structural aspects of
the microbiome linked to the degradation of pollutants.

5.1. Metagenomics

The study of metagenomes in the rhizosphere offers valuable
insights into the organization and content of the microbiome,
particularly focusing on bacterial 16STDNA.**' Advancements in
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next-generation sequencing and bioinformatics methodologies
have enabled scientists to develop techniques and pipelines
that enhance understanding of metagenomes.”®> Metagenomics
enables the comprehensive understanding of microbial diver-
sity and their ecological roles within a specific habitat.®* The
phylum Proteobacteria continues to be prominently featured in
such habitats, highlighting its significant role in the natural
attenuation of PAH-contaminated soils.>®* In the context of soil
samples collected from crude oil wells, the predominant
microbial diversity was characterized by the presence of various
taxonomic groups, including members of the Acetobacteraceae,
Hyphomicrobiaceae, Rhodobacteraceae, and Sphingomonada-
ceae families.”® In contaminated soil, Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria exhibited a robust
association with other biological processes.”®® A greater preva-
lence of Rhodocyclaceae and Polaromonas in agricultural soils
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polluted with PAHs was positively correlated with the degrada-
tion of LMW PAHs.>*">%

In a recent study, Wang et al.**° observed a higher abundance
of Alphaproteobacteria and Actinobacteria in contaminated soil.
Similarly, the metagenomics analysis of a soil sample amended
with anthracene has indicated that the relative abundance of
Gammaproteobacteria was greater than that of Alphaproteobac-
teria.”®* Further, the prevalence of Actinobacteria was signifi-
cantly higher in soil that has been spiked with anthracene,
while Acidobacteria was predominantly found in soil that has
not been spiked.* Redfern et al.,* in metagenomic studies,
showed that the Geobacter species was a predominant bio-
stimulation candidate in PAH-contaminated soil due to its
significant prevalence and high abundance of degradative
genes. Further, Mycobacterium and Sphingomonas were found to
interact with different PAHs and have notable abundance in
contaminated soil, making them suitable candidates for bio-
augmentation studies.”®* Metagenomic analyses revealed the
presence of key metabolic intermediates such as phthalate,
protocatechuate, naphthalene, and salicylate in the rhizo-
sphere, reconstructing PAH degradation pathways based on
functional gene annotations.™

5.2. Genomics

Genomic methodologies that include the comprehensive anal-
ysis of an organism's whole genome or partial draft sequencing
provide distinct benefits for investigations related to a group of
genes participating in the complete breakdown of hydrocarbon
compounds. These high-throughput molecular techniques play
a crucial role in the identification of microbial traits and
operons that exhibit collective activity involving numerous
genes.”®® Additionally, these techniques aid in the identification
of genes with similar functions, which may be linked to various
additional genes in different microbes. The whole genome of
the newly identified sp. of Stenotrophomonas had a total of 145
genes that were associated with the breakdown of PAHs such as
anthraquinone, biphenyl, naphthalene, phenanthrene, and
phenanthridine.>*®

The whole genome sequencing of Sphingobium yanoikuyae B1
revealed the presence of around 5140 putative open reading
frames, composed of 35 dioxygenase genes including catechol
1, 2-dioxygenase, biphenyl 2,3-dioxygenase, and biphenyl-2, 3-
diol 1, 2-dioxygenase.**” Similarly, whole genome sequencing of
the Bacillus marisflavi Bac 144 strain revealed the existence of
genes associated with hydrocarbon degradation along with
significant plant growth-promoting (PGP) attributes. Several
species, including Gordonia bronchialis, Gordonia sputi, Wil-
liamsia muralis, and Corynebacterium efficiens, were detected to
express the catechol 1,2-dioxygenase gene under different PAH
stress conditions demonstrating its role in degradation
pathways.”*®*3% The genomic analysis of Bacillus subtilis SR1
reveals 12 genes involved in the metabolic processes of aromatic
compounds, including peripheral pathways like biphenyl 2,3-
dioxygenase, gentisate 1,2-dioxygenase, fumarylacetoacetase,
and catechol 2,3-dioxygenase, which catalyze the degradation of
hydrocarbons.*** Pseudomonas aeruginosa DN1 was found to be
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proficient in breaking down HMW PAHs and crude oil from soil
samples contaminated with petroleum at Changqing Oilfield.
The strain's genome contains numerous genes and gene clus-
ters that contribute to the degradation of aromatic compounds,
including catA (catechol 1,2-dioxygenase), pcaG, which encodes
the beta subunit of protocatechuate 3,4-dioxygenase, hmgA
(homogentisate  1,2-dioxygenase), dad  (2,4’-dihydrox-
yacetophenone dioxygenase), benzoate/toluate 1,2-dioxygenase
and gentisate 1,2-dioxygenase. Several genes, including nah,
phn, and nid, which encode enzymes such as naphthalene
dioxygenase, salicylate hydroxylase, and phenanthrene dioxy-
genase, have been identified as being responsible for PAH
degradation.*® Ivanova et al®**® documented that Para-
burkholderia aromaticivorans strain BN5 possesses a total of 29
monooxygenase and 54 dioxygenase genes associated with the
biodegradation of various hydrocarbons.

5.3. Metatranscriptomics

Metatranscriptomic analysis is employed to investigate the
mRNA expression patterns of genes within a specific microor-
ganism or a community of microorganisms present in an
ecosystem.*** Mukhtar et al.** studied the metatranscriptome
of functional gene expression in the Willow plant soil micro-
biome grown in contaminated and uncontaminated soil. The
contaminated rhizosphere showed increased expression of
genes related to competitive traits like antibiotic resistance and
biofilm formation due to selective pressure from pollutants and
the rhizosphere environment.**® Additionally, soils contami-
nated with pollutants had higher expression levels of genes
associated with PHC degradation. A study conducted by Peng
et al.>” employed a transcriptomics-based approach to elucidate
the specific microbial species involved in the degradation of
PHCs within the context of willow-microbe systems. The study
observed an increased expression of four key genes associated
with PHC degradation. This enhanced gene expression was
notably detected within several bacterial orders, including
Actinomycetales,  Rhodospirillales,  Burkholderiales,  Alter-
omonadales, Solirubrobacterales, Caulobacterales, and Rhizo-
biales. In a study, de Menezes et al.*® investigated the effects of
phenanthrene on the soil microbial community. It was
demonstrated that the addition of phenanthrene resulted in
a significant increase in the abundance of transcripts related to
dioxygenase, stress response, and detoxification. The relative
quantities of heavy metal P-type adenosine triphosphatases
(ATPases) and thioredoxin proteins in microorganisms, specif-
ically in relation to their response to PAH stress, have also been
identified.

5.4. Metaproteomics

The field of proteomics, or metaproteomics analysis, involves
the comprehensive examination of the whole protein compo-
sition within a certain ecological environment.’”® Meta-
proteomics can also be used for ongoing monitoring of the soil
microbial community as remediation efforts progress,
providing feedback on the effectiveness of bioremediation
strategies. Guazzaroni et al.**° used shotgun metagenomics and
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metaproteomics to study microbial diversity in soil contami-
nated with PAHs in northern Spain. Their primary objective was
to gain insights into how biostimulation influenced the
microbial community after exposure to naphthalene. The
researchers successfully reconstructed the metabolic pathway
responsible for the degradation of naphthalene, focusing on the
gentisate pathway, activated by specific bacterial groups within
the soil's complex microbial communities. Bastida et al.’"
investigated the compost-assisted bioremediation process in
semiarid soil contaminated with petroleum. Surprisingly, they
found that only 0.55% of the proteins identified in the compost-
treated soils were associated with biodegradation, despite the
successful removal of 88% of alkanes and PAHs within 50 days
of compost treatment. The primary influencers in the compost-
assisted bioremediation process were the Sphingomonadales.
These microorganisms exhibited a higher abundance of cata-
bolic enzymes, including dioxygenases and cis-dihydrodiol
dehydrogenases. Furthermore, in the presence of benzoate, p-
hydroxybenzoate, and vanillin, Pseudomonas putida KT2440
induced around 80 unique proteins, including various dioxy-
genases, hydrolases, and thiolases.*** Through proteomic
methods, researchers found that nidA is closely linked to the
metabolism of pyrene, while nidA3 is associated with fluo-
ranthene. This suggests that the bacterium employs different
initial RHO enzymes in response to HMW-PAHs when serving
as a carbon source.**?

Rabus®" reported metaproteomics analysis and found Bur-
kholderiales as the active community member responsible for
the degradation of PAHs in the presence of dioxygenase
enzymes within this microbial group. Further, the work by
Guazzaroni et al.*** unveiled the presence of the naphthalene
degradation pathway within certain bacterial species inhabiting
complex microbial communities. A metaproteomic approach
identified 847 proteins from microorganisms involved in
naphthalene and fluorene degradation. About 70% of these
proteins came from taxonomic groups like Burkholderiales,
Actinomycetales, and Rhizobiales.*"

5.5. Metabolomics

A metabolomic platform has the potential to be used for the
purpose of quantitatively and extensively investigating the
metabolic reactions of living organisms in response to external
influences.**® The application of metabolomic technology has
the potential to enhance the detection of biological reactions
resulting from soil changes, thereby elucidating distinct
phenotypic variations such as alterations in the composition
and quantity of soil metabolites.*’” Bao et al.*'® carried out an
extensive investigation to study the microbial community of
petroleum-contaminated soil. The results of their research
revealed a remarkable level of diversity within the microbial
population, as well as the presence of numerous metabolites.
Experimental investigations have shown a substantial increase
in the expression of enzymes during the breakdown of various
external aromatic compounds. Similarly, Li et al.** investigated
the profound impact of crude oil pollution on the composition
of soil microorganisms and their metabolites. The levels of
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metabolites derived from PAH degradation pathways included
9-fluorenone and gentisic acid. Wang et al.>** determined the
metabolites producing during phenanthrene degradation using
Rhodococcus qingshengii strain FF. The primary metabolite
identified was pyrogallol, and notably, 59% of the metabolites
were oxygen-containing PAHs with a single benzene ring.

PAHs reduce hydroxypyruvate levels and alter amino acid
metabolism, thereby influencing gluconeogenesis. Further-
more, phenanthrene exposure in wheat root cells leads to
decreased cellular pyruvate levels and downregulation of key
metabolic enzymes such as glyceraldehyde-3-phosphate dehy-
drogenase (involved in NADH production) and adenosine
kinase (related to ATP generation), which significantly impact
the dynamics of the TCA cycle.*** The existence of PAHS triggers
the activation of metabolic pathways related to galactose,
sucrose, inositol galactoside, and melibiose in plants. This
activation leads to elevated levels of p-mannose, p-galactose,
raffinose, galactinol, melibiose, sucrose, and p-glucose metab-
olites in plant tissues. The findings indicate a suppression of
energy-producing processes, specifically the synthesis of ATP
and NADPH, coupled with an induction of fermentative
metabolism within plant cells in the presence of different kinds
of PAHs.** Fig. 5 illustrates various omics approaches,
including metagenomics, genomics, metatranscriptomics,
metabolomics, and metaproteomics, for the identification of
PAH-degrading genes, metabolic pathways, enzyme expression,
and associated microbial abundance in soil.

6. Factors affecting the
rhizoremediation process

Rhizoremediation, being a mutually beneficial biological
process, is influenced by a multitude of factors, where the
interplay between plants and microorganisms is pivotal for
effective degradation.® Numerous abiotic and biotic factors
affect the biodegradation of polyaromatic hydrocarbons in
contaminated sites.*** These include soil properties, pollutant
concentrations, pH, soil composition, organic matter content,
temperature, nutrient availability, soil moisture, oxygen levels,
contaminant solubility, microbial community diversity, meta-
bolic capabilities, substrate specificity, carbon sources, and
biofilm/biosurfactant production. Also, the intensity of the
plant-microbe interactions has a significant impact on different
stages of rhizoremediation.®”® Furthermore, the rhizor-
emediation process is influenced by several interconnecting
factors. These factors include the physical and chemical
complexity of PAH compounds, the history of pollution, the
composition, porosity, and permeability of the soil, the density
of the soil, the distribution of contaminants, the metabolic
functioning of microbes, and the diversity of the microbial
population involved in PAH mineralization.***

Contamination by PAHs modifies the organic matter and
composition of soil, specifically influencing parameters such as
carbon-to-nitrogen ratio, carbon-to-phosphorus ratio, salinity,
PH, and electrical conductivity.**® Maintaining a neutral soil pH
is crucial for effective PAH biodegradation. Wu et al.**® observed

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4va00203b

Open Access Article. Published on 02 maio 2025. Downloaded on 01/02/2026 22:55:25.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Tutorial Review

View Article Online

Major sources of @Proteomics analysis

PAHSs pollution

Digestion

Proteomic cell lysate

eptide Peptide
selected  analysis

LC-MS MS2

Oil spillage /v
= Sequencing
— | | ‘ —*> 4~ andrawdata —>
- R 4 awi \*/ analysis N

Metagenomic Metagénomic
sample DNA isolation

LRI )

Environmental Science: Advances

collection

Industrial waste
=

I

Wastewater release

cDNA synthesize

Genome analysis of
bacterial species

Metagenomic taxonomic and "
functional gene analysis

Illumina sequencing

@ Transcriptomics analysis

LC-MS/MS

Graph representing major
metabolic pathways

Relative abundance

3

i

Metabolomics analysis for determination of pathways

Fig. 5 Various omics approaches employed to analyze contaminated soil samples from PAH-contaminated environments.

that in soils contaminated with PAHs (0.18-20.68 mg kg™ '), the
pH varied widely (4.26-8.43), significantly influencing bacterial
diversity. Moreover, the benzo[a]pyrene degradation rate was
noted to be pH-dependent, with the highest efficiency observed
at pH 8.0 and the lowest at pH 5.0. Pawar reported that 50% of
PAHs degraded within three days at pH 7.5, while the same
degradation took 21 days at pH 5.0-6.5.*”” Vipotnik et al.’*®
observed that approximately 85-90% of fluorene, pyrene, and
benzo[a]pyrene degraded more efficiently in soil at pH 5, while
chrysene exhibited greater degradability at pH 7 through fungal
remediation processes. Qi et al.**® also demonstrated that PAHs
significantly increased soil organic carbon while reducing total
phosphorus levels. The abundance of Nitrospinota, Dadabacteria,
Planctomycetota, and Acidobacteria showed a positive correlation
with soil PAH and total phosphorus levels but a negative corre-
lation with total salt and organic carbon content.

Soil contamination with PAHs typically involves a complex
mixture of hydrocarbon molecules. The presence of multiple
pollutants in varying combinations increases toxicity compared to
individual contaminants. PAH concentrations in contaminated
soils are often accompanied by co-contaminants such as heavy

© 2025 The Author(s). Published by the Royal Society of Chemistry

metals (Cu, Ni, V, Zn, Pb, and Cr) and elevated salt levels. Co-
contamination of PAHs and heavy metals can have both syner-
gistic and antagonistic effects on pollutant removal in the rhizo-
sphere. For instance, Cd-PAH co-contamination enhanced Cd
removal in the rhizosphere of Fire Phoenix.'” Similarly, low
concentrations of pyrene-Cu/Cd co-contamination promoted
metal removal and pyrene degradation in maize.*** However, high
Cu levels (1000-1500 mg kg ') reduced PAH removal efficiency in
maize, Elsholtzia splendens, and Lolium perenne.** This inhibition
may result from heavy metal-induced suppression of root growth
and exudation, altering enzyme activity and microbial commu-
nities in the rhizosphere.*® Su et al.*** reported that microbial
diversity in the rhizosphere was higher than in the endosphere
under phenanthrene stress. Additionally, organic pollutants like
phenanthrene had a substantial effect on microbial communities
in the endosphere and rhizosphere compared to bulk soil.**
Studies have elucidated the mechanisms driving differences
in the microbial community structure and activity among plant
species and genotypes, which can be attributed to variations in
the root structure and plant-specific exudates.>** Under pollu-
tion stress, root exudation patterns differ across plant species in
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terms of composition and concentration,*” leading to changes
in microbial biomass, activity, and structural composition.***
The release of root exudates by plants contributes to the avail-
ability of carbon and nitrogen sources, which in turn creates
a conducive environment for microorganisms to degrade
organic contaminants. Moreover, certain plants, such as maize,
can synthesize secondary metabolites like benzoxazinoids,
which influence the selective depletion and enrichment of
microbial species in the rhizosphere.**® Such plant-specific
microbial recruitment can lead to cultivar-specific rhizosphere
microbiota. However, the primary factors shaping rhizosphere
microbial diversity remain inconsistent across studies. While
Robertson et al.*** identified plant species and soil factors as the
main determinants of microbial community structure, Prit-
china et al.**® suggested that PAH pollution levels had a more
pronounced impact than plant species. Therefore, further
research is needed to determine the dominant factors control-
ling rhizosphere microbiome composition under organic
pollution, which could aid in optimizing plant-microbe inter-
actions for improved bioremediation efficiency. Additionally, in
soils co-contaminated with Cu and phenanthrene, the rhizo-
sphere microbiome of Eisholtzia splendens and Lolium perenne
exhibited substantial shifts in the enrichment and depletion of
microbial phyla such as Actinobacteria and Bacteroidetes.**®
These findings highlight the complexity of plant-microbe
interactions in contaminated environments and underscore
the need for targeted microbiome engineering to enhance
rhizoremediation.

Organic pollution exerts significant toxicity on microbial
populations, leading to reduced microbial biomass and diversity
in the rhizosphere.”®” Phenanthrene exhibits greater toxicity to
microorganisms than pyrene, due to its higher bioavailability.***
As PAH concentrations increase, microbial biomass declines
markedly in both rhizospheres.*® Gram-positive bacteria
demonstrate heightened susceptibility to PAHs compared to
Gram-negative bacteria. Bacteria exhibit greater sensitivity to
organic pollutants such as lindane, PCBs, and co-contaminants
like cadmium and DDT compared to fungal communities.**”?**

Further, Eriksson et al**® investigated PAH biodegradation
under low temperatures and anaerobic conditions, demon-
strating that aerobic conditions at 20 °C facilitated the removal
of 52% to 88% of PAHs over 90 days, whereas the highest PAH
degradation at 7 °C reached 53%. Similarly, Amponsah et al.>*!
found that increasing soil temperatures from 10 °C to 20 °C and
subsequently to 25 °C reduced pyrene, fluorene, chrysene, and
anthracene concentrations at three Canadian well sites. These
findings align with previous studies,*** which reported
enhanced PAH degradation with increasing soil moisture.
Similar studies have highlighted the critical role of soil mois-
ture in organic pollutant degradation by regulating microbial
oxygen availability, with optimal moisture levels varying by
climate and soil type, ranging from 30-90%?3* to 12-32%.*¢

Moreover, electrical conductivity quantifies the soil's
capacity to conduct electricity, directly correlating with the
quantity of dissolved salts and nutrients. Elevated electrical
conductivity may signify heightened salinity, potentially detri-
mental to plant development and microbial activity.
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Maintaining suitable electrical conductivity in the soil is
essential for facilitating effective rhizoremediation processes.
Cation exchange capacity refers to the soil's capability to retain
and exchange positively charged ions (cations) such as potas-
sium, calcium, and magnesium. A high cation exchange
capacity signifies that the soil has an enhanced ability to store
and provide necessary nutrients to plants and microbes. This
directly impacts the efficacy of rhizoremediation by guaran-
teeing that plants and microorganisms get sufficient nutrients
to sustain their development and metabolic functions.**’

7. Methods for improving the
effectiveness of rhizoremediation

To enhance the effectiveness of rhizoremediation in addressing
PAH-contaminated soil, a combination of carefully chosen
strategies can be employed to optimize plant-microbe interac-
tions and the degradation processes within the rhizosphere.
These strategies include plant selection, bioaugmentation,
nutrient management, and several others, with a focus on long-
term sustainable solutions.***

7.1. Microbiome engineering

The process of microbiome engineering involves the in situ
application of a “bacterial consortium” as an artificial
community. This community is used to manipulate and control
the existing microbial community in order to achieve remedi-
ation objectives.** The primary objective of bioaugmentation is
to enhance the removal of contaminants by leveraging the
metabolic  activities of these externally introduced
microorganisms.**** Derz et al*** demonstrated the effec-
tiveness of bioaugmentation by introducing a mixed bacterial
culture into soil contaminated with PAHs, specifically pyrene
and benzo[a]pyrene. They observed a pyrene mineralization rate
of approximately 36% after 150 days and a benzo[a]pyrene
removal rate of 5% after 70 days. The application of bio-
augmentation in landfarming led to an 86% reduction in total
petroleum hydrocarbons within a 90-day timeframe. The phy-
tochelating activity of Mesorhizobium haukuii was enhanced by
introducing a chelating gene (phytochelatin synthase; PCSAt)
from A. thaliana.*** The enhancement of siderophore produc-
tion in polluted soil can be achieved through the regulation of
the transcriptional unit pvdS regulator on the pvdD and pvdA
genes of Pseudomonas fluorescens.*> The evaluation of bio-
augmentation involving the introduction of efficient
hydrocarbon-degrading Pseudomonas bacteria into the rhizo-
sphere of teak (T. grandis), gmelina (G. arborea), neem (Azadir-
achta indica), and champak (Michelia champaca) plants has been
conducted. The objective of this evaluation is to enhance the
biodegradation of crude o0il.>**® From a practical standpoint,
employing a microbial consortium instead of a pure culture for
bioremediation offers distinct advantages, primarily due to its
capacity to deliver the necessary metabolic diversity and resil-
ience essential for field applications.*”” However, the effective-
ness of this procedure significantly relies on the chosen
microbial consortia's adaptability to the specific site conditions
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and their capability to outcompete the indigenous microor-
ganisms.*® The bacterial culture is introduced into the polluted
area using methods like spraying, injection, or soil or water
blending, depending on the specific environment. After the
bacteria become established, they initiate the process of
metabolizing the PAH compounds found in the polluted
surroundings.*® This process at play is referred to as mineral-
ization, resulting in the complete removal of PAH contami-
nants.>** Throughout the course of the bioaugmentation
procedure, continuous monitoring of the site is conducted to
assess the progress in PAH degradation and the efficacy of the
introduced bacterial strains.*** Further, Lolium perenne and
Medicago sativa can improve pyrene degradation in soil up to
46% when biocompost is applied.**

7.2. Soil engineering

Biostimulation is a procedure used to increase the growth of
indigenous organisms in habitats polluted by contaminants.
This is achieved by providing nutrients that promote co-metab-
olism.**® Biostimulation is the introduction of organic nutrients
into the polluted area to enhance the development and func-
tioning of native microorganisms.*** As the microbial population
experiences growth, it initiates the synthesis of various enzymes,
such as dioxygenases and ring-hydroxylating enzymes. The
enzymes are essential in the process of breaking down PAHs,
converting them into compounds that are simpler and pose less
risk.>*® The PAHs undergo subsequent enzymatic reactions, ulti-
mately resulting in their complete conversion into CO,, H,0, and
biomass. This process ensures the complete removal of PAHs
from the environment.****%” The utilisation of diverse materials,
including crop residues, sugarcane bagasse pith, sewage sludge
compost, vermicompost, food waste compost, corn stalks, corn
fermentation byproduct, peat and sawdust,**® wastewater sludge,
ground rice hulls, and dried blood,** has been observed to lead
to a noticeable increase in PAH degradation. When introduced
into a PAH-polluted environment, the addition of 5% manure
resulted in an increase in available phosphorus, potassium, and
hydrolysable nitrogen. This, in turn, supported the growth of
bacteria capable of degrading PAHs. The utilisation of PGPR and
biochar in the process of bioremediation for soil contaminated
with hydrocarbons has gained significant importance in recent
years.””® Furthermore, a thorough examination was conducted to
analyse the impacts of nutrients (NPK), aeration, and the bio-
induction of native soil microorganisms, as well as the stimula-
tion of external microbial communities. This investigation
revealed that these factors have positive effects on the remedia-
tion of oil-contaminated soil.*”*

7.3. Phyto-engineering

The initial step in the phyto-engineering approach for crude oil
degradation is the selection of plants that possess high
contaminant degrading efficiency. The presence of a plant
species with a significant amount of aboveground biomass is
crucial in the phytoextraction process.*””> The successful
implementation of rhizoremediation requires the inclusion of
a plant species that has an extensive root system or significant
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belowground biomass. However, the presence of contaminants
frequently hinders the growth of plants in polluted regions.’”*
The incorporation of ACC deaminase genes into genetically
modified plants has been demonstrated to successfully
decrease ethylene levels, leading to a stronger and more
extensive root system.*’”* The process of plant breeding and
genetic modification can lead to several beneficial outcomes,
including enhanced nutrient intake, increased production of
root exudates, improved survival rates, and more efficient
mineralization of pollutants.’”> The researchers Uchida et al.*”®
conducted genetic engineering on Arabidopsis plants to intro-
duce a root-specific laccase (LAC1) obtained from cotton
plants.*”” The researchers conducted an observation and found
that the modified plants demonstrated enhanced tolerance to
phenolic compounds and 2, 4, 6-trichlorophenol when these
substances were secreted into the rhizosphere. Moreover, the
successful enhancement of the degradation process of poly-
chlorinated biphenyls (PCBs) was observed through the inser-
tion of the bphC gene derived from Pandoraea pnomenusa B-356
into tobacco plants.””” In addition, Uchida et al.>”® reported that
the introduction of estradiol dioxygenase genes responsible for
aromatic cleavage (DBfB) into Arabidopsis plants resulted in an
increased degradation rate of 2,3-dihydroxybiphenyl (2,3-DHB).

8. The global bioremediation markets

According to Biospace Reports (2022), the bioremediation market
had a value of USD 105.68 billion in 2019 and is expected to see
a compound annual growth rate (CAGR) of 15.5%. It is forecast to
reach USD 334.70 billion by 2027.5® The environmental reme-
diation market in the United States is projected to experience
significant growth over the forecast period. It is anticipated to
increase from USD 19.96 billion in 2021 to USD 22.86 billion in
2022 and further reach USD 37.26 billion by 2027, reflecting
a CAGR of 10.96%. In recent years, there has been a significant
increase in global awareness and acknowledgment of natural-
based bioremediation methods. The biotreatment industry in
the United States is currently composed of around 130 busi-
nesses, which can be categorised into three primary sectors:
product vendors, transdisciplinary environmental services, and
bioremediation services.*”” Due to its cost-effectiveness and
accessibility, widespread promotion of rhizoremediation, along
with bioaugmentation and biostimulation, is recommended.**

In 2018, the in situ bioaugmentation segment held the
largest market share at 23.9%, followed by the biostimulation
segment at 16.91%. Soil remediation accounted for the highest
revenue, with a market share of 46.64%, driven by the
increasing prevalence of soil pollutants. In terms of application,
the industrial sector led the market with a 27.09% share, fol-
lowed by agriculture and aquaculture at 21.18%.3*" In 2022, the
phytoremediation segment accounted for the largest portion of
global revenue, exceeding 32.02%. This growth in the industrial
segment is attributed to the significant number of contami-
nants and pollution originating from this sector (Global Biore-
mediation Market, 2020).%%

The phytoremediation market was valued at USD 1.07 billion
in 2019. The fungal bioremediation method, which is employed
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for the purpose of eliminating radioactive contaminants, is
currently experiencing a CAGR of around 15.2%. The market is
projected to be dominated by the soil-based bioremediation
category, with a CAGR of 15.8% from 2019 onwards.*** However,
in situ bioremediation is anticipated to generate the most revenue
in the coming years due to its cost-effectiveness and minimal risk
of cross-contamination. I situ bioremediation methods include
bio-slurping, bio-vending, and rhizoremediation.*®* The bio-
stimulation sector generated revenues of $12,094 million in 2021
and is projected to grow at an annual rate of 7.1%, reaching
$24,500.2 million by 2030 (Share and Trends Report, 2030).%*

The North American region has recently dominated the
market for bioremediation, accounting for a market share of
approximately 41.8%. This can be attributed to the presence of
numerous major industrial firms in the region. Asia-Pacific is
projected to experience the highest CAGR of 16.5% during the
forecast period (Biospace Reports, 2022).**® The expansion of
the bioremediation market in these areas is mainly propelled by
the rising environmental concerns and regulatory objectives for
environmental protection established by diverse government
sectors (Environmental Remediation Market, 2022).>*”

The Netherlands has achieved successful remediation of
over 6000 sites since 1982, establishing itself as the European
country with the most significant advancements in this field
(Europe Sustainable Development Report, 2021).**® Companies
like Gist-Brocades are marketing improved anaerobic waste-
water clean-up techniques. The Dutch government endorses the
utilisation of compact fermenters for the conversion of agri-
cultural waste into commercially viable fertilisers, with
a specific focus on providing support to underdeveloped
nations. Additionally, they are actively engaged in conducting
research on soil bioremediation.’® The Ministry of Construc-
tion in Japan launched a project in the 1980s with a budget of
five billion yen. The project aimed to develop and implement
biotechnological methods for treating wastewater (Sanitation
and Sustainable Development in Japan, 2016).>* The Swedish
National Environment Protection Board has recently contracted
a biotreatment company from the UK to carry out in situ
bioremediation of soil contaminated with creosote. The biore-
mediation process will involve the use of Pseudomonas bacteria.
The total value of the contract is estimated at US $1.6 million.*>*
The progress in bioremediation underscores its critical role in
addressing environmental challenges across various sectors,
including industry, agriculture, and remediation, highlighting
its potential for continuous innovation and global application.

9. The global landscape of patents
related to bioremediation

Patents play a crucial role in measuring economic development
as they enable the efficient exchange and spread of technology
between different countries.>* The United States is the leading
country in terms of bioremediation technology patents,
accounting for 61.85% of the total. China follows with 79% and
Japan with 67%.%*> The contributions of South Korea and India

are approximately 4.51% and 2.93%, respectively.**
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Bioremediation research is less prevalent in other nations such
as Australia, Belgium, France, Spain, Canada, Great Britain, and
Russia. The distribution of patent applications among different
regions is as follows: out of a total of 443 applications, North
American countries accounted for 67%, Asian countries
accounted for 23%, and European countries accounted for 10%.
The data suggest that Asian nations, specifically Japan and
Korea, are making significant investments in research and
development (R&D) to improve their technological
capabilities.***

Developed countries possess robust research infrastructures
to address oil contamination issues due to their financial
resources, availability of trained scientific personnel, and stable
economies (National Innovation Systems, OECD).*** PAH
contaminants are prevalent in developing and economically
disadvantaged countries as well. The capacity of biological
systems to break down aromatic hydrocarbons and the uti-
lisation of bioremediation techniques have been well-
documented since the early 1970s.%*® The earliest patent appli-
cations, dating back to 1971, discuss the use of emulsifiers or
fertilizers to promote oil-degrading bacteria. The Exxon Valdez
oil spill in 1989 marked a significant increase in hydrocarbon
degradation patent applications in the early 1990s.**” Initially,
chemical and physical methods were employed to mitigate the
damage, but bioremediation soon emerged as a viable cleanup
technique.®*®

An analysis was conducted on the global database main-
tained by the European Patent Office to examine the growth of
bioremediation technologies for water, soil, and sludge. The
results indicate a steady increase in these technologies, with
water accounting for 53% of the patents, soil accounting for
36%, and sludge accounting for 11%.%*® In India, government
agencies are less involved in cutting-edge bioremediation R&D
compared to private entities. Organizations such as the Council
of Scientific and Industrial Research (CSIR), the Indian Council
of Agricultural Research (IARI), Bharat Petroleum Corporation
Ltd, Indian Oil Corporation Ltd, and M/S Avestha Gengraine
Technologies Pvt. Ltd have secured numerous patents, yet
private entities have obtained more patents than government
institutions.*® Fig. 6 highlights the leading continents in the
bioremediation market based on market revenue and patent
filings. Continents with a significant bioremediation market,
along with market size and CAGR values, are presented in Table
5, which also lists several key bioremediation companies
involved in the sector.’*

10.

Rhizoremediation, as a plant-microbe-driven strategy for PAH
degradation, offers a promising approach for restoring
contaminated soils. However, its long-term sustainability is
influenced by several critical factors. Some limitations of rhi-
zoremediation include the need for a large field area for in situ
remediation, the age of the plant being used, hindered plant
and microbial growth due to severe pollution, dependence on
environmental factors, uncertainty regarding the disposal of
plant parts containing PAHs, unknown by-products of

Limitations and challenges

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table5 Overview of the bioremediation market across different continents, including market size, CAGR, and key companies actively involved in

bioremediation3®®

SI no. Continents

CAGR

Market size

Key companies

1 North America

2 Europe

3 Asia-Pacific

4 Latin America

5 Middle East & Africa (MEA)

8.7%

7.70%

8.43%

8.26%

6.4%

US$ 5040.96 million

US$ 3487.61 million

US$ 2249.68 million

US$ 3898.20 million

US$ 695.57 million

© 2025 The Author(s). Published by the Royal Society of Chemistry
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o InSitu Remediation Services Ltd

e Probiosphere

e Xylem
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e Altogen Labs

¢ InSitu Remediation Services Ltd
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o REGENESIS

e Aquatech International Carus Group Inc
e Drylet Inc

e InSitu Remediation Services Ltd

e Remediation Solutions

e RT Environmental Services Inc.

e Soilutions Ltd, Verde Environmental Group
e Xylem Inc.

e Aquatech International Carus Group Inc.
e Drylet Inc.

¢ InSitu Remediation Services Ltd

e Remediation Solutions

e RT Environmental Services Inc.

e Soilutions Ltd

e Verde Environmental Group

e Xylem Inc.

e Aquatech International LLC

o InSitu Remediation Services Limited

o Ivey International Inc.

e Xylem Inc.
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biodegradation, and the possibility of PAHs entering the food
chain. The use of seasonal plants in rhizoremediation may be
limited in certain situations.***** To facilitate efficient rhizor-
emediation, it is crucial to monitor and regulate soil pH, elec-
trical conductivity, and cation exchange capacity. The soil pH
affects the activity of microorganisms and influences the solu-
bility and transportation of contaminants in the soil. A further
crucial factor for rhizoremediation is the possibility of unfore-
seen ecological repercussions. The introduction of non-
indigenous plant species or microbes might provide unfore-
seen consequences for the surrounding environment. Hyper-
accumulator plants, capable of absorbing and withstanding
elevated concentrations of certain pollutants, are exemplary
candidates for bioremediation. Moreover, the efficacy of biore-
mediation may be enhanced by using plants with broad root
systems that foster interactions between plant roots and the
rhizosphere microbial population, enhancing biotransforma-
tion activities."* Prioritizing climate-adaptive plant-microbe
systems is crucial for sustainable remediation. Plant health
and growth metrics act as indirect markers of rhizoremediation
effectiveness. Monitoring root exudation patterns, stress
responses, and biomass buildup is essential for evaluating
plant-microbe interactions and their influence on PAH
breakdown.

The effectiveness of rhizoremediation is contingent upon the
persistence of PAH-degrading microbial populations within the
rhizosphere. Soil that is contaminated can offer the combined
advantages of increased fertility and bioremediation through
microbial processes, leading to soil that is both healthy and
productive.*”® Microorganisms in the soil play a crucial role in
increasing the availability of nutrients and aiding in the
production of regulators that promote plant growth. Concur-
rently, they participate in numerous transformations of organic
substances within the soil and play a role in the degradation of
xenobiotics. Another function involves participating in the
processes of adsorption and desorption of various substances,
as well as the detoxification of both organic and inorganic
contaminants.*” Specific strains exhibit the ability to break
down particular pollutants, notably those that include func-
tional genes like PAH-RHD« and dioxygenase genes, which are
essential for maintaining degradation efficiency.**®> Conven-
tional bioremediation techniques encompass continuous bio-
stimulation, which involves the supplementation of nutrients to
promote microbial activity, and bioaugmentation, which entails
the introduction of external microflora, aimed at achieving
long-term sustainability.*®® For instance, the inoculation of
plant growth-promoting rhizobacteria in soil cultivated with tall
fescue and rice plants augmented the extraction of total petro-
leum hydrocarbons (particularly the C21-C34 fraction) and
phthalate esters during phytoremediation.*”” However, more
advanced strategies are required to optimize rhizoremediation
efficiency for diverse organic contaminants.

The particular genes associated with the biodegradation of
various organic contaminants and their degradation pathways
within the rhizosphere are not yet fully understood. Further-
more, humerous recent investigations concerning rhizosphere
microorganisms were predominantly conducted in controlled
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greenhouse environments utilising artificially contaminated
soil, which markedly differs from natural field conditions. Li
et al*” explored the impact of ryegrass root exudates on
phenanthrene biodegradation using both **C- and **C-labeled
phenanthrene. Understanding microbial community shifts
within the rhizosphere, including the role of pollutant-
degrading microbes and their functional genes, is essential
for optimizing in situ remediation strategies.

To ensure the long-term effectiveness of rhizoremediation,
continuous monitoring of PAH concentrations and microbial
activity is crucial. Advances in nanocomposite technologies
have enhanced PAH analysis across various matrices. Pre-
treatment, extraction, and clean-up techniques, primarily
using gas chromatography-mass spectrometry (GC-MS) or high-
performance liquid chromatography-ultraviolet (HPLC-UV),
enable precise detection. GC-MS and GC-MS/MS offer high
sensitivity and selectivity, with GCxGC-FID achieving recovery
rates of 95-120% for 24 PAHs in soil. Eventually, to quantify the
PAHs adsorbed, techniques such as Raman spectroscopy,
Fourier-transform infrared spectroscopy (FTIR), and scanning
electron microscopy (SEM) play a crucial role in the initial
identification of PAHs.**® Ma et al.**® developed a sensor inte-
grating pre-concentration and in situ electrochemical analysis
using electropolymerized poly(3-methylthiophene) (P3MT) for
1-hydroxypyrene detection, a key PAH exposure marker.

Despite these advancements, large-scale PAH degradation in
field studies remains underexplored. Post-rhizoremediation
monitoring is essential to evaluate residual PAH levels and
ensure successful long-term remediation outcomes. Following
rhizoremediation, soil rehabilitation occurs alongside micro-
bial community shifts that enhance nutrient cycling, predomi-
nantly involving native microbes. Incorporating amendments
such as biochar, compost, or surfactants can further stimulate
microbial activity and improve PAH bioavailability, thereby
increasing remediation efficiency. Integrating these strategies
can optimize rhizoremediation as a sustainable, long-term
solution for PAH-contaminated soils.

In addition, several significant factors are anticipated to
restrict the revenue growth of the global bioremediation
market. These include the high cost of excavation equipment
and the slow adoption of environmental protection regulations.
The costs related to the use of heavy machinery in treatment
operations, such as bulldozers, loading trucks, and excavators,
are considerably higher. Environmental protection regulations
and policies pertaining to environmental flow are being
implemented globally; however, several interconnected chal-
lenges are evident. Expanding bioscience research, whether in
the academic sector or the commercial sphere, depends on
having advanced laboratory infrastructure and cutting-edge
technology. Modern research facilities must be established,
upgraded, and expanded. Strong business relationships must
be forged.*”® Collaboration initiatives with other countries’
premier reference centres must be encouraged.*** The explora-
tion of better alternatives to the use of technology and natural
resources and to organise economic growth without endan-
gering the ecosystem's sustainability must be implemented in
the future.*” To achieve the bioeconomy and sustainability
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goals, land decontamination should be viewed as critical. The
remedial technology of bioremediation seems to be sustain-
able.*”® While lacking statutory authority, sustainability criteria
are nonetheless infrequently used to evaluate remedial
technology.***

11. Conclusion and future prospects

The pollution of PAHs is a long-lasting global issue. Neverthe-
less, higher levels of production are also associated with
a greater number of instances of contamination in various
ecosystems. The soil is a primary ecosystem that is consistently
contaminated by numerous PAH molecules as a result of
human interference. Inadequate management practices and
accidents result in the pollution of PAHSs, leading to the
depletion of soil fertility and negative effects on plants and
indigenous soil bacteria. Consequently, there exists a signifi-
cant disparity in the commercialization of rhizoremediation for
the purpose of treating soil contaminated with PAHs. This
method has the potential to offer a sustainable solution for
restoring ecosystems. Rhizoremediation not only removes
contaminants from damaged soil, but also improves soil
fertility by restoring its natural structure. The bioremediation
technique often involves the use of microorganisms to clean up
contaminated places or to enhance the activity of naturally
occurring microbes in polluted areas. Therefore, by employing
suitable combinations of plants and microbes in polluted areas,
this issue could be effectively resolved. The use of modern
sequencing techniques to manipulate the rhizosphere also
improves our understanding of the intricate plant-microbe
relationship. Nevertheless, it is imperative for both the public
and private sectors involved in bioremediation to prioritise the
commercialization of rhizoremediation techniques and the
global dissemination of knowledge. Additionally, the process
must be improved to achieve both environmental and
commercial advantages. Effective strategic planning and the
formulation of enduring policies on rhizoremediation will
support nations in attaining their objectives for a sustainable
future.

The process of rhizoremediation is regarded as an efficient
approach; however, a significant research gap remains that
must be addressed for future advancements. As highlighted in
previous sections, large-scale field studies on rhizoremediation
are still very limited. There is a need to raise awareness for the
beneficial attributes of rhizoremediation and effectively
commercialize such plant-microbe pairs for field application.
Rhizoremediation not only degrades contaminants but also
enhances soil health and microbial communities, making it
a promising strategy for restoring farmlands and agricultural
sites. Conducting more data-driven studies will provide
a comprehensive analysis and reinforce confidence in the effi-
cacy of rhizoremediation. Additionally, process optimization is
crucial, as rhizoremediation depends on several biotic and
abiotic factors. The selection of efficient plant-microbe pairs
and the assessment of proper remediation strategies are
essential for ensuring successful implementation. Further-
more, the effectiveness and duration of the rhizoremediation
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process must be considered for long-term field applications.
Research is also needed to optimize the benefit-to-cost ratio,
particularly regarding the cost of implementing rhizor-
emediation relative to the biomass generated. The processing of
rhizoremediated biomass requires additional precautions and
refinement. However, there is significant potential to utilize this
biomass for other applications like biochar production,
contributing to the circular economy, as reviewed in previous
studies.”* To overcome current limitations in evaluating nature-
based remediation systems, it is essential to refine life cycle
assessment (LCA) and cost-benefit analysis (CBA) approaches.*'®
Addressing these challenges will facilitate the broader adoption
of rhizoremediation as a sustainable and cost-effective strategy
for environmental restoration.
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