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Automated analysis of pore structures
in biomaterials
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Quantitative assessment of pore size and morphology is crucial in biomaterials design and evaluation,

particularly hydrogels and scaffolds used in tissue engineering and drug delivery. In recent

years, a growing number of studies have proposed or adopted automated image analysis tools to

evaluate pore characteristics; however, the absence of standardised protocols, validation criteria, and

consistent reporting practices has limited reproducibility and cross-study comparability. This

perspective, for the first time, examines recent trends in automated pore size analysis in biomaterials

research, highlighting commonly used algorithms, their implementation in image-based workflows,

and their ability to resolve pore geometries in disordered materials. We discuss the influence of

imaging dimension, resolution, algorithm assumptions, and image pre-processing on outcomes and

highlight common challenges such as over-segmentation, user bias, and the misidentification of

irregularly shaped pores. By drawing on selected examples from the literature, we illustrate both the

strengths and limitations of current approaches and emphasise the need for transparent, standardised

methodologies in the field.
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1. Introduction

Porous materials, particularly hydrogels and scaffolds, have
widespread uses in biomedical applications where the pore
structure is a key determinant of functionality. The porosity, pore
size distribution, and pore interconnectivity of these materials
influence critical properties such as mechanical strength, degra-
dation rate, fluid transport, and biological interactions.1–5 Accu-
rate pore characterisation is essential for optimising biomaterials
for applications such as tissue engineering (affecting cellular
adhesion, proliferation, and differentiation5–8), drug delivery
(affecting release kinetics9,10), and biosensing (affecting molecular
diffusion and sensor performance11).

In hydrogel-based materials, mesh size (the space between
crosslinking sites in polymer chains) and mesh radius (size of
largest spherical solute that could move through a mesh portal)
governs mechanical properties and permeability of the mate-
rial, whereas pore size (the voids within e.g. hydrogel network
or scaffold) plays a crucial role in cellular infiltration, nutrient
diffusion, and tissue regeneration.1,5,7,12–17 Hydrogels with
small mesh sizes provide higher mechanical stability but may
restrict cellular infiltration, whereas larger pores enhance cell
migration and diffusion but can compromise mechanical
integrity.1,7,18 Similarly, scaffold-based biomaterials rely on
optimised pore architectures to balance mechanical support
with biological functionality.1,5,8,19

Traditional methods for characterising pore structures, such
as manual analysis from images are time-intensive, and are prone
to over or under estimation of parameters, subjectivity and
bias.1,3,5,16,20 These methods often fail to provide comprehensive
characterisation, particularly for hydrogels, which have hydrated
and dynamic porous networks. While semi-automated appro-
aches have been developed, limitations such as bias during user
input, low sample sizes during verification steps and lack of
accessibility to both software and sample measurement techniques
has necessitated automation.3,5,20,21 As a result, there has been an

increase in adopting automated pore analysis techniques that uti-
lise advanced image processing and artificial intelligence (AI)
algorithms.1,10,20,22–24 Automated segmentation and feature extrac-
tion enable high-throughput, reproducible, and quantitative analy-
sis of pore architectures across various length scales.25 Furthermore,
automated models can enhance image contrast, remove noise, and
classify pore structures with minimal human intervention.7

Numerous studies in the literature develop and/or use
automated methods for pore size analysis. However, in the
absence of standardised methodologies, reporting guidelines,
or benchmarking criteria, comparison across different materi-
als becomes challenging. It is therefore important to evaluate
studies from the current literature to illustrate such limitations
and strengths. This perspective is, to our knowledge, the first
to provide a focused and critical evaluation of automated pore
size analysis methods as applied to biomaterials such as
hydrogels and porous scaffolds. We explore various automated
approaches used to quantify pore characteristics from images
recorded using direct two-dimensional (2D) and three-dimensional
(3D) imaging methods, discuss the challenges associated with
analysing disordered porous materials, and provide recommenda-
tions for future developments in automated pore analysis.

2. Background to porous materials
2.1 Defining pores in literature

The term ‘‘pore’’ is widely used across materials science but lacks a
universal definition due to variations in material structures and
measurement techniques. In biomaterials, a pore is generally
defined as a void or cavity within a solid or gel matrix that facilitates
fluid transport, gas diffusion, or cellular infiltration.2,26 Pores can
exist at multiple length scales, ranging from macropores (450 nm),
which promote cell migration and vascularisation, to mesopores
(2–50 nm), which control molecular diffusion in drug delivery
systems.27
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In polymeric biomaterials, such as hydrogels, mesh size
refers to the distance between crosslinking sites in polymer
chains, mesh radius28 describes the voids within a polymeric
network, while pore size2 is the area of void space within solid
material where the structures separating the void spaces (e.g.
pore walls) consists of polymer bundles. The latter description
relates to the pores that can be visualised using images cap-
tured by various techniques.

2.2 Classification of materials based on pore structure

Biomaterials exhibit a wide range of pore architectures ranging
from cubic to irregular shaped as illustrated in Fig. 1. They may
present almost entirely one type of pore architecture arranged
in an ordered pattern and hence be categorised as ordered
structures. Examples of this include silicas, metal–organic
frameworks (MOF)s, zeolites, and crystalline porous materials,
and directly relevant to this perspective, ordered scaffolds.29–34

These materials possess highly uniform and regularly spaced
pores, making them ideal candidates for automated image
analysis using segmentation, machine learning-based pattern
recognition, and feature extraction.35,36

Alternatively, biomaterials may have a mixture of different
pore architecture and/or irregular arrangement of pores, and as
such, can be categorised as a disordered structure. It should be
noted that not only the pore structure but also the pore walls may
be variable across a disordered structure. Disordered structures
such as disordered scaffolds,8,16,18,19,37 hydrogels2,7,13,38–40 and
fibrous networks8,17,24,25,39,41–44 are examples of this and are
comprised of inherently irregular porous architecture, making
automated characterisation challenging. Automated methods,
such as micro-computed tomography (micro-CT), 3D image recon-
struction and AI-based segmentation models, have been used to
analyse these architectures.10,26

This perspective primarily focuses on disordered porous
materials, such as hydrogels and scaffolds, where variability
in pore shape, size, and connectivity complicates standard pore
characterisation techniques.38 However, understanding how
automated methods have been applied to ordered porous
structures, such as mesoporous silica and MOFs, whether
successfully or with limitations, facilitates their adaptation
for more complex materials.1,16,29,35

3. Automated image processing
techniques for pore analysis
3.1 2D and 3D imaging methods

A key distinction in pore analysis is between 2D and 3D
imaging techniques, as each approach presents unique chal-
lenges and limitations (Fig. 1C). Traditionally, pore size analy-
sis relies on 2D imaging (Fig. 1C), where threshold functions
enhance pore or fiber structures, improving visibility and
signal-to-noise ratio.12,13,49 However, this method remains
subjective due to a lack of benchmarking, reliance on user
input, and qualitative assessment.5,16 Additionally, factors such
as resolution, background noise, and focus variations across

imaging modalities can further impact accuracy.5,16 These
limitations have driven the development of more advanced,
automated approaches.

A fundamental challenge of 2D pore analysis is its inability
to capture the true three-dimensional pore architecture. For
instance, scanning electron microscopy (SEM) images (litera-
ture examples provided in Fig. 1C, 2F and 3C) captured using a
high resolution technique have inherent limitations; including
restricted planes of view due to fractured surfaces examined by
SEM, minor pores being unclear or easily overlooked, chal-
lenges when imaging multilayered biomaterials, and lack of
standardised protocols for improved robustness and limiting
user-bias during pore quantification.19,43,46,47 Circular or
elliptical pore cross-sections in 2D may misrepresent actual
3D pore connectivity, requiring stereological or computational
corrections.17,19,20,50 Moreover, orientation dependence and sam-
pling bias introduce further inaccuracies, particularly in fibrous or
interconnected scaffold structures.17,46 Pore shape is crucial,
because unless specifically engineered to achieve a highly ordered
shape, pores are irregularly shaped (Fig. 1), thus physical or virtual
sectioning anywhere other than where the pore diameter is max-
imum (Fig. 1A) leads to an underestimation of pore size.2,28,46 This
is also influenced by the threshold chosen for the sample and
imaging artefacts/tilts/curvatures, requiring filtering and segmenta-
tion to improve the accuracy of pore boundary determination.50

While statistical sampling methods, such as unbiased stereology
are used to approximate 3D characteristics, they may not be
suitable for highly interconnected porous networks.17

3D imaging techniques, such as micro-CT, confocal laser
scanning microscopy (CLSM), transmission electron microscopy
(TEM) tomography reconstruction and focused ion beam SEM
(FIB-SEM), have been used for obtaining non-destructive, high-
resolution information regarding pore morphology28,43,47 (Fig. 1B,
D, E, 2A, B, D and 3A, B). The convoluted data and naturally
complex biological networks make manual data extraction from
confocal images challenging, driving automation.17 Furthermore,
a resolution and volume interdependence for TEM tomography
and FIB-SEM have been reported.51 Micro-CT (Fig. 1E, 2B and 3A),
in particular, enables quantitative assessment of porosity
and connectivity, linking these parameters to material
function.20,47 Further, the technique allows virtual sectioning,
visualisation in different planes and colour coded visualisation
for improved comprehension.46 However, the accuracy of 3D
segmentation relies on grayscale differentiation and threshold-
ing, which are often subjective and affected by environmental
factors such as lighting and computer monitor resolution and
personal factors such as fatigue.20,27 3D methods often acquire
repeated ‘slices’ of a 3D material, process them in a 2D
format and aggregate to reconstruct the 3D image. Furthermore,
the high cost and low accessibility of micro-CT, especially for
nanometre level visualisation, computational intensity and data
scarcity for machine learning-based 3D segmentation further com-
plicate widespread adoption.17,20,38,43,52 As noted by Mickel et al.
‘a generic definition (for pore size) and a robust method to extract
pore sizes from experimental three-dimensional microscopy data
sets have been lacking’.53
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Regardless of imaging method, 2D or 3D, quality of the source
image is a key determinant of the resultant pore size metrics, and
in manual image analysis methods in particular, there is a trade-
off between accuracy and time and effort.47,52 Studies directly

comparing 2D vs. 3D pore analysis have shown systematic dis-
crepancies (% discrepancy) in extracted values, with 2D methods
often underestimating porosity and connectivity.38,54 Given
these challenges, hybrid approaches, combining stereological

Fig. 1 2D and 3D pore architectures in biomaterials. All images have been reproduced with permission. (A) Left: How a pore is defined in a 2D image.2 Right:
Graphical representation of pore size calculation and slices used in a 3D reconstruction.45 (B) Left: 3D visualisation of pores detected as spherical bubbles: orange
depicts segmented collagen fibers and blue represents pores. Right: 2D visualisation (circles) of detected 3D bubbles in the left image, in an exemplary 2D image
slice. Black depicts segmented collagen fibers, blue represents determined pores of a single analysis process, orange represents detected pores of a second
residual analysis.16 (C) Top left corner and centre: scanning electron microscopy (SEM) images of salt leached and gas foamed scaffolds.3 Top right centre:
Scanning electron micrograph of the microfluidic foaming poly(vinyl alcohol) (PVA) scaffold.45 Top right corner: field-emission microscopy (FESM) images of
electrospun poly(L-lactic acid)-co-poly(e-caprolactone)–gelatin (PLACL/Gel) nanofibers.37 Bottom left corner: SEM micrographs of a PCL scaffolds produced by
bioextrusion.15 Bottom left centre: Micro-CT 2D section of a collagen-based composite scaffold.46 Bottom right centre: Confocal fluorescence microscopy image
of a collagen network.47 Bottom right corner: SEM image of an agarose hydrogel.2 (D) 3D bubble method applied to an in silico fibrin gel. Left: Red spheres
represent the largest 3D bubbles that can be optimally fit in the pore zones of the gel and produce their maximum filling. Right: Zoom of a single sphere touching
four different fibers.17 (E) Left: Synchroton micro-CT image of a bioactive glass scaffold. Right: Pores within the scaffold identified by image analysis algorithms.48
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corrections with machine learning-assisted 3D reconstruc-
tion, are emerging as promising solutions.52

As we focus on direct 2D and 3D imaging techniques, the
accuracy of pore quantification relies on automated image
processing techniques that extract meaningful information
from images. This section discusses the segmentation process
(to isolate pores from the surrounding material) in Tables 1, 2
and Box 1, and pore analysis techniques (to quantify pore
characteristics) in Box 2 and Table 3. Given the complexity of
porous materials, different approaches, ranging from thresholding-
based methods to machine learning-driven segmentation,10 have
been developed to improve accuracy and reproducibility in pore
characterisation.1 It is important to note that the suitability of
algorithms will vary as a function of the considered biomaterial
and imaging modality. Depending on available equipment,
signal-to-noise ratio and contrast, separation of background
and specimen and image resolution will vary, changing the task
difficulty, accuracy and consequentially the choice of segmen-
tation and analysis approach.47,54,55

3.2 Segmentation: extracting pores from images

Segmentation is the first step in automated pore analysis,
where the material and pores are distinguished as separate
entities. Examples of segmentation methods used in the litera-
ture are given in Fig. 2. The choice of segmentation technique
directly impacts the quality of extracted pore features and
should be as close to ‘ground-truth’ as possible. Due to the
range of imaging modalities and factors such as background
lighting and noise, the choice of segmentation technique is
imperative to effectively visualise pores. To evaluate segmen-
tation success, an objective ‘ground-truth’ comparator is
required. However, at the moment, ‘ground-truth’ is frequently
established through manual measurement and inter-rater relia-
bility which introduces bias and is subject to fatigue effects for
large sample sizes.45,56 Due to the associated effort, reliance on
automated segmentation and analysis approaches without
‘ground-truth’ validation is increasing.46 Automated methods,
including methods discussed below in Box 1, offer standar-
dised, reproducible segmentation but may still misclassify

Fig. 2 Examples of segmentation methods. All images have been reproduced with permission. (A) 3D collagen network binarisation method. Left:
Representative image cube of a 5(6)-carboxytetramethylrhodamine N-succinimidylester (TAMRA)-labelled collagen scaffold. Right: A representative 2D slice
of original image data, Otsu’s thresholding, adaptive local thresholding of a denoised and the final segmentation result.16 (B) An unthresholded, undespeckled
section of a micro-CT image of a collagen scaffold, demonstrating the noise which can be present in this type of data. Top right: Shows collagen in white, with
the noise manually removed. Black represents void. Bottom right: Shows the isolated noise, seen as light grey specks.57 (C): Overview of how the DiameterJ
algorithm analyses fiber diameter and other scaffold properties.56 (D) Top left: CLSM images of nanomicrofiber scaffolds. Top right: Filtered with median 3D.
Bottom left: Binarised. Bottom right: 3D reconstructed with Avizo Fire software.43 (E) Top: Binarised image of a PVA scaffold. Bottom: Separation of pores using
the watershed algorithm.45 (F) Effect of pixel intensity threshold, K, on pore identification and resulting effect on pore size of scaffolds.3

Journal of Materials Chemistry B Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
ju

lh
o 

20
25

. D
ow

nl
oa

de
d 

on
 3

0/
10

/2
02

5 
02

:0
7:

17
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5tb00848d


9382 |  J. Mater. Chem. B, 2025, 13, 9377–9391 This journal is © The Royal Society of Chemistry 2025

Fig. 3 Examples of automated pore size determination methods. All images have been reproduced with permission. (A) Quantification of 3D pore networks of sol–
gel derived bioactive glass foams from micro-CT data: (a) 2D slice of raw data, (b) 2D slice showing application of the dilation algorithm, (c) 2D representation of pores
derived from the watershed algorithm, (d) 3D image of identified pores, (e) 3D image of the interconnects obtained from the top down algorithm, and (f) demonstration
of the bounding box method of measuring the interconnect length.19 (B) Illustration of pore size determination of alginate hydrogel microcapsules using TEM images.
Image A depicts a hydrogel as it is typically observed using transmission electron microscopy. Image B shows the results of the image segmentation after binarisation.
Image C shows the result of a Euclidean distance transformation. Image D gives an overlay of the pore region image skeleton (red lines) with the original image. Image
skeletons are one-pixel wide center axes. They are defined via the set of inner pore pixels. The set is defined via local distance maxima with respect to alginate
segments.38 (C) Fiber network diameter determination of scaffolds (opposite of pore size determination, using similar algorithms). Top left: Starting SEM image. Top
centre: Image histogram equalsation followed by 3 by 3 median filtering. Top right: Local thresholding through Otsu method. Middle left: Thinning,
smoothing and removal of isolated pixel areas through a cascade of different morphological operators. Middle center: Skeletonization. Middle right–
bottom left: Binary filters for Delaunay network refinement. Bottom center: Modified Delaunay network associated to the real fiber network. Bottom
right: Final network and fiber diameters detected.25 (D) Simplified bubble analysis of the pore space of a random biopolymer network in two steps.
Left: First, the Euclidean distance map (EDM) of the fluid space of the network structure is computed (shades of gray (colours online) indicate the
distance of each fluid pixel to the nearest fiber pixel). (black) Fibers. Second, the local maxima of the EDM (white crosses) determine the centres of all
2D bubbles. To avoid bubbles of similar size in close proximity, the EDM was smoothed with a 5 � 5 Gaussian kernel with a sigma of one before the
local maxima were determined. (inset) A local maximum of the EDM (red circle) is a pixel whose eight neighbours all have smaller values. Right:
Resulting 2D bubbles (black circles) fit into the pore zones of the fiber structure (black). (red crosses) Bubble centers.102 (E) Comparison of detected
pores with cutoff values of 85 vs. 120 in chitosan-gelatin cryogels using PoreVision software. Red outlines are pores outside the analysis boundary,
blue outlines are pores removed for being too small (most likely dust, cracks, or folds), and green outlines are identified pores.20 (F) Illustration of
varying results provided by micro-CT 2D pore size analysis of collagen-based scaffolds. Pores (in gray) of 3 differing shapes (left, centre, right) were
evaluated by means of 4 micro-CT 2D parameters (MT – mean thickness, MD – major diameter, BICD – biggest inner circle diameter, AECD – area-
equivalent circle diameter) and their values are presented in panels below the images (in mm). The results tend to differ with increasing shape
irregularity.46 (G) Colour map and pixel intensity based measurement of macro pore size distribution in a polymeric scaffold.21
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features, over-segment noise or under-segment adjacent pores
(Fig. 2). While these methods are thus more time effective and

objective than manual approaches, their lack of validation
presents a new risk of bias.27 Hybrid approaches, combining

Table 1 Examples of preprocessing steps in segmentation

Pre-processing
modality Purpose Software for implementation

Edge detection Allows the separation of touching objects without specifying a subjective threshold.52 ImageJ/MatLab/OpenCV

Contrast
maximisation

Maximises the contrast between pores and walls or pores and the background to ease seg-
mentation and analysis.21

ImageJ/MatLab/OpenCV

Despeckling Despeckling sweep removes all but the largest objects in a space. Despeckling sieve removes
objects below a certain area or volume. Adaptable for 2D or 3D space.57

ImageJ

Morphological
operations

Operations that can analyse and modify image shapes and structures. Can also be imple-
mented for noise removal and feature extraction.18,19,21,24,45,52,54

Image J/MatLab/Quanfima
python package24

Gaussian blur A technique to smooth an image by averaging pixel values within a Gaussian window,
effectively reducing noise.58,59

ImageJ/MatLab/OpenCV/
Scikit – image package for
python

Anisotropic
diffusion filtering

Reduces noise while preserving edges by allowing diffusion to occur primarily in
homogenous regions.60

ImageJ/MatLab/MedPy
Python Package

Mean/median
filtering

Reduces noise by replacing each pixel’s value with the mean or median value of the sur-
rounding pixels.12,19,25

ImageJ/MatLab/SciPy Python
Package/OpenCV

Table 2 Examples of some readily available segmentation software

Software Built-in segmentation

SPIP82–84 Intensity-based thresholding.

PoreSpy85–88 Watershed segmentation, deep-learning for pixel-wise classification.

Insight toolkit (ITK)80,89 Otsu and binary thresholding, watershed segmentation.

Thermo Fisher porometric software90 Gradient-based and marker-controlled watershed methods for segmentation refinement.

MIPAR42,91 Multiple threshold, watershed and deep learning-based methods.

Mathematica38,92,93 Adaptive and histogram threshold, various watershed analyses.

ImageJ based software Global and local thresholding, and watershed segmentation.
Compatible with segmentation plugins including BoneJ and MorphoLibJ.

Table 3 Examples of commonly used pore-analysis software

Software Built-in analysis

SPIP82–84 (1) Pore size distribution
MIPAR42,91 (2) Interconnectivity, and transport pathways
Sigma Scan Pro 596,104 (3) Quantification using geometric fitting methods
Materialise Mimics65 (4) Skeletonisation
CTAn (Bruker)46,105,106 (5) Voxel-based analysis
Quanfima24

Image-Pro Plus107–110

PoreSpy79–82 Enhances pore network characterisation with skeletonisation-based metrics.

GeoDict44 Covering radius transform (CRT) and micro-CT-based pore size distribution (PSD) reconstruction.

Amira (TGS, San Diego, CA)19,111 Skeletonisation.

ImageJ Plugin DiameterJ24,41,56 Measure porosity of fibre networks.

ImageJ Plugins ND112 Measure porosity of scaffolds.

ImageJ Plugins BoneJ99 Measure porosity of bone structures.

PoreVision20 Pore size analysis including measurement, distribution and range. Morphological analysis.
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automated segmentation with manual refinement, could be a
balanced approach, however, would require pre-processing
steps such as contrast enhancement and noise reduction (as
outlined in Table 1) to improve the accuracy of pore boundary
detection. Table 1 details several preprocessing steps to
improve the efficacy of image-based segmentation and analysis.

In Box 1, we outline a range of (semi-)automated segmenta-
tion approaches. Thresholding is the simplest and most widely
used segmentation technique, where pixels are classified as
either pore or material, based on intensity values (Fig. 2).
Thresholding-based segmentation is computationally efficient

but may struggle with detecting intricate pore networks, parti-
cularly in fibrous or highly porous materials.43 Additionally, it
may yield variable results due to user-defined parameters and a
lack of benchmarking.20,27 Machine learning (ML) techniques,
both shallow learning (e.g., support vector machines, decision
trees) and deep learning (e.g., convolutional neural networks
(CNN), U-Net models), can be used for pixel-wise classification
in pore segmentation.5,20,39,61–63 However, machine learning is
data-hungry, thus requiring larger sample sizes and manual
‘ground-truth’ labelling which is labour intensive and may
introduce user-bias into the segmentation process.

Box 1: Segmentation approaches
Thresholding-based approaches

� Global thresholding: a single threshold is applied across the entire image, making it suitable for materials with uniform contrast but less effective for
heterogeneous structures.1,3,8,21,38,43,47,52,56,64–67 These techniques are also more sensitive to noise.68 Some examples of global thresholding methods are given
below, more methods and an in-depth discussion on thresholding could be found through Rajagopalan et al.27

J Otsu’s global thresholding: selects an optimal segmentation threshold by maximising inter-class variance. This method is effective for materials with
bimodal intensity distributions, where pores and solid structures have distinct grayscale values.19,67,69

J Entropy-based thresholding: the foreground and background are treated as separate sources and the optimal threshold is chosen at the maximum of the
sum of the two class entropies. This is useful for images with complex histograms.24,27,45

J Histogram thresholding: analysing the concavity points of the image’s histogram’s convex hull. Any valley may be considered as a potential threshold, with
the deepest concavities being favoured.27,70

� Local (adaptive) thresholding: the threshold varies across different regions, allowing segmentation in images, in which contrast changes due to uneven
illumination or varying material densities. This is useful for heterogenous structures.16,20,25,54,71 Several local thresholding techniques exist as outlined by
Rajagopalan et al.27

� Contrast enhancement with Fourier transform: Fourier-based contrast enhancement has been integrated to improve edge detection in biomaterial samples,
particularly in scaffold imaging.5

� Manual thresholding in ImageJ: adjusting the threshold manually to match original image features, as seen in some studies.1,72–76 This technique can
introduce various problems associated with room lighting, fatigue of the operator and limited grey-scale shade perception.27

� MATLAB-optimised thresholding:
J Region-growing and edge-detection algorithms: allows for adaptive thresholding, enhancing pore segmentation in fibrous and highly interconnected
structures.52,77

J Gradient filters: improve thresholding accuracy by refining intensity distributions, minimising over-segmentation errors78,79

�Watershed-based segmentation: a region-based segmentation technique that treats an image as a topographic surface, where intensity variations correspond
to elevations. It is useful for segmenting complex pore structures in porous materials by identifying watershed lines that separate adjacent regions. Following
initial segmentation, the watershed algorithm refines pore boundaries by treating intensity gradients as a height map. By simulating the flooding of an image,
it effectively separates adjacent pores that may have been grouped together in thresholding-based segmentation. While this method enhances segmentation
accuracy, it may require post-processing to address over-segmentation.18,19,43,45,48,66,80 MATLAB-based implementations of the watershed algorithm further
improve pore segmentation accuracy through gradient-based seed point refinement.43

J Gradient-based watershed: uses the gradient magnitude image to detect high-intensity ridges that define the segmented boundaries.24

J Marker-controlled watershed: introduces predefined seed points to prevent over-segmentation, which is beneficial for fibrous or highly interconnected
porous materials.20,43,66

J 3D watershed for pore connectivity: applied in voxel-based 3D reconstructions to quantify pore interconnectivity in porous scaffolds.18,19,43,48,66,80,81

Machine learning-based pixel classification

� Shallow ML models: shallow learners struggle to classify raw image input and depend on efficient preprocessing and predefined, representative
characteristics such as intensity and edges.27

� Deep learning models: deep learning models have demonstrated enhanced performance in segmenting irregular and disordered pore architectures,
particularly in hydrogels and scaffolds.10,62,63 CNNs and U-Net architectures learn hierarchical representations from large datasets, allowing robust
segmentation of complex pore structures.5,20 These model are capable to automatic feature selection and extraction, enhancing contrast in low-resolution
porous material and removing the need for manual tuning.62 Furthermore, advanced machine learning techniques improve segmentation across multiple
imaging modalities, making them adaptable to various pore architectures.61 One problem with deep learning models is their data hungry nature, requiring
large, annotated datasets for successful training and prevention of overfitting.
J CNN-based approaches: the convolutional nature of CNN’s enables multi-scale feature extraction, which improves segmentation accuracy, enhances pore
boundary detection and reduces errors in low-contrast regions.63 The hierarchical nature of CNNs refines pore morphology, effectively distinguishing pores
from material phases. Pretrained CNN models, such as VGG16 and ResNet, further accelerate adaptation by reducing the need for large, manually annotated
training sets, while transfer learning enhances model generalisability across different biomaterial types, ensuring consistent segmentation accuracy.61,62

J U-Net architecture approaches: provide pixel-wise segmentation, making them particularly effective for highly interconnected porous biomaterial. Their
encoder–decoder structure allows for detailed feature extraction, while skip connections preserve fine-grained pore structures, significantly improving
segmentation accuracy. Furthermore, data augmentation techniques enhance model robustness, compensating for limited training datasets and increasing
adaptability across various biomaterial imaging conditions5,61
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Software given in Table 2 include modalities for different
segmentation techniques. It is important to note that many
studies utilise in-house, tailor-made code to conduct segmenta-
tion, that best befits their requirements.

Both threshold and machine learning-based approaches
offer unique advantages to image segmentation with neither
demonstrating consistently better performance albeit machine
learning offers faster computation time. The choice of segmen-
tation technique directly influences measures of porosity and
pore structures, and the careful validation of image-based pore
data remains crucial.45,64,94

3.3 Pore analysis: techniques for quantification

Once segmentation is complete, various pore analysis techni-
ques are employed to quantify structural parameters such as
pore size distribution, shape, and connectivity. Below, in Box 2,
we examine some commonly used automated approaches of
quantifying pore size. In addition, Table 3 provides an overview
of some pore-analysis software packages and their respective
capabilities with regard to pore size determination. While some
software maybe more commonly used, others may be at an
emerging level. The outcome of analysis may differ depending
on software choice (Fig. 3).

Box 2: Pore analysis approaches
Basic metrics from segmentation

� Pore-to-material ratio: the fraction of pore area relative to material area, expressed as a decimal or percentage. This is calculated using tools such as ImageJ or
FiJi, which is useful for assessing porosity, however, lacks structural context.24,64,67,77,95,96

� Pore count: the total number of detected pores; limited when pores are irregular or overlapping. Suited for homogenous structures.5,21

� Pore area distribution: captures variability in pore sizes; however, segmentation errors can skew results.6,21,45,59,67,77

Advanced pore analysis techniques

Pixel-based approaches
� Exponential decay fit to pore pixel spacing distribution: quantifies the spatial arrangement of pores by fitting an exponential decay model to the pore-pixel
spacing distribution.27 This approach helps distinguish between homogeneous (evenly distributed pores) and heterogeneous (randomly distributed or
clustered pores) porous networks.
� Fourier transform analysis: used to detect periodicity in pore spacing, Fourier analysis can reveal structural anisotropy within porous scaffolds and
hydrogels.36,71,77,97

� Skeletonisation-based analysis: by reducing pore structures to their one-dimensional (1D) medial axis, this approach allows for measuring pore branching,
interconnectivity, tortuosity and transport pathways in porous biomaterials scaffold.19,38,56,98

Geometric transform-based methods
�Maximum covering radius transform: the CRT method determines the largest inscribed circle within each pore, quantifying local pore size variations across a
sample.46,55,66,99,100

�Morphological opening and closing transformations: these operations refine pore boundaries by removing small artifacts and enhancing true pore structures,
aiding in more accurate segmentation.1,16,18,19,47,54,65,66 For instance, connected pores can be separated using morphological dilation followed by
erosion—dilation shrinks the pores by expanding scaffold boundaries, and erosion then restores pore size while maintaining separation.1

� Voxel-based pore size distribution reconstruction: 3D voxel reconstruction has been used to quantify PSDs, for improved interconnectivity analysis.4,38,56,66,67

� Fourier-based feature extraction for pore shape: fourier-based shape analysis has been integrated into voxel-based reconstructions to improve pore
morphology quantification.5

Pore fitting methods
� Sphere/circle fitting: pore fitting methods are based on fitting a circle or a sphere to a pore, based on criteria such major diameter (MD, major diameter of
analysed pore), mean thickness (MT, based on circle-fitting algorithm similar to sphere-fitting method), biggest inner circle diameter (BICD, diameter of the
biggest circle that fits the pore) and area-equivalent circle diameter (AECD, diameter of the circle with an equivalent area to that of the
pore).12,45,46,48,65–67,97,99,101 Ideally well suited for circular pores.1

� Bubble analysis: a geometric method that mimics fluid dynamics in fibrous networks and is based on the largest possible circle inside a pore that touches
three surrounding fibers,16,17,46,53 however, according to Fischer et al. may not fully account for the residual fluid volume.16 In an article-response dynamic,
Molteni et al. proposed an algorithm that randomly seeds a pore and expands its boundary until it tangentially contacts three fibers,17 for which Münster &
Fabry developed a simplified approach using Euclidean distance mapping to detect local maxima, identifying the largest pore regions.102 However, Molteni
et al. argued that this method lacks filtering and requires additional post-processing to remove overlapping pores and those that do not satisfy the three-fiber
contact criterion.103 Applicable to fibrous networks such as bundled F-actin, fibrin, cytoskeletal filament networks, given individual fibers can be resolved.53

� Destroy and rebuild method for PSD analysis:
This micro-CT-based technique reconstructs 3D pore networks from 2D slice data, offering an alternative to direct segmentation-based methods. ImageJ’s
particle analyser (PA) function extracts mass centre coordinates (Xc, Yc) and pore section areas for each binarised slice. An algorithm groups sections by spatial
proximity, assuming pores maintain a spherical shape. Edge-affected pores are removed, and equivalent volume and radius are calculated for each pore to
determine the PSD.5,45,56 In addition, MATLAB-based PSD reconstruction methods have been applied to improve accuracy in volume estimations of irregularly
shaped pores.77

4. Summary, recommendations and
future directions

Automated pore size analysis in biomaterials remains a field of
active development, with several challenges and opportunities
ahead. A persistent issue is the control of measurement error,

which can arise at multiple stages of the workflow, from image
acquisition to segmentation and feature extraction, ultimately
affecting data reliability.

Imaging quality—including resolution, magnification, and
field of view—strongly influences the accuracy of segmentation
and measurement methods. Poor image quality or insufficient
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resolution often leads to inconsistent or inaccurate pore size
detection, particularly in fibrous or highly irregular networks.41,47

Circle-fitting algorithms can be useful for regular, isotropic
materials with well-defined, circular pores, but often over- or
underestimate pore sizes in more complex biomaterials. Many
image analysis tools still depend on manual thresholding,
subjective filtering, or operator bias, particularly when the
software allows for interactive selection or exclusion of pores
during post-processing.20 While software such as DiameterJ
and PoreSpy offer user-friendly platforms, their results are
sensitive to image parameters, such as pixel size and contrast
depth, and sometimes require subjective validation.41

Importantly, there is no universal standard or pipeline for
PSD analysis that suits all materials. Algorithms often need to
be tailored to specific scaffold morphologies. Nevertheless,
some methods demonstrate cross-material applicability, suc-
cessfully analysing electrospun meshes, hydrogels, and decel-
lularised tissues with the same underlying algorithm.25

A growing concern in the literature is the lack of detailed
reporting on how PSD is computed. Some studies present PSD
values without any or very limited mention of segmentation
methods, threshold settings, or image pre-processing steps,
and many studies cite ‘in-house algorithms’ without sufficient
detail or provided code.18,20,24,41 This hampers reproducibility
and impedes method comparison while inconsistency in termi-
nology increases the entry barrier to the field. Moreover, claims
of ‘‘fully automated’’ analysis often mask semi-automated steps
that introduce bias, such as filtering out overlapping or irre-
gular pores without objective criteria.41 Closely related to this is
the inconsistency across reported metrics, with many studies
failing to report objective evaluations of the PSD methodology.

Most current approaches rely on unsupervised learning
methods without a reference standard or ‘ground-truth’, which
makes performance evaluation difficult. Many studies rely on
qualitative validation (visual matching) rather than reporting
consistent quantitative metrics such as measurement error or
precision. When validation is provided, it is often inconsistent
or non-comparable across studies.20 This may be partially
attributed to the lack of available ‘ground-truth’ values, which
makes the implementation of supervised learning challenging.
However, while the manual measurement of pore size is
difficult and includes human error, studies should aim to
validate proposed automated methods using ‘ground-truth’
measurements to ascertain the reliability of the selected
methods.

Closely related is a need for reporting objective evaluation
metrics of automated methods. While the lack of ‘ground-truth’
complicates the implementation of supervised learning, steps
should be taken to evaluate algorithms in the absence of a ‘true’
value. While some studies have implemented algorithm valida-
tion using standard reference images,1 others compare results
between methods to establish mean performance and improve
reliability of findings. While several supervised and unsuper-
vised evaluation methods thus exist, many studies continue to
accept pore size estimation at face value without considering
the associated bias of the measurement tool. Future studies

should aim to conduct critical evaluation of their estimation
techniques and in the absence of an objective ‘ground-truth’
should at the very least compare the performances of different
algorithms.

There is also limited ability among automated algorithms
to handle irregularly shaped or anisotropic pores. Many algo-
rithms interpret elongated or eccentric pores as two or more
circular pores, which misrepresents the actual pore size
distribution.35 While some algorithms have introduced shape
classification features, their accuracy for small or faint shapes
remains limited.

Looking ahead, a promising direction is the integration of
machine learning and deep learning approaches trained on
annotated datasets to improve pore recognition and classification
accuracy. This includes the potential for algorithms that are not
only shape-aware but also context-aware—able to distinguish
between artefacts and true pores based on their position, orienta-
tion, or relationship with surrounding structures.

We recommend the following:
� Standardised reporting: all studies should include detailed

information on segmentation algorithms, image processing
steps, and evaluation metrics used in PSD analysis.
� Material-specific validation: algorithms should be validated

for specific scaffold types and pore morphologies, not assumed to
be generalisable.
� Open-source development: wider adoption of open-source

platforms would promote reproducibility, comparability, and
collaborative development.
� Integration of AI and ML: supervised machine learning

and AI-enhanced approaches could overcome current limi-
tations in pore shape recognition, classification, and error
quantification.
� Consistency in evaluation: future studies should report

standard error metrics and comparison benchmarks to assess
accuracy, ideally using both synthetic and real-world datasets.

Ultimately, while automated PSD analysis is advancing rapidly,
further work is needed to balance ease of use, reproducibility, and
the ability to capture complex pore features across diverse bioma-
terials, including dynamic hydrogels and 4D scaffolds.
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Pore Size Measurements from Scanning Electron Micro-
scopy Images of Porous Scaffolds, J. Porous Mater., 2023,
30(1), 93–101, DOI: 10.1007/s10934-022-01309-y.

2 I. Jayawardena, P. Turunen, B. C. Garms, A. Rowan,
S. Corrie and L. Grøndahl, Evaluation of Techniques Used
for Visualisation of Hydrogel Morphology and Determina-
tion of Pore Size Distributions, Mater. Adv., 2023, 4(2),
669–682, DOI: 10.1039/D2MA00932C.

3 D. Jenkins, K. Salhadar, G. Ashby, A. Mishra, J. Cheshire,
F. Beltran, M. Grunlan, S. Andrieux, C. Stubenrauch and
E. Cosgriff-Hernandez, PoreScript: Semi-Automated Pore Size
Algorithm for Scaffold Characterization, Bioact. Mater., 2022,
13, 1–8, DOI: 10.1016/j.bioactmat.2021.11.006.

4 T. Van Cleynenbreugel, J. Schrooten, H. Van Oosterwyck
and J. Vander Sloten, Micro-CT-Based Screening of Bio-
mechanical and Structural Properties of Bone Tissue Engi-
neering Scaffolds, Med. Biol. Eng. Comput., 2006, 44(7),
517–525, DOI: 10.1007/s11517-006-0071-z.

5 I. Karaca and B. Aldemir Dikici, Quantitative Evaluation of
the Pore and Window Sizes of Tissue Engineering Scaffolds
on Scanning Electron Microscope Images Using Deep
Learning, ACS Omega, 2024, 9(23), 24695–24706, DOI:
10.1021/acsomega.4c01234.

6 Y. P. Singh, N. Bhardwaj and B. B. Mandal, Potential of
Agarose/Silk Fibroin Blended Hydrogel for in Vitro Carti-
lage Tissue Engineering, ACS Appl. Mater. Interfaces, 2016,
8(33), 21236–21249, DOI: 10.1021/acsami.6b08285.

7 A. A. Solbu, D. Caballero, S. Damigos, S. C. Kundu, R. L.
Reis, Ø. Halaas, A. S. Chahal and B. L. Strand, Assessing
Cell Migration in Hydrogels: An Overview of Relevant Materi-
als and Methods, Mater. Today Bio, 2023, 18, 100537, DOI:
10.1016/j.mtbio.2022.100537.

8 U. Stachewicz, P. K. Szewczyk, A. Kruk, A. H. Barber and
A. Czyrska-Filemonowicz, Pore Shape and Size Dependence
on Cell Growth into Electrospun Fiber Scaffolds for Tissue
Engineering: 2D and 3D Analyses Using SEM and FIB-SEM

Tomography, Mater. Sci. Eng., C, 2019, 95, 397–408, DOI:
10.1016/j.msec.2017.08.076.

9 S. J. Bryant, J. L. Cuy, K. D. Hauch and B. D. Ratner, Photo-
Patterning of Porous Hydrogels for Tissue Engineering,
Biomaterials, 2007, 28(19), 2978–2986, DOI: 10.1016/
j.biomaterials.2006.11.033.

10 I. Negut and B. Bita, Exploring the Potential of Artificial
Intelligence for Hydrogel Development—A Short Review,
Gels, 2023, 9(11), 845, DOI: 10.3390/gels9110845.

11 D. C. Appleyard, S. C. Chapin, R. L. Srinivas and P. S.
Doyle, Bar-Coded Hydrogel Microparticles for Pro-
tein Detection: Synthesis, Assay and Scanning, Nat.
Protoc., 2011, 6(11), 1761–1774, DOI: 10.1038/nprot.
2011.400.

12 A. P. Cameron, B. Zeng, Y. Liu, H. Wang, F. Soheilmo-
ghaddam, J. Cooper-White and C.-X. Zhao, Biophysical
Properties of Hydrogels for Mimicking Tumor Extracellular
Matrix, Biomater. Adv., 2022, 136, 212782, DOI: 10.1016/
j.bioadv.2022.212782.

13 L. J. Kaufman, C. P. Brangwynne, K. E. Kasza, E. Filippidi,
V. D. Gordon, T. S. Deisboeck and D. A. Weitz, Glioma
Expansion in Collagen I Matrices: Analyzing Collagen
Concentration-Dependent Growth and Motility Patterns,
Biophys. J., 2005, 89(1), 635–650, DOI: 10.1529/biophysj.
105.061994.

14 R. M. Kuntz and W. M. Saltzman, Neutrophil Motility in
Extracellular Matrix Gels: Mesh Size and Adhesion Affect
Speed of Migration, Biophys. J., 1997, 72(3), 1472–1480,
DOI: 10.1016/S0006-3495(97)78793-9.

15 M. Domingos, F. Intranuovo, T. Russo, R. D. Santis, A. Gloria,
L. Ambrosio, J. Ciurana and P. Bartolo, The First Systematic
Analysis of 3D Rapid Prototyped Poly(e-Caprolactone) Scaf-
folds Manufactured through BioCell Printing: The Effect
of Pore Size and Geometry on Compressive Mechanical
Behaviour and in Vitro hMSC Viability, Biofabrication, 2013,
5(4), 045004, DOI: 10.1088/1758-5082/5/4/045004.

16 T. Fischer, A. Hayn and C. T. Mierke, Fast and Reliable
Advanced Two-Step Pore-Size Analysis of Biomimetic 3D
Extracellular Matrix Scaffolds, Sci. Rep., 2019, 9(1), 8352,
DOI: 10.1038/s41598-019-44764-5.

17 M. Molteni, D. Magatti, B. Cardinali, M. Rocco and F. Ferri,
Fast Two-Dimensional Bubble Analysis of Biopolymer Fila-
mentous Networks Pore Size from Confocal Microscopy
Thin Data Stacks, Biophys. J., 2013, 104(5), 1160–1169, DOI:
10.1016/j.bpj.2013.01.016.

18 R. C. Atwood, J. R. Jones, P. D. Lee and L. L. Hench,
Analysis of Pore Interconnectivity in Bioactive Glass Foams
Using X-Ray Microtomography, Scr. Mater., 2004, 51(11),
1029–1033, DOI: 10.1016/j.scriptamat.2004.08.014.

19 J. R. Jones, G. Poologasundarampillai, R. C. Atwood,
D. Bernard and P. D. Lee, Non-Destructive Quantitative 3D
Analysis for the Optimisation of Tissue Scaffolds, Bio-
materials, 2007, 28(7), 1404–1413, DOI: 10.1016/j.bio
materials.2006.11.014.

20 L. M. Olevsky, M. G. Jacques and K. R. Hixon, PoreVision:
A Program for Enhancing Efficiency and Accuracy in SEM

Journal of Materials Chemistry B Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
ju

lh
o 

20
25

. D
ow

nl
oa

de
d 

on
 3

0/
10

/2
02

5 
02

:0
7:

17
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://BioRender.com
https://doi.org/10.1007/s10934-022-01309-y
https://doi.org/10.1039/D2MA00932C
https://doi.org/10.1016/j.bioactmat.2021.11.006
https://doi.org/10.1007/s11517-006-0071-z
https://doi.org/10.1021/acsomega.4c01234
https://doi.org/10.1021/acsami.6b08285
https://doi.org/10.1016/j.mtbio.2022.100537
https://doi.org/10.1016/j.msec.2017.08.076
https://doi.org/10.1016/j.biomaterials.2006.11.033
https://doi.org/10.1016/j.biomaterials.2006.11.033
https://doi.org/10.3390/gels9110845
https://doi.org/10.1038/nprot.&QJ;2011.400
https://doi.org/10.1038/nprot.&QJ;2011.400
https://doi.org/10.1016/j.bioadv.2022.212782
https://doi.org/10.1016/j.bioadv.2022.212782
https://doi.org/10.1529/biophysj.&QJ;105.061994
https://doi.org/10.1529/biophysj.&QJ;105.061994
https://doi.org/10.1016/S0006-3495(97)78793-9
https://doi.org/10.1088/1758-5082/5/4/045004
https://doi.org/10.1038/s41598-019-44764-5
https://doi.org/10.1016/j.bpj.2013.01.016
https://doi.org/10.1016/j.scriptamat.2004.08.014
https://doi.org/10.1016/j.bio&QJ;materials.2006.11.014
https://doi.org/10.1016/j.bio&QJ;materials.2006.11.014
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5tb00848d


9388 |  J. Mater. Chem. B, 2025, 13, 9377–9391 This journal is © The Royal Society of Chemistry 2025

Pore Analyses of Gels and Other Porous Materials, Gels,
2025, 11(2), 132, DOI: 10.3390/gels11020132.

21 G. L. Re, F. Lopresti, G. Petrucci and R. Scaffaro, A Facile
Method to Determine Pore Size Distribution in Porous
Scaffold by Using Image Processing, Micron, 2015, 76,
37–45, DOI: 10.1016/j.micron.2015.05.001.

22 K. Thu, A. Chakraborty, B. B. Saha and K. C. Ng, Thermo-
Physical Properties of Silica Gel for Adsorption Desalina-
tion Cycle, Appl. Therm. Eng., 2013, 50(2), 1596–1602, DOI:
10.1016/j.applthermaleng.2011.09.038.

23 The Quest for Quantitative Microscopy, Nat. Methods, 2012,
9(7), 627, DOI: 10.1038/nmeth.2102.

24 R. Shkarin, A. Shkarin, S. Shkarina, A. Cecilia, R. A.
Surmenev, M. A. Surmeneva, V. Weinhardt, T. Baumbach
and R. Mikut, Quanfima: An Open Source Python Package
for Automated Fiber Analysis of Biomaterials, PLoS One,
2019, 14(4), 1–20, DOI: 10.1371/journal.pone.0215137.

25 A. D’Amore, J. A. Stella, W. R. Wagner and M. S. Sacks,
Characterization of the Complete Fiber Network Topology of
Planar Fibrous Tissues and Scaffolds, Biomaterials, 2010,
31(20), 5345–5354, DOI: 10.1016/j.biomaterials.2010.03.052.

26 C.-W. Chen, M. W. Betz, J. P. Fisher, A. Paek and Y. Chen,
Macroporous Hydrogel Scaffolds and Their Characteriza-
tion By Optical Coherence Tomography, Tissue Eng., Part C,
2011, 17(1), 101–112, DOI: 10.1089/ten.tec.2010.0072.

27 S. Rajagopalan, L. Lu, M. J. Yaszemski and R. A. Robb,
Optimal Segmentation of Microcomputed Tomographic
Images of Porous Tissue-Engineering Scaffolds, J. Biomed.
Mater. Res., Part A, 2005, 75(4), 877–887, DOI: 10.1002/
jbm.a.30498.

28 N. R. Richbourg, A. Ravikumar and N. A. Peppas, Solute
Transport Dependence on 3D Geometry of Hydrogel Net-
works, Macromol. Chem. Phys., 2021, 222(16), 2100138.

29 E. L. First and C. A. Floudas, MOFomics: Computational
Pore Characterization of Metal–Organic Frameworks,
Microporous Mesoporous Mater., 2013, 165, 32–39, DOI:
10.1016/j.micromeso.2012.07.049.

30 M. Miklitz and K. E. Jelfs, Pywindow: Automated Structural
Analysis of Molecular Pores, J. Chem. Inf. Model., 2018,
58(12), 2387–2391, DOI: 10.1021/acs.jcim.8b00490.

31 K. Trepte and S. Schwalbe, porE: A Code for Deterministic
and Systematic Analyses of Porosities, J. Comput. Chem.,
2021, 42(9), 630–643, DOI: 10.1002/jcc.26484.

32 E. L. First, C. E. Gounaris, J. Wei and C. A. Floudas,
Computational Characterization of Zeolite Porous Net-
works: An Automated Approach, Phys. Chem. Chem. Phys.,
2011, 13(38), 17339–17358, DOI: 10.1039/C1CP21731C.

33 T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza and M.
Haranczyk, Algorithms and Tools for High-Throughput
Geometry-Based Analysis of Crystalline Porous Materials,
Microporous Mesoporous Mater., 2012, 149(1), 134–141,
DOI: 10.1016/j.micromeso.2011.08.020.

34 M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia
and M. Haranczyk, Characterization and Comparison of
Pore Landscapes in Crystalline Porous Materials, J. Mol.

Graphics Modell., 2013, 44, 208–219, DOI: 10.1016/j.jmgm.
2013.05.007.

35 H. Y. Kim, R. H. Maruta, D. R. Huanca and W. J. Salcedo,
Correlation-Based Multi-Shape Granulometry with Appli-
cation in Porous Silicon Nanomaterial Characterization,
J. Porous Mater., 2013, 20(2), 375–385, DOI: 10.1007/
s10934-012-9607-9.

36 H. W. Oviatt, K. J. Shea and J. H. Small, Alkylene-Bridged
Silsesquioxane Sol-Gel Synthesis and Xerogel Characteriza-
tion. Molecular Requirements for Porosity, Chem. Mater.,
1993, 5(7), 943–950, DOI: 10.1021/cm00031a012.

37 D. Gupta, J. Venugopal, S. Mitra, V. R. G. Dev and
S. Ramakrishna, Nanostructured Biocomposite Substrates
by Electrospinning and Electrospraying for the Mineraliza-
tion of Osteoblasts, Biomaterials, 2009, 30(11), 2085–2094,
DOI: 10.1016/j.biomaterials.2008.12.079.

38 A. Leal-Egaña, U.-D. Braumann, A. Dı́az-Cuenca, M.
Nowicki and A. Bader, Determination of Pore Size Distribution
at the Cell-Hydrogel Interface, J. Nanobiotechnol., 2011,
9(1), 24, DOI: 10.1186/1477-3155-9-24.

39 P. Krauss, C. Metzner, J. Lange, N. Lang and B. Fabry,
Parameter-Free Binarization and Skeletonization of Fiber
Networks from Confocal Image Stacks, PLoS One, 2012,
7(5), 1–8, DOI: 10.1371/journal.pone.0036575.

40 M. T. Wolf, K. A. Daly, E. P. Brennan-Pierce, S. A. Johnson,
C. A. Carruthers, A. D’Amore, S. P. Nagarkar, S. S. Velankar
and S. F. Badylak, A Hydrogel Derived from Decellularized
Dermal Extracellular Matrix, Biomaterials, 2012, 33(29),
7028–7038, DOI: 10.1016/j.biomaterials.2012.06.051.

41 A. Daraei, M. Pieters, S. R. Baker, Z. de Lange-Loots,
A. Siniarski, R. I. Litvinov, C. S. B. Veen, M. P. M. de Maat,
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