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Prospects of polymer coatings for all solid-state
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Polymers possess processing flexibility as they can be coated on cathode particles before/after electrode
fabrication and on the solid-state electrolyte surface in all-solid-state batteries (ASSBs). Their narrow
electrochemical stability window limits the use of polymers directly as an electrolyte against high voltage
cathodes. However, when a polymer is coated directly on battery cathodes and cycled with conventional
liquid electrolytes, they exhibit superior battery performance in comparison to uncoated ones. A deeper
insight was not sought in the literature. There might be a great possibility of in situ formation of an ultra-
thin protective layer in-between the polymer and cathode interface at the coating development stage or
in the formation cycle of the electrochemical cell. The current ASSBs demand flexible, easily scalable
coating materials, which can accommodate the volume expansion—contraction during cycling and can
minimize the lattice stress. However, a much better fundamental understanding is needed on polymer/
ceramic interfaces. This focused review is concentrated on flexible polymers with high ionic and
electronic conductivities that can be used for coating cathode particles and Li anodes. Overall, this
article has analyzed and validated the application of various types of polymers in lithium-ion batteries
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and ASSBs comprehensively with an emphasis on the effect of coating morphologies and thickness on
performance. Finally, this review gives a brief discussion on the prospects and suitability of polymers as

coating layers.

1. Introduction

At present, the global energy sector is experiencing a transition
from conventional energy sources to the zero-emission renew-
able field. Energy storage systems play a vital role in accelerating
the implementation of this transition. The fast-growing market
of rechargeable lithium-ion batteries (LIBs) for electric vehicles
(EVs), electric vertical takeoff and landing (EVTOL), outer space
applications, and renewable energy sources demands the
development of advanced batteries that are extremely safe, cost-
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effective, and have a high energy and power density." LIBs have
high energy and power density and control the market of both
portable electronics and electric vehicles. Currently, the major
focus is concentrated on the electrification of transportation
and the development of large energy storage systems (ESSs) for
efficient use of renewable sources.*® Unfortunately, the current
conventional liquid-based lithium-ion batteries still suffer from
poor safety, lower cycle life, low energy, and low power density,
which have seriously affected their widespread acceptance in
EVs and EVTOL.'* However, all-solid-state lithium metal
batteries (ASSLMBs) are a promising alternative to traditional
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Fig.1 Schematic demonstration of the benefits and role of polymer-based surface coatings in high performance lithium-ion battery cathodes.

liquid-based lithium-ion batteries because of their safety and
higher energy density. The significant benefit of ASSLMBs
comes from the extremely high theoretical capacity of lithium
metal anodes (3860 mA h g™"), low density (0.53 g cm™?), and
the lowest reduction potential (—3.04 V vs. the standard
hydrogen electrode) among metals. Furthermore, the low
probability of leakage and vaporization of inorganic solid-state
electrolytes (SEs) provides safe operational assurance.** Note
that SEs largely determine the overall performance of
ASSLMBs."'¢ There are mainly two broad groups of solid elec-
trolytes: (a) inorganic solid-state electrolytes (e.g., oxide and
sulfide) and (b) polymer based. Every group of SEs has its
inherent advantages and disadvantages, and detailed discus-
sion is out of the scope of this review article. The oxide-based
SEs are relatively stable against cathode and Li metal anode
interfaces. However, they exhibit poor contact formation and
low ionic conductivity, resulting in higher impedance and cell
polarization at ambient temperature. On the other hand,
sulfide-type solid electrolytes (SSEs) are highly attractive due to
their high ionic conductivity (>1 mS cm™" at room temperature)
and excellent processibility in terms of their mechanical stiff-
ness. SSEs can form an intimate contact with electrode mate-
rials.’”'® Unfortunately, SSEs have been reported to be less
compatible with the Li anode as well as high voltage cathodes,
which results in an ever-increasing interfacial resistance and
narrow operational voltage window." Usually, SSEs slowly go
through a spontaneous reduction reaction through consuming

14188 | J. Mater. Chem. A, 2024, 12, 14186-14205

the lithium ions and electrons from the metallic lithium anode
and lead to a large interfacial resistance at Li/SSEs. To tackle
these challenges of electrode/electrolyte interfacial stability and
formation of a robust interfacial contact, many strategies have
been formulated as demonstrated in Fig. 1 and given as follows:

e Formation of a protective layer on the Li anode using
different coating materials, such as LiH,PO, and Al,O3, that can
passivate the Li anode and suppress the parasitic reactions and
Li dendrite growth at the interface.*

e Assimilation of ionic liquids (ILs) such as LiTFSI/
PYR13TFSI at electrode/electrolyte interfaces is beneficial to
improve the interfacial compatibility across Li anode/SEs and
cathode/SEs.**

e Incorporation of a double-layer configuration of two
different SEs compatible with individual electrodes. For
example, when LGPS/LSPCL as a double-layer SE is assembled
into ASSLMBs, the Li metal compatibility of LSPCL acts as
a buffer layer to reduce the reductive decomposition of LGPS
electrolyte.”

Although the approaches and techniques mentioned above
can ameliorate the interface compatibility to a certain extent,
easily scalable interfacial coating, minimization of interfacial
impedance, and sacrificed energy density of full cells cannot be
ignored. A polymer coating on Li anode and cathode particles
has significant advantages over oxide-based coatings. A large
number of articles have been published on polymer-based
coatings using various types of polymer materials and their

This journal is © The Royal Society of Chemistry 2024
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electrochemical performances have been discussed and
compared with that of uncoated electrode materials. However,
several review articles were published on oxide coatings and the
polymer coating of electrodes was overlooked. The reported
electrochemical performance of polymer-coated electrodes
differs significantly in published studies. This might be due to
the variation of coating morphology and thickness, intrinsic
ionic and electronic conductivities, and mechanical properties
of different polymer materials. Note that the paradigm-shifting
current all-solid-state batteries demand flexible and easily
scalable coating materials with high ionic/electronic conduc-
tivity that can accommodate the volume expansion-contraction
during charging/discharging. In addition, hybrid electrolytes
(polymer/oxide or sulfide electrolytes) may provide a solution to
the challenges ASSBs are facing currently. However, for the
informed development of polymer and hybrid polymer elec-
trolytes for ASSBs, a much better fundamental understanding is
needed about polymer/ceramic interfaces. Here, the focus is
concentrated on flexible polymers with high ionic and elec-
tronic conductivities that are used for coating on cathode
particles and Li anodes and their advantages. Also, this
comprehensive review article critically analyzes and validates
the application of various types of polymer materials in ASSBs
and discusses the prospects of polymers as coating layers in all-
solid-state batteries.

2. Purpose of cathode surface
coating

Since the commercialization of LIBs in 1991 by Sony, their
performance in terms of cycle life, energy and power density,
and safety kept increasing and the price is gradually decreasing.
With the penetration of lithium-ion batteries in electric vehicle
applications, the demand and performance of these battery
systems also increased. The typical cathodes in LIBs such as
high-Ni LiNi, , ,Mn,Co,0, (NCM, Ni > 60%) and LiNig g
C0g.15Al,050, (NCA) are very reactive and unstable during
battery operations, especially at higher cut-off voltages and
higher operating temperatures. The instability issues arise from
the reactivity of organic liquid electrolytes leading to their
decomposition in the presence of these cathodes. This not only
affects the battery performance but also raises serious safety
concerns. On the other hand, in an all-solid-state battery (ASSB),
the cathode's active particles must establish a robust ionic
conducting network to facilitate rapid charging and discharging
of the battery. Therefore, to effectively utilize these cathodes in
organic electrolyte systems and in ASSBs, the cathode/
electrolyte interface should be stabilized. The coating of
cathode particles is one of the ways to achieve interface stabi-
lization. Currently, metal oxides such as Al,0O3, ZrO,, and SiO,
are extensively used as coating materials due to their high
chemical stability predominantly with liquid electrolytes.**®
However, more recently, polymer-based cathode coatings have
also seen rising interest in the research community. These
coatings can not only act as a physical barrier between the
cathode surface and the electrolyte but also act as an artificial

This journal is © The Royal Society of Chemistry 2024
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cathode-electrolyte interface (CEI) if properly tuned and func-
tion as an ion-conducting pathway for ASSBs. A polymer-based
cathode coating can have better electronic and ionic conduc-
tivities when compared to ceramic-based coatings. Moreover,
the processing of polymer coatings is expected to be more viable
and can accommodate the volume expansion-contraction
under operation compared to oxide coating materials. The main
role and functionality of an ideal surface coating are listed
below,

o A physical barrier between the cathode and electrolyte: the
coating acts as a physical barrier between the cathode and the
electrolyte, which reduces any unwanted parasitic reactions
between them, especially during higher voltage and high
temperature operations. Therefore, the coatings can increase
the chemical and electrochemical stability of cathodes when in
direct contact with the electrolyte.

e HF scavenger: the coatings can act as an HF (hydrofluoric
acid) scavenger in the organic electrolyte system to prevent the
degradation of cathode materials. These coatings behave as
sacrificial materials, which react with the HF themselves and
protect the cathode materials to enhance their long-term
cycling stability.

e Improve charge transfer: the ideal surface coating should
improve the contact and reduce the charge transfer impedance
and enhance the kinetics at the cathode/electrolyte interface.
This can be achieved by utilizing ionically and electronically
conducting materials. For instance, the poor -electronic
conductivity of LiFePO, is improved by carbon coating, which
concurrently enhances the electron transfer at the interface.
The simultaneous ionic and electronically conducting polymers
often function better than carbon coatings.

o Stabilization of active particles: the surface coatings should
have the ability to suppress the impact of volume expansion-
contraction of cathode materials during long-term cycling. This
can mitigate the cyclic stress and thus also prevent cracking of
cathode particles. Polymer coating materials can more effec-
tively accommodate the volume change than oxide materials.
Moreover, coatings on cathode particles can prevent a phase
transformation and improve the stability of the material. All
these can effectively reduce particle crack formation and
prevent the exposure of fresh cathode surface to the electrolyte.
Such stabilization is beneficial for reducing transition metal
dissolution from the cathode to the electrolyte.

To summarize, a polymer-based surface coating should
ideally be conformal, acting as a physical barrier between
cathode active particles and the electrolyte. This barrier serves
as an artificial interphase at the cathode/electrolyte interface,
primarily aimed at enhancing interface stability to mitigate
parasitic side reactions and electrolyte decompositions, partic-
ularly at elevated operating voltages and temperatures.
Furthermore, its design should prioritize improving charge
transfer kinetics at the cathode/electrolyte interface while
ensuring optimal contact with cathode materials to minimize
interfacial resistance. Moreover, the polymer-based surface
coating must demonstrate both chemical and electrochemical
stability. It should effectively shield cathode active particles
from HF attacks and prevent phase transformations of cathode

J. Mater. Chem. A, 2024, 12, 14186-14205 | 14189
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materials during high-volume operation. Additionally, these
coatings should accommodate volume expansions of cathode
materials, thereby alleviating mechanical stresses and ulti-
mately reducing particle cracking.

3. Advantages of polymer coatings on
cathodes

Cathode materials are coated with metal oxides such as Al,O3,
Si0,, ZrO,, and TiO,.”?”** However, it is well known that
cathode materials undergo volume expansion and contraction
during cycling. This results in mechanical stresses on these
hard and brittle ceramic coatings, which may induce cracking
and delamination of these coatings from the cathode surface.
Therefore, the effectiveness of these coatings decreases with
cycling due to the exposure of the fresh cathode surface to the
electrolyte, leading to electrolyte decomposition and enhanced
cell polarization. Moreover, ceramic coatings require post-
annealing at elevated temperature (>600 °C), which may result
in cation migration and cation mixing (interlayer diffusion),
resulting in the deterioration of cell performance. Cathode
materials can be processed with soft and sustainable polymer
coatings at relatively lower temperatures. Hence, the chance of
cation mixing in cathode particles during post-processing is
minimized. Furthermore, as polymer-based coatings are flex-
ible, the utilization of these coatings can prevent the delami-
nation of the coatings from the cathode surface during
extended cycling. Polymeric coatings, which generally achieve
full surface coverage more readily, can prevent cracking by
giving elastic support to the secondary particles. Moreover,
polymer coatings are not prone to cracking (due to their elastic
nature) by cyclic mechanical stresses. Such coatings can provide
an excellent percolation network for electron and ion transfer
for high-performance applications. For ASSBs, mixed ionic-
electronic conducting polymeric materials form a good inter-
facial contact and ion-conducting network. Furthermore, poly-
mers are known to be inert toward most acids, which can
prevent HF chemical attack on cathode materials. The major
benefits of polymer-based cathode coatings are listed as follows
and demonstrated in Fig. 2.

e Morphology control (conformal, thin coating): during the
coating of cathode materials with a ceramic-based coating, it is
really challenging to control the quality of the coating (thick-
ness and homogeneity). However, polymer coatings are
comparatively easier to apply and form a homogeneous
conformal coating on cathode active particles. Moreover, due to
the ductile and flexible nature of these coatings, they can form
ultra-conformal protective layers.

e Thermal stability: most of the polymers considered as
cathode coatings have thermal stability in the range of 300-500
°C. This enables them to be good candidates for cathode surface
coatings. Moreover, the thermal stability can further be tuned
through the chemical modification of the polymers.

e Ionically conductive: in some cases, coating materials
should be ionically conductive and electronically insulative to
protect against the oxidation or reduction of electrolyte

14190 | J Mater. Chem. A, 2024, 12, 14186-14205
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Fig. 2 The processability, properties and cost of ceramic and poly-
mer-based cathode coatings are compared for lithium-ion batteries.

materials. Many polymers show excellent ionic conductivity
when compared to metal oxide-based coating materials. Solid
polymer electrolytes for solid-state batteries can also be
employed as cathode coatings in lithium-metal batteries.

e Excellent electron percolation network: for ASSBs, the
cathode composite should be mixed conducting. Due to the
emergence of conductive polymers, they can provide an excel-
lent ion and electron percolation network. Moreover, the elec-
tronic conductivities of these polymers can be increased by the
incorporation of conductive particles such as carbon nanotubes
(CNTs).

e Volume accommodation during (de)lithiation: due to the
flexible/elastic nature of polymers, they can easily accommodate
the volume changes in the cathodes during extensive cycling
without delamination of the polymer coating. Hence, electrolyte
decomposition can be minimized even at high voltage and
temperature as the cathode surface remains protected in long-
term cycling.

e Low processing costs: these coatings require low heat
treatment temperatures and time, which can result in
a considerable reduction in processing costs. In contrast,
ceramic-based coatings which are currently being employed in
commercial lithium-ion batteries require much higher time (>6
h) and temperature (>600 °C). This can also reduce the possi-
bility of metal-ion inter-diffusion at the cathode-coating phase
boundary, which can result in the modification of the surface
chemistry and thus might have a negative impact on the elec-
trochemical performance of the coated cathodes.

e Trapping of metal ions: polymer coatings can reduce the
cross-talk in lithium-ion batteries by trapping the transition
metal ion, dissolved cathode electrolyte interphase (CEI)
species, and the decomposed organic electrolyte constituents.
The presence of a polymer coating on the cathode can mitigate
or prevent these constituents from reaching the anode, thus
reducing the cell aging related to anode-cathode crosstalk.

e Flexibility in coating design: the processing strategies are
quite flexible. There have been different reports in the literature
where the polymer coatings are achieved on cathode active

This journal is © The Royal Society of Chemistry 2024
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particles, cast electrodes (by infiltration of polymer solution)
and a thin and uniform film coated on the metallic lithium
anode‘22,24,35

To summarize, we believe that polymer-based surface coat-
ings have significant potential in shaping the future of Li-ion
batteries and emerging ASSBs. Through chemical modifica-
tions, these coatings can achieve high ionic conductivities,
thereby enhancing charge transfer at the cathode/electrolyte
interface. Additionally, their flexible nature allows conformal
surface coatings and accommodates volume expansions of
cathode materials, effectively reducing mechanical stresses and
mitigating particle cracking. Furthermore, these polymers can
be modified to become inert to HF (hydrofluoric acid) and serve
as HF scavengers, protecting the cathode active particles from
its chemical attack. As a result, cathode particles with polymer
coatings exhibit immense promise from a future perspective.

4. Possible challenges of polymers as
cathode coatings

It should be kept in mind that polymer-based cathode coatings
are not mature enough to replace ceramic-based metal oxide
coatings for commercial applications. However, these polymer-
based cathode coatings have significant potential for utilization
in future battery systems. During the last few years, there has
been a considerable increase in reports for polymer-based
cathode coatings for lithium and sodium-ion batteries, which
indicates the increasing interest of the battery community in
polymer-based coatings. Moreover, these polymer coatings have
shown considerable improvements in the electrochemical
performance of cathodes.'***7*%** However, there is a need for
a more fundamental and mechanistic understanding before
they can be successfully utilized in commercial applications.*
As mentioned above, the recent interest in hybrid electrolytes
(polymer/oxide or sulfide electrolytes) for all-solid-state
batteries (ASSBs) has been increasing and the fundamental
understanding of the polymer/ceramic interface is highly
demandable. The ASSB community will benefit from the
polymer-based coating for lithium anode and cathode particles
for composite electrodes. However, there are several challenges
that can hinder the pace of commercialization of polymer-based
coatings in lithium-ion batteries. The possible challenges
associated with polymer-based cathode coatings are listed
below,

o Wide electrochemical stability window: for the successful
utilization of polymers as cathode coatings, they should have
a wide electrochemical stability window. These coatings should
achieve good electrochemical stability vs. the cathode and
electrolyte, especially at high operating voltages. Most of the
polymer materials have a limited electrochemical stability
window. However, the reported polymer coated cathode dis-
played better electrochemical performances compared to the
uncoated cathode (as discussed later). This might be due to the
in situ formation of a protective layer at the cathode/coating
interface and thus can have the ability to protect these high

This journal is © The Royal Society of Chemistry 2024
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voltage cathodes against potential parasitic reactions with the
electrolyte.

e Chemically stable with high voltage cathodes: the polymer
coatings should be chemically stable with high voltage cath-
odes, especially when in contact with de-lithiated cathodes and
at higher operating temperatures.

e Ionically and electronically conductive:
improved electrochemical charge transfer kinetics, the coating
surface should have good ionic and electronic conductivities.
So, it can protect the cathode/electrolyte surface and at the same
time, improve the ion and electron conductivity of composite
electrodes for ASSBs. However, it is challenging to develop
optimum coatings with excellent ionic and electronic conduc-
tivities simultaneously.

e Stable during extended cycling: it is well accepted that with
extended cycling, the cathode surface and coating surface are
prone to damage due to aging. However, the development of
polymer coatings that could withstand extensive long-term
cycling will be a challenge.

e Compatible with organic-based electrolytes: the polymer
coatings should be compatible with organic-based liquid elec-
trolytes. Since there is hardly any literature present which shows
the stability of surface coatings themselves in organic-based
liquid electrolytes, it is difficult to comment on the chemical
stability of coatings during cycling. However, the coatings
should be very stable and shouldn't show any unwanted side
reactions with the liquid electrolytes. Otherwise, the purpose of
surface coatings would be lost.

To summarize, while polymers present an appealing choice
for cathode material coatings, they must overcome several
challenges. Many polymers lack electrochemical stability at
elevated voltages, necessitating the development or optimiza-
tion of new polymers that are chemically and electrochemically
stable, particularly at higher voltages. Additionally, polymer
coatings should facilitate the conduction of both ions and
electrons. Furthermore, they should demonstrate long-term
stability during cycling, resisting delamination or decomposi-
tion to minimize interfacial kinetics. Finally, they should be
compatible with both liquid and solid electrolytes.

to achieve

5. Morphology of polymer-based
cathode coatings

Due to the flexible nature of polymers, which can form thin
conformal coatings on cathode materials, polymer coatings can
improve cathode performance in terms of long-term cycling,
rate capability, and safety.?*?¢*%433-33 The crystalline and
amorphous coating layers were formed depending on the
preparation techniques and types of polymer materials
used.>* 2444455033 Fio. 3 shows the morphologies of various
polymer coatings on the cathode materials. Xu et al. developed
ultra-conformal protective coatings using poly(3,4-ethylene
dioxythiophene) (PEDOT) on Ni-rich LiNig g5C0¢1Mng 450, (Ni-
rich) and Li-rich Li; ;Mng 54Ni.13C00 130, (LMR-TMO).>* The
PEDOT improved lithium-ion and electron transport due to its
mixed conductivity properties and reduced interfacial

J. Mater. Chem. A, 2024, 12, 14186-14205 | 14191
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(a) STEM-HAADF images of bare and PEDOT coated NCM;1,,2¢ reproduced from ref. 26 with permission from Nature Portfolio, copyright

2019, (b) TEM images for different regions of a particle for PANI-PVP coated NCMg1,* reproduced from ref. 46 with permission from American
Chemical Society, copyright 2016, (c) SEM and TEM images for conformal poly(ethyl a-cyanoacrylate) (PECA) coating on LiNigsMn; 504,
reproduced from ref. 49 with permission from Elsevier, copyright 2017, (d) TEM images for PANI coated NCMgy4, reproduced from ref. 23 with

permission from American Chemical Society, copyright 2019.

resistance. Here, the oxidative chemical vapor deposition
(oCVD) technique was adapted to form a protective coating layer
both on the secondary and primary particles as shown sche-
matically in Fig. 3a. The scanning transmission electron
microscopy high-angle annular dark-field (STEM-HAADF)
images along with elemental mapping show a very thin crys-
talline and conformal coating developed on the primary and
secondary particles. Such a coating is generally difficult to
achieve with ceramic-based coatings. The postmortem analysis
indicated that even with long-term cycling, the PEDOT coating
is still present without any visible changes in its morphology
and the cathode material did not show any crack formation. It
can be concluded that the presence of the PEDOT film signifi-
cantly suppressed the layered to spinel/rock-salt phase trans-
formation and retarded the mechanical cracking between

14192 | J Mater. Chem. A, 2024, 12, 14186-14205

different primary particles. It is shown that the cycling and
thermal stability of Ni-rich and LMR-TMO cathodes were
considerably improved due to the stabilization of the cathode-
electrolyte interphase. Wu et al. coated a lithium-rich Li; ,-
Niy,Mn, 0, cathode with the composite poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
using the wet coating method as shown in the scanning electron
microscopy (SEM) and TEM images in Fig. 3b.*® This technique
formed an amorphous coating layer in the range of 5-20 nm
depending on the amounts of coating precursors used. The
PEDOT:PSS composite exhibits high conductivity (~10-
10> S ecm ') and excellent thermal and electrochemical
stability.*”*®* The SEM images display no visible change on the
secondary particle surface. Note that it is quite challenging to
see a coated layer using SEM. However, the instigation of

This journal is © The Royal Society of Chemistry 2024
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(a) In situ HEXRD patterns of the PEDOT coated NCMy; cathode during the 1st charge/discharge cycle within 2.8—-4.6 V. Later, the HEXRD

patterns of bare and PEDOT coated NCMyy; in the voltage region of 4.3-4.6 V during the charge at C/10, and the change in the lattice parameter
‘c’ as a function of charge/discharge time. L and S correspond to the layered and spinel phases, respectively,® reproduced from ref. 26 with
permission from Nature Portfolio, copyright 2019, (b) CV curves for the five cycles at 0.2 mV s~ (2.8-4.3 V) for bare and PANI coated NCMgy4, %
reproduced from ref. 23 with permission from American Chemical Society, copyright 2019.

focused ion beam milling (FIB) or elemental mapping can give
a better idea about the coating layer. Nevertheless, TEM images
clearly distinguish the difference between bare and PEDOT:PSS
coated Li; ,Nip,Mng¢0, surfaces. A thin, amorphous, and
conformal coating layer can be seen with a thickness of around
8 nm. Here, the 3 wt% PEDOT:PSS coated cathode showed the
best electrochemical performance in terms of cycling and rate
capability. The improved performance was directly linked to the
high conductivity of the PEDOT:PSS coated layer and to the
formation of a stable cathode-electrolyte interphase (CEI)
during long-term cycling. Liu et al. synthesized a poly(ethyl o-
cyanoacrylate) (PECA) coated high voltage spinel cathode
LiNiy sMn, 50, using an in situ polymerization reaction as
shown in Fig. 3c.* The authors claim that the PECA behaves as
a high voltage polymer electrolyte on the LNMO surface due to
its high ionic conductivity. They emphasized the prevention of
metal-ion dissolution from the cathode due to the PECA

This journal is © The Royal Society of Chemistry 2024

coating. However, the SEM images show (Fig. 3c) no visible
difference in surface morphology between the bare and PECA
coated LNMO. This might be due to the limitations of SEM
imaging. However, the TEM images show a thin and homoge-
neous PECA layer on the cathode sample. The coating thickness
is around 10 nm and is amorphous in nature. The authors were
able to show by TEM analysis that the coating treatment has no
visible effect on the intrinsic lattice structure of the coated
LNMO. Gan et al. developed a thin polyaniline (PANI) and pol-
yaniline-polyvinylpyrrolidone (PANI-PVP) composite coating
on high NiLiNi, gCoy1Mng 10, (NCMs,4) (Fig. 3d).>* Here, the
PVP layer was introduced as an inductive agent to improve the
adhesion of PANI and the NCMj,; cathode and thus, to develop
a homogeneous thin coating. As seen in the TEM images,
NCMy,;@PANI-PVP shows homogeneous coverage with the
coating layer with a coating thickness of around 10 nm. The
TEM images from different parts of a particle show complete

J. Mater. Chem. A, 2024, 12, 14186-14205 | 14193
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coverage of PANI-PVP without any uncoated or uneven regions.
NCMg,,-PANI-PVP showed excellent cycling and rate capability
when compared with bare NCMg, .

6. Structural stability with polymer-
based cathode coatings

It is well known that layered oxide cathodes LiNi; _,_,Co,Mn,0,
(NCM) may undergo structural transformations with loss of
oxygen from the lattice while cycled under different operating
conditions. The most favorable transformation is from layered
oxide to spinel and/or rock-salt phases originating at the
surfaces of the cathodes.'?7:3¢37:39-415455 However, it is reported
that the incorporation of dopants into the crystal lattice or
surface coatings of cathodes can mitigate the structural
transformations.*?***¢** Therefore, doping and surface coatings
are considered effective and viable approaches to improving the
performance of layered oxide LiNi, _,_,Co,Mn,0, (NCM) cath-
odes. Xu et al. covered the layered oxide LiNi;;3C04/,3Mn4/30,
(NCM;44) with a thin homogeneous PEDOT coating utilizing the
oxidative chemical vapor deposition (CVD) process and the re-
ported coating process suppressed the phase transformation.
Similarly, another report has achieved the coating on the
primary particles and demonstrated improved electrochemical
performance, mitigation of structural transformation,
enhancement in thermal safety, and mitigation of crack
formation in the cathode during extensive cycling.*® Fig. 4a
shows the in situ high-energy X-ray diffraction (HEXRD) patterns
of the PEDOT coated NCM,,; cathode during the 1st charge-/
discharge cycle within 2.8-4.6 V, clearly displaying high struc-
tural reversibility.>® The comparison of in situ HEXRD patterns
of PEDOT-NCMy,; and bare NCMg,; (not shown here) reveals
clear differences in structural evolutions during the first charge/
discharge cycle. The XRD peaks for bare NCMg,; couldn't return
to the same positions, indicated by the (003), (101), (102), (108),
(110), and (113) peaks, after the first charge/discharge cycle,
clearly indicating some irreversible structural changes in the
cathode. Moreover, high-Ni layered oxides LiNi,_,_,Co,Mn,0,
(NCM) (Ni > 60%) are structurally less stable and thus, undergo
severe structural changes during cycling.®>"* These structural
changes and transformations are more pronounced at higher
operating voltages and temperatures.”””® This can be seen by
the emergence of weak shoulder peaks (indicated as S) at high
voltage (>4.3 V) during the first charge for bare NCM;;. These
weak shoulder peaks correspond to the formation of the spinel
phase (abbreviated as S) with the Fd3m space group, which is
associated with the loss of oxygen from the crystal lattice. In
comparison, PEDOT coated NMC,4; didn't show the formation
of any secondary phase. Mechanical stresses are created in the
primary and secondary particles, thus leading to mechanical
cracking of the bare cathode material, and suppressed in the
coated cathode. The positive effect of polymer coatings on
structural and cycling stability can also be analyzed by
comparing the cyclic voltammograms (CV) of bare and coated
cathodes. Fig. 4b compares the CV for the first five cycles at 0.2
mV s~ (2.8-4.3 V) for bare and PANI coated NCMgy;.>* These

14194 | J Mater. Chem. A, 2024, 12, 14186-14205
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layered oxide materials display a series of phase trans-
formations such as hexagonal to monoclinic (H1 < M),
monoclinic to hexagonal (M < H2), and hexagonal to hexag-
onal (H2 < H3). There is a drop in the oxidation peak corre-
sponding to (H1 < M) during successive cycles for both bare
and PANI-coated NCMyg,,. However, the shape and peak inten-
sity for PANI-coated NCMg;; in comparison to bare NCMg;
show better electrochemical reversibility and structural
stability. This would be more pronounced at higher cutoff
voltages and higher operating temperatures, thus demon-
strating the beneficial role of PANI coating in NCMyg,, cathodes.

7. Types of polymer-based cathode
coatings

Every polymer material has its inherent physical, chemical,
mechanical, ionic, and electronic transport properties and
electrochemical stability. Their coating properties appear to be
different from one type of polymer material to another. The
important classes of polymer-coated cathodes are discussed
and analyzed in detail individually.?®>"7*°

7.1 Poly(3,4-ethylenedioxythiophene) (PEDOT)

PEDOT is considered a potential cathode coating material due to
its high ionic and electronic transport properties.***** It will be an
ideal coating material in composite cathodes for ASSBs due to the
favorable transport and mechanical properties. Xu et al. reported
an ultra-conformal thin PEDOT coating on different types of
layered oxide cathode materials including LiNi,;;3C04,3Mn;/30,
(NCM,14), Nirich LiNij g5C001Mng 50,5, and Li-rich Li; ;Mng 54-
Nip.13C00.130,.** The thickness of the PEDOT coating was
controlled by the OCVD reaction time X-PEDOT@NCM, 1, (Where X
refers to the OCVD deposition time in minutes). Fig. 5a-i show the
morphology of PEDOT-NMC,,; cathode materials at various
reaction times. The coating thickness increased from 7 nm to
18 nm for 20 minutes and 80 minutes, respectively. Nonetheless, it
is important to note that all the coated cathodes show conformal
coating morphology without any irregularities. Such coatings are
highly desirable for the good passivation of the cathode from the
electrolyte and faster kinetics. The cathodes were cycled between
3.0 and 4.6 V at 1C for 200 cycles as shown in Fig. 5a-ii. Due to the
higher upper cutoff voltage of 4.6 V, bare NCM;,, displays fast
capacity fading and retains only 47.7% of its initial discharge
capacity after 200 cycles. However, it is worth noting that all the
coated NCM,;; materials displayed substantial improvement in
capacity retention. 60-PEDOT-NCM,; with a coating thickness of
around 20 nm displayed the best capacity retention of around
91.1%. It is well known that the layered oxide LiNi;_,_,Co,Mn,0,
(NCM) and spinel oxides LiMn,O, (LMO) and LiNiysMn; 50,4
(LNMO) materials undergo an HF generation—corrosion loop,
which directly exposes them to the electrolyte during long-term
cycling, resulting in continuous transition metal -cation
dissolution.””*>?7¢%9297 To confirm the HF-scavenging behavior of
the PEDOT coating, the PEDOT-NCM,,, cathodes were mixed with
a HF bearing electrolyte and the corresponding HF concentration
was monitored after 48 h (not shown here). The overall HF

This journal is © The Royal Society of Chemistry 2024
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Fig. 5 (a) PEDOT coated NCM,4; using oxidative chemical vapour deposition (oCVD), (i) TEM images of PEDOT coated NCM,y, at different oCVD
coating times, (ii) capacity retention of bare and PEDOT coated NCMyy;|Li half-cells at 1C and corresponding charge/discharge curves, (iii) the
effect of PEDOT coating on HF scavenging and transition metal (Ni, Co, and Mn) dissolution after 200 cycles,?® reproduced from ref. 26 with
permission from Nature Portfolio, copyright 2019, (b) polyimide (PI) coated Li-rich Lij »Nig13Mng54C00 130, (LNMCO), (i) cycling and rate
capability of bare and Pl coated LNMCO, (iii) EIS spectra before and after the 50th cycle for based and Pl coated LNMCO,”® reproduced from ref.
78 with permission from American Chemical Society, copyright 2014.
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concentration was reduced by around 50% due to the 60-PEDOT-
NCM,;; coating. Furthermore, the transition metal dissolution (Ni,
Co, and Mn) was found to be considerably low with the application
of the PEDOT coating.

7.2 Polyimide (PI)

Polyimide (PI) was used to coat various cathode materials and
their  electrochemical performances were  discussed
therein.”””%%%% Jie et al. coated Li-rich Li; ,Niy13Mng 54,C00.130,
(LNMCO) with polyimide (PI) (Fig. 5b) and heat-treated at two
different temperatures 300 and 450 °C, respectively.” Both
coated materials showed a thin and homogeneous coating on
the LNMCO surface and exhibited much-improved cycling

View Article Online

Review

stability compared to bare LNMCO as shown in Fig. 5b-i. The
sample coated at 450 °C exhibited better capacity retention
(90.6%) compared to the bare sample (78%) after 50 cycles. The
PI-coated LNMCO displayed enhanced rate capability due to the
improved charge transfer kinetics at the cathode-electrolyte
interface. Interestingly, the initial cell resistance of the coated
sample is higher than that of the bare sample. However, after
several cycles, the opposite trend was observed (Fig. 5b-ii). This
might be due to the slow wetting and impregnation of the
electrolyte into the polymer coating layer, thus enabling proper
contact between the cathode and electrolyte. Therefore, it
clearly shows that the presence of PI on the surface of LNMCO
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Fig. 6 (a) PAN coated NCMgp,, (i) schematic illustration of the cPAN coated NCMg,, cathode, (i) electrochemical performance including cycling

at 1C between 2.8 and 4.5V at 25 °C, rate capability and electrochemical impedance spectra after the 30th cycle in the charged state (4.5 V), (iii)
SEM images of bare and PAN-NCMg;, long-term cycling (100 cycles),®® reproduced from ref. 86 with permission from Elsevier, copyright 2019,
(b) carboxyethylgermanium (Ge-132) coating on the Li-rich NCM cathode, (i) schematic representation for the process employed for coating, (ii)
long-term cycling performance, (i) coulombic efficiencies and cumulative charge endpoint slippage vs. cycle number for bare and Ge-132
coated Li-rich NCM in NCM|graphite full-cells,**° reproduced from ref. 100 with permission from The Electrochemical Society, copyright 2020.
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effectively stabilizes the cathode-electrolyte interface, leading
to better electrochemical performance.

7.3 Polyacrylonitrile (PAN)

It is reported that polyacrylonitrile (PAN) was converted to
a cyclized polyacrylonitrile (cPAN) layer while heat-treated and
calcinated (Fig. 6a-i) and expected to have better electronic
conductivity.”® Noting that the flexible and elastic polymeric
coatings not only suppress the side reactions at the cathode-
electrolyte interface but also suppress the volume expansions of
the cathodes during (de)lithiation and crack formation on the
cathode particle during long-term cycling. The resulting cPAN
coated NCMS6,, exhibited enhanced electrochemical perfor-
mance as shown in Fig. 6a-ii. The cPAN thickness plays an
important role in high-rate performances. Various amounts of
PAN were employed to coat NCMs,, and it turns out that the 2%
PAN coated sample exhibits better performances than either
higher or lower coating thickness. Electrochemical impedance
spectroscopy (EIS) analysis (after 30 charge/discharge cycles)
confirms that cPAN-NCM samples have much smaller charge
transfer resistance (R..) than bare NCM. The increased R for
bare NCM is due to the formation of an unstable cathode-elec-
trolyte interphase (CEI) by the decomposition of electrolytes at
higher operating voltage. Furthermore, the presence of cPAN
mitigated the crack formation in cathode particles during long-
term cycling (100 cycles) as shown in SEM images in Fig. 6a-iii.

7.4 Carboxyethylgermanium (Ge-132)

Becker et al. reported the utilization of carboxyethyl germanium
(Ge-132) to coat a Li-rich Li; 15Nig15C00.15Mng 550, (Li-rich NCM)
cathode material using the sol-gel process as shown schematically
in Fig. 6b-i." As mentioned above the Lirich layered oxide
cathode (Li,MnO;-LiMO,) suffers from poor cycling stability,
rapid voltage fading, and structural degradation during extensive
cycling and its electrochemical performances were improved
through Ge-132 coating.’”* " Noting that the Ge-132 coated Li-rich
NCM showed much-improved capacity retention (92%) when
compared to bare Li-rich NCM (88%) after 200 cycles (Fig. 6b-ii).
The coulombic efficiency (CE) and accumulated charge endpoint
slippage vs. the cycle number during the first 100 cycles are dis-
played in Fig. 6b-iii. These parameters give more insights into the
impact of parasitic reactions. Ge-132 coated Li-rich NCM shows
much fewer parasitic reactions as indicated but higher and stable
coulombic efficiency values compared to bare Li-rich NCM.
Moreover, the cells with Ge-132-coated Li-rich NCM show a higher
(less negative) charge endpoint slippage compared to uncoated Li-
rich NCM. These results indicate the stabilization of the cathode
material surface with Ge-132 coating.

7.5 Polyaniline (PANI) and polyvinylpyrrolidone-polyaniline
(PVP-PANI) composite coating

A PVP-PANI-based composite homogeneous thin (3-6 nm)
coating layer was formed on the Ni-rich layered oxide LiNiy g-
C0y.1Mn, 10, (NCMgq;) as shown in Fig. 7a-1.>*%¢%” The presence
of the PVP intermediate layer improved the bonding and
morphology of the PANI layer on NCMg;; and protected the

This journal is © The Royal Society of Chemistry 2024
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unstable NCMg,; in the charged state against electrolyte
corrosion. In addition, the PANI layer improved the charge
transfer kinetics, especially at higher C-rates, due to its excellent
ion transport properties. Rate performances are also consider-
ably enhanced as shown in Fig. 7a-ii. It should be noted that
bare NCMg,;, shows a rapid increase in charge transfer resis-
tance (R.) after 100 cycles compared to PANI-NCMyg,; and
PANI-PVP-NCMg,; samples as shown in Fig. 7a-iii. The Ni-rich
layered oxides LiNi;_,_,Co,Mn,0, (NCM, Ni > 60%) have
serious safety concerns, especially in a charged state.*>®**
PANI-PVP-NCMgy,; shows improvement in safety characteris-
tics with the increase of onset decomposition temperature in
the presence of the coating.

7.6 Lithium polyacrylate (LiPAA)-silane-coupling agent
(KH550) composite coating

The polyacrylate (PAA) and silane-coupling agent (KH550) have
been used to form a composite coating on Ni-rich LiNijg-
Coyg.154l9,050, (NCA) as shown schematically in Fig. 7b-i.>*** The
advantages and disadvantages of PAA are that it converts into
lithium polyacrylate (LiPAA) and provides excellent Li"
conductivity and high voltage stability. Furthermore, it can
suppress electrolyte corrosion by forming an outer cross-linked
layer. However, it might reduce the capacity of the full cells due
to the consumption of Li by PAA. As seen in Fig. 7b-ii, the
cycling performance of coated NCA improves long-term cycling
at 1C and displayed the best capacity retention. After the 100th
cycle, the charge transfer resistance (R.) of bare NCA increased
significantly compared to the coated sample. Furthermore, bare
NCA shows particle cracking after long-term cycling (Fig. 7b-iii)
and shows large variations in lattice spacings, which revealed
the layered to rock-salt phase transformation. This resulted in
large volume changes and thus the intergranular cracking and
pulverization of NCA. On the other hand, coated NCA displayed
a very thin and homogeneous layer (~3-5 nm) of the rock-salt
phase on the particle surface. This clearly supports the
conclusion that the presence of the surface coating mitigated
the phase transformation.

To conclude, the literature suggests that polymer-based
surface coatings applied to cathode materials should be both
uniform and conformable. Thin coatings tend to enhance the
electrochemical performance of coated cathodes, while thicker
coatings may detrimentally impact the performance by
increasing interfacial resistance. However, opting for a suitable
polymer coating poses a formidable challenge.

8. Comparison of electrochemical
properties with and without polymer
coatings

The electrochemical performances of electrode materials with
and without polymer coatings are compared in Table 1. It can be
seen from Table 1 that the cycling stability can be greatly
improved with polymer coatings in all cathode materials, even
though most of the polymer materials are electrochemically
unstable at higher voltages. The better electrochemical
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duced from ref. 120 with permission from American Chemical Society, copyright 2017, reproduced from ref. 143 with permission from Wiley,
copyright 2018, (b) PEDOT coated LCO as a mono-component electrode (without additional conductive carbon and binder),*?* reproduced from
ref. 121 with permission from American Chemical Society, copyright 2014, (c) possibility of polymer coatings on electrodes,??2* reproduced from
ref. 22 with permission from The Electrochemical Society, copyright 2020, reproduced from ref. 24 with permission from The Royal Society of
Chemistry, copyright 2018, (d) development of polymer-based hydrophobic cathode coatings, and (e) the concept of self-healing polymeric
coatings, which may be translated to future cathode coatings,**® reproduced from ref. 136 with permission from The Royal Society of Chemistry,
copyright 2018.
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performance of polymer coated electrodes was explained due to
high ionic conductivities, the possibility of achieving thin
conformal coatings, and good physical and chemical contact at
the polymer coating/cathode surface.?*5757779-8183-8587-90 A deeper
insight was not sought in the literature. However, there might be
a great possibility of in situ formation of an ultra-thin protective
layer at the polymer and cathode interface during the coating
development stage or in the formation cycle of the electro-
chemical cell. The newly formed protective layer might be stable
at high voltage and enables the operation of the cell without
further degradation and retains long-term cycling stability.

9. Applications of polymer coatings in
ASSBs

It is well understood that cathode materials are prone to volume
expansion/contraction during (de)lithiation. Therefore, during

solution
processing

conformal coating
on large electrodes

@ Processing
Properties

thermal
stability

flexibifity

robust mechanical
strength

@ Thermo-Mechanical Properties
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successive cycling, cracks can form on the cathodes, which can
lead to contact loss between cathode particles, and even with
the current collector.***>'1¢1*® Thjs effect is more pronounced in
all-solid-state batteries (ASSBs) and leads to the loss of active
cathodes, which results in capacity loss. In addition, the elec-
trode and solid electrolyte can have contact loss due to volume
expansion and contraction as shown in Fig. 8a,"° and results in
rapid irreversible capacity fade. Various strategies have been
proposed to overcome the issues of cathode-solid electrolyte
delamination in ASSBs such as (i) application of external pres-
sure, (ii) addition of a small amount of liquid electrolyte, and
(iii) application of ceramic-based coatings on the electrode
surface. All these approaches are not cost-effective and not long-
term sustainable. The addition of liquid electrolytes is not even
in the line of ASSB definition. The incorporation of flexible
polymer coatings can retain the contact between electrode
particles and the cathode-electrolyte interface (Fig. 8a).
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Fig. 9 Pictorial summary of polymer coating materials containing potential advantages over their inorganic counterpart.
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However, the selection of polymer remains a challenge as it
should be highly ionically conductive, has a wide electro-
chemical and chemical stability window, and prevents
unwanted side reactions as already discussed in detail in the
previous sections. Kim et al. developed a composite PEDOT:PSS
coating on LiCoO, (LCO) cathodes and eliminated the use of
additional binder and conductive agents for the fabrication of
electrodes.”” These mono-component electrodes can be
employed in ASSBs and can potentially reduce non-electroactive
components and enhance the energy density. The reported
mono-component electrodes show both high ionic and elec-
tronic conductivity (PEDOT:PSS coated LCO in the absence of
conductive carbon and PVDF binder). There was no significant
physical breakage in the electrodes while bending as can be
clearly seen in an SEM image in Fig. 8b.

Polymers have flexibility in terms of processing and experi-
mental design and can be applied to electrode materials either
before electrode fabrication or after fabrication.****** Sun et al.
applied a functional polyacrylate (PAA) based polymer coating
on cast electrodes as shown in the schematic in Fig. 8c (ref. 24)
and the coating thickness was estimated to be around 5 nm.
This approach of polymer impregnation into an anode surface
would be useful in solid-state batteries (SSBs). A similar
approach of polymer impregnation using solution casting has
been employed in SSBs as shown in the schematic in Fig. 8c
(right side).>'* This concept of pore filling and thus ensuring
good contact between cathode particles and solid electrolytes
are very useful to realize its future application by forming an
ionic and electronic conducting pathway."****” The assembled
solid-state battery exhibited low interfacial resistance, reduced
cell polarization, and improved rate capability.'* Moreover, the
modified polymer can develop a hydrophobic coating to repel
moisture and thus prevent the issues of surface instability and
handling.**»**>**® The approach can readily be helpful, espe-
cially in the case of (LiNi;_,_,Co,Mn;0,, Ni > 60%), which have
poor ambient stability and are prone to undergo surface reac-
tions with the residual lithium compounds (LiOH and
Li,CO;). 277129134 Furthermore, the concept of self-healing
polymer coatings is quite old in the field of corrosion protec-
tion of metallic components, especially in the oil and gas sector.
These studies utilize similar concepts to prevent the exposure of
fresh surfaces to electrolytes.'*>** The intrinsically conductive
polymers can repair defects and restore the protection of the
substrate, restricting the potential chemical attack from the
corrosive electrolyte. The temperature, pH, and mechanical
stresses control the release of corrosion/healing inhibitor,
which can be instigated in solid-state batteries for long-term
cycling and high temperature/voltage operations. The pres-
ence of self-healing coatings on the electrode which can release
self-healing agents to fill these gaps would be a breakthrough in
ASSB technology, which can ultimately accelerate the commer-
cialization of ASSBs.

10. Summary and future outlooks

This review article is focused comprehensively on the coating of
high voltage cathode materials by using various types of

14202 | J Mater. Chem. A, 2024, 12, 14186-14205
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polymer materials and discussing their benefits, role, necessity,
and suitability for ASSBs. The advantages and disadvantages of
different polymers as a coating were elaborated in terms of
improved interfacial properties and electrochemical perfor-
mances. This article has extensively covered the comparison of
the cycling performances of coated and uncoated high voltage
cathodes under various operating conditions. It turned out that
a polymer coating has the potential to improve battery perfor-
It revealed that the crystalline or amorphous
morphology of the polymer coating does not have a significant
impact on the electrochemical performance. However, the
coating thickness plays an important role in the rate perfor-
mance. An extremely thin coated (3-5 nm) layer has been
developed using different coating strategies. The role of coat-
ings in minimizing the detrimental structural change of cath-
odes in the charged state and side reactions was discussed
briefly in the review.

It is not clearly understood why the cycling stability is greatly
improved with polymer coatings in all cathode materials even,
though most of the polymer materials are electrochemically
unstable at a higher voltage. A deeper insight into the origin of
stability was not sought in the literature. However, there might be
a great possibility of in situ formation of an ultra-thin protective
layer at the polymer and cathode interface at the coating devel-
opment stage or in the formation cycle of the electrochemical cell.
The newly formed protective layer might be stable at higher voltage
and enables the operation of the cell without further degradation
and retains long-term cycling stability. In ASSBs, the crack
formation in the composite cathodes is more pronounced due to
the volume expansion-contraction, which can lead to contact loss
between cathode particles, the cathode/electrolyte interface, and
even with the current collector. These effects lead to the loss of
active materials, result in capacity loss, and generate cell over-
potential. A polymer coating can minimize all these impacts due to
its favorable mechanical properties and flexibility in terms of
processing and experimental design.

Finally, the prospect of polymer-based surface coatings is
evolving dynamically, offering remarkable flexibility as cathode
coatings in Li-ion and ASSBs, as pictorially demonstrated in
Fig. 9. Beyond the basic requirement of conformal surface
coatings, the choice of polymer assumes paramount signifi-
cance. Among the classes of polymers worthy of exploration for
surface coating applications are ionic polymers, bio-based
polymers, self-healing polymers, mixed-ionic electronic poly-
mers, hydrophobic polymer coatings, redox polymers, and
hybrid polymers (blending inorganic and polymer). Each type
presents unique properties and advantages, contributing to the
various options for tailored surface functionalities, and thus
performance improvement.

mance.
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