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Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid

supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic

nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties,

which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of

appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and

adapted to both enzymes and support requirements for optimal efficiency. This review provides

a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols.

It covers methods, challenges, advantages, and future perspectives, starting with general aspects of

magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The

discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials,

highlighting advantages, challenges, and potential applications. Further sections explore the industrial use

of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and

prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of

magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and

contributing to manufacturing optimization.
1. Introduction

Magnetic materials are widely used in modern technologies and
devices with a broad classication of chemical and physical
properties directly dependent on their structural composition.1–4

Specically, materials with constituents such as iron, nickel,
aluminium, cobalt, and others that favour a response to
a magnetic eld are characterized as magnetic.5–11 These materials
can be classied as so and complex, and magnets can attract
both; however, somaterials are attracted only temporarily, while
hardmaterials can bemagnetized indenitely.11–17Because of their
versatility, they can be applied in various elds: sensing, smart
devices, storage, biomedicine, immobilization and enzymatic
stabilization, and adsorption of effluents and wastewaters.16–29
gânica, Centro de Ciências, Universidade

CEP 60455760, CE, Brazil. E-mail: jcs@

Sustentável, Universidade da Integração

, Campus das Auroras, Redenção CEP
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0455760, CE, Brazil

7988
These materials can be used at different scales: macro metric,
micrometric, and nanometric.11,16,30–34

Magnetic nanomaterials have attracted signicant interest
from various industries that synergistically apply nanoscience and
nanotechnology to solve ongoing challenges.11,16,35–37 The versatility
of magnetic nanomaterial-based compounds is attributed to
unique properties (e.g., superparamagnetism), which result from
the inuence of thermal energy on a ferromagnetic nano-
particle.11,17,26 When used as reinforcement materials, these
compounds can enhance existing physical or chemical
properties.24–28,36,38 The synthesis of these nanomaterials is
constantly evolving, and several routes have been proposed over
the years.39–42 The chemical or physical route used to produce this
compound is dened based on its proposal of the nal applica-
tion. Several methods can be used, such as co-precipitation43–45

aerosol route,46–48 hydrothermal reaction49–51 oxidative precipita-
tion,52,53 organic precursor method54,55 sonochemical
decomposition,56–59 and sol–gel synthesis technique.60–62

Immobilization and enzymatic stabilization are among the
most favourable application areas for these nanomaterials
because several factors favour catalytic activity and stabilization
in various reactive environments unsuitable for the use of
soluble enzymes.63–66 Advantages include high surface area,
large surface-to-volume ratio and separation facilitated under
© 2024 The Author(s). Published by the Royal Society of Chemistry
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external magnetic elds.67–70 It should be noted that magnetite
nanoparticles (Fe3O4) are used more frequently compared to
other types.71–73 The low toxicity, good compatibility and high
surface area justify the frequent use of this enzyme immobili-
zation matrix.72,74 One of the challenges to the efficient use of
these materials in enzyme immobilization protocols is their
high reactivity and easy degradation when exposed to specic
environments, causing instability and better dispersion of the
enzyme.66,72,75,76

However, several methods for modifying magnetic iron
nanoparticles have been developed to improve the carriers for
unrestricted use and with maximum efficiency.66,70,72,74,77–81

Polymeric molecules such as polyethene glycol (PEG)82,83 poly-
vinylpyrrolione (PVP),84–86 poly (lactic-co-glycolic acid)
(PLGA)87–89 and polyvinyl alcohol (PVA)87–89 have been used as
coatings for these nanoparticles, mainly enhancing various
chemical and physical properties75,90–93 In addition, the surface
coating is made of natural and oen abundant organic mole-
cules such as chitosan, chitin, ethyl cellulose, gelatin, starch, (3-
aminopropyl) trietoxylesan (APTES), carboxymethyldextrana
among others94–103 has been used. Therefore, chemical modi-
ers increase the versatility of these supports, allowing the
immobilization of various biologically active and complex
molecules.11,104–106

The enzyme immobilisation methods in magnetic nano-
particles are diverse, and their use depends on the nal appli-
cation of the biocatalyst.74,107,108 Immobilization by physical
adsorption is one of the most common methods and one of the
rst developed.66,69,72,74,109 The interactions between matrix and
enzyme are weak, such as electrostatic interactions, hydrogen
bonds, van der Waals forces, and hydrophobic interactions.69,72

The reaction conditions directly affect these interactions, which
include pH, temperature, ionic strength, and biomolecule
concentration.66,70,72,75,110,111 The robustness of the support
properties in these protocols is fundamental to the efficient use
of these biocatalysts.66,75,112,113 The protocol of immobilizing
enzymes by covalent coupling is one of the most widely used
due to increased enzymatic stability, which improves enzymatic
activity.112–118 In addition, other immobilization methods that
use specic biologically mediated interactions are also used,
such as ionic binding, trapping, and enzymatic
encapsulation.119–127

For years, several reaction processes have experienced
immobilisation and enzymatic stabilisation, improving proto-
cols for synthesising and immobilising magnetic nanoparticle
supports. Several enzymes have been immobilized in magnetic
matrices belonging to the groups: xirreductases,128,129 trans-
ferases,130,131 hydrolases,132–134 lyases,135–137 isomerases,138

lipases,139–143 among others. The non-toxicity of magnetic
nanoparticles and their surface area allow most of the above
enzymes to interact efficiently, favouring immobilization
parameters such as increased catalytic activity, better opera-
tional, thermal and pH stability, increased immobilization yield
and more signicant.144–150

Currently, enzymatic immobilization protocols are increas-
ingly being analyzed to optimize processes, reduce costs, and
improve immobilization parameters.151–154 This experimental
© 2024 The Author(s). Published by the Royal Society of Chemistry
design is a powerful tool to overcome the challenges of indus-
trial scalability.155,156 Variable analysis using experimental
design is a promising alternative that has been increasingly
used.157,158 Numerous studies have been published discussing
the main factors inuencing enzymatic immobilization proto-
cols.154,157,159,160 Golmohammad Khoobbakht et al. (2020) show
that Burkholderia cepaciaa lipase was stabilized in magnetic
nanoparticles of mesoporous silica shell–shell cores to synthe-
size biodiesel from residual soybean oil. Statistical optimization
methods such as response surface methodology (RSM) with
central composite design (CCD) were used. Notably, it predicted
the biodiesel yield to be 92% under ideal conditions.161 In this
sense, there is a latent need for the use of statistical tools to
optimize enzyme immobilization processes.154,159,162

In summary, immobilization protocols, the development of
new supports, and process optimization are based on much of
the current research on enzyme immobilization on solid
media.163,164 Deciding on the most appropriate immobilization
protocol is fundamental to achieving maximum biocatalyst
efficiency.165–167 The development of hybrid supports, focusing
on those of organic–inorganic composition with magnetic
properties, taking advantage of organic residues, offers
a promising option for the enzymatic immobilization process
with the sustainable prerogative in its synthesis.168–172 Experi-
mental design, molecular simulation of biobehavioral, and
analysis of variance are essential pillars for process optimiza-
tion, focusing on the immobilization of active biomolecules,
seeking maximum efficiency of support synthesis protocols,
immobilization, and nal application of the bio-
catalyst.154,159,162,166,167,173 Therefore, the following study will
address the most critical and current aspects of magnetic
matrices for enzymatic immobilization. It will be based on the
challenges and opportunities of this eld, from the synthesis of
magnetic nanomaterials to the immobilization protocols to the
nalization of the essential aspects of process optimization.

2. Magnetic nanomaterials
2.1 Magnetic properties

The magnetic property of a material is determined by the
magnetic moments per unit volume within the material.174

Magnetic nanoparticles (MNPs) have inherent magnetic prop-
erties that make them versatile for various applications.175–178

The magnetic properties of a material are classied based on its
magnetic susceptibility (cm),179 a fundamental response that
indicates how a system interacts with an external magnetic
eld.

This parameter relates the magnetization of a material to the
strength of an applied magnetic eld.180 The ve basic types of
magnetism are diamagnetism, paramagnetism, ferromagne-
tism, antiferromagnetism, and ferrimagnetism.179

MNPs exhibit unique properties, including high saturation
magnetization/sizeable magnetic moment, response to
moderate magnetic elds, and superparamagnetism.181 These
properties make them ideal for magnetic separation by appli-
cation of a magnetic eld.182,183 Superparamagnetism, which
results from the inuence of thermal energy on ferromagnetic
RSC Adv., 2024, 14, 17946–17988 | 17947
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nanoparticles, has attracted interest in recent decades.184 High
saturation magnetization (Ms) and superparamagnetism are
essential for applying an external magnetic eld.185

MNPs address the challenges of handling and separating
immobilized enzymes with low density and high dispersion,
enhancing their reusability.176,186,187 This allows for extended use
in continuous mode while protecting against thermal and
chemical changes during manufacturing and storage.187

Magnetic recovery reduces production costs, and immobilized
enzymes oen exhibit higher activity and improved tempera-
ture and pH stability than unsupported enzymes.179

The excellent superparamagnetic property of MNPs allows
easy separation from the reaction medium by simply applying
an external magnetic eld to the immobilized enzyme, followed
by easy dispersion aer the eld is removed.183,188,189 Unlike
ferromagnetic nanoparticles, superparamagnetic nanoparticles
do not retain their magnetic properties once the external
magnetic eld is removed, which is a signicant advantage for
reusing nanobiocatalysts.190 Fig. 1 illustrates the importance of
superparamagnetism in enzyme immobilization.

The magnetic properties of nanomaterials play a crucial role
in the recovery process using an external magnetic eld.178

Higher Ms indicates superparamagnetic activity,191 which is
characterized by low coercivity (Hci) and retentivity (Mr).192

Superparamagnetism and high Ms allow reactor operation at
relatively high ow rates and effective biocatalyst recovery.185

However, magnetic properties can be reduced aer modica-
tion and enzyme immobilization due to the presence of non-
magnetic nanomaterials.193,194 MNPs must be modied with
functional groups to increase the enzyme binding tendency
further and thus achieve efficient enzyme immobilization.195

Enzyme immobilization on MNPs can reduce Ms if
a biopolymer-based coating imparts a diamagnetic quality.188

Coating MNPs improves multifunctionality and biocompati-
bility,196with both aggregation197,198 and crystalline anisotropy197

inuencing Ms.
Among the supports, magnetite (Fe3O4) stands out as the

most widely used MNP for enzyme immobilization189 because of
its cost-effectiveness, biocompatibility, low toxicity, large
surface area because of small particle size, high magnetic
susceptibility, high saturation magnetization, and super-
paramagnetic properties at room temperature.189,194,199,200

Consequently, immobilization of enzymes on MNPs signi-
cantly improves stability, catalytic performance, and reusability
compared to pure enzymes.189,200,201
Fig. 1 The superparamagnetism of MNPs in enzyme immobilization.

17948 | RSC Adv., 2024, 14, 17946–17988
2.2. Superparamagnetism

Among the properties of nanomaterials, superparamagnetism
occurs when the magnetic material is reduced in size, such as
between 10 nm and 150 nm in diameter202,203 and presents
a single-state domain in which themagnetic spins are aligned202

(Fig. 2). In nanomagnetic particles with a single domain and
smaller diameters, the superparamagnetic nanomaterial has
less hysteresis, and demagnetization occurs more readily, with
variations in hysteresis and magnetization becoming zero aer
a critical size radius is reached204–206 (see Fig. 1). Overall, the
practical advantages of superparamagnetic nanoparticles, such
as biocompatibility, low toxicity, easy separation, and exibility
in modifying their surface, are relevant to their widespread use,
especially in medicine.207,208

Several biomedical applications using superparamagnetic
particles as drug-delivery systems can be found in the literature.
In Neuberger et al. (2005), iron oxide-based superparamagnetic
nanoparticles (SPIONs) are used as contrast agents in magnetic
resonance imaging for the diagnosis of cartilage pathologies.203

In addition, SPION can also be used as an oral contrast agent to
diagnose gastrointestinal tumours or as an intravenous agent to
detect other tumours in the body.207,209 To use these particles as
a drug-delivery system, the magnetic eld is removed shortly
aer the particles are combined with an external magnetic eld,
which coordinates the delivery to the desired target area,
making drug delivery more effective and less time-
consuming.203,210

Using nanoparticles as a drug-delivery system is also
advantageous for treating skin diseases. In Raviraj et al. (2021),
SPIONs were developed to facilitate drug distribution in
chemotherapy treatments of myeloma in rats in a non-invasive
methodology, without needles and without controlling the local
application of drugs.208,211 The authors observed that the
application of SPIONs with steric stabilization showed excellent
penetration into the skin and promising results in treating skin
tumours, with an increase in the immune response of the
system associated with leukocyte inltration in the studied
tissue.208,212 The results also suggest that using these nano-
materials as a drug-delivery system may contribute to the
resumption of studies with drugs discontinued in chemo-
therapy regimens due to their high toxicity.208,212
Fig. 2 Changes in the physicochemical properties of nanomaterials as
a function of particle size. When particles are sized at the critical radius
for superparamagnetic nanomaterials, the hysteresis and magnetiza-
tion of the particle become zero.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.3 Magnetic nanoparticle preparation

Magnetic nanoparticles (MNPs) consist of a magnetic material
and a chemical component, and the functionality and applica-
tion of MNPs are directly inuenced by these two compo-
nents.213 The core of MNPs is primarily synthesized from Fe3O4

and typically comprises iron oxides such as Fe3O4, hematite (a-
Fe2O3), maghemite (g-Fe2O3), and FeO (iron(II) oxide).214 The
development and implementation of efficient techniques for
the synthesis of high-quality nanomaterials is crucial.215,216 The
synthesis method and experimental conditions strongly inu-
ence the size and morphology of magnetic particles, which
determine the material's magnetic properties and its
applications.215–218 Size and size distribution play a crucial role
in determining the chemical and physical properties of MNPs,
which further inuence their functionality.215,216,218 Because of
their small particle size, MNPs oen exhibit super-
paramagnetism,196,218,219 characterized by dimensions
approaching those of a single magnetic domain.196 Tailoring of
magnetic properties can be achieved by controlling the
magnetic moment and crystallite size by incorporating high-
entropy oxides.220

Precise control of the nanoparticle production parameters is
essential, as the unique properties of MNPs are highly depen-
dent on their size and morphology.221 The synthesis method is
selected based on the desired length, stability, morphology, and
biocompatibility of the MNPs.218 The primary synthesis
methods for MNPs include physical, wet chemical, and a few
biological approaches (e.g., green synthesis or biosyn-
thesis).218,222,223 Physical methods involve fractionating bulk
material into smaller pieces through high-energy processes
such as ball milling, considered a “top-down” approach.215,224 In
contrast, the “bottom-up” approach includes chemical and
biological methods that involve particle formation through
nucleation, growth, and precipitation.215,224 Biological and
chemical synthesis methods are the most widely used.218 Phys-
ical methods, while providing better control over size and
shape, have limitations, such as dispersed particle size distri-
bution, time-consuming processes, and higher costs.215 Stan-
dard methods for MNP synthesis include ball milling,
coprecipitation, sol–gel, hydrothermal, thermal decomposition,
microemulsion, and biological approaches,223 as shown in
Fig. 3.

Coprecipitation, a chemical synthesis method, uses
a precursor salt and an essential precipitant,219,222 oen
employing ferric (FeCl3) and ferrous (FeCl2) chlorides with
ammonium hydroxide (NH4OH).222 This method is preferred to
achieve monodispersity of iron oxide MNPs and is considered
the simplest for Fe3O4 synthesis.218,219 The oxidation states play
a crucial role in controlling the dispersion behaviour of iron
oxide MNPs, with the size and state of superparamagnetic iron
oxide MNPs being modiable by adjusting factors such as salt
type, iron(II)/iron(III) molar ratio, ionic strength, temperature,
and pH.218 While coprecipitation is easy to perform, it tends to
result in poorer crystalline quality and magnetic behaviour due
to accumulation, although stability in aqueous media is main-
tained.216,222 This synthesis process is suitable for applications
© 2024 The Author(s). Published by the Royal Society of Chemistry
requiring large nanocrystals, where homogeneity in size and
magnetic properties is not critical.223 Compared to physical or
vapour phase methods, coprecipitation provides better control
over size and shape.222

Sol–gel synthesis involves gel formation at room temperature
by polycondensation reactions of metal alkoxides and hydro-
lysis and does not require special equipment.223 The sol or
colloidal solution is prepared from metal salts dissolved in
water, and the gel is obtained aer drying the solvent by heating
and roasting.223,225 While size, shape, and composition can be
controlled, the sol–gel method requires many toxic organic
solvents and has some disadvantages, such as binding and high
permeability.225

Hydrothermal synthesis involves using an autoclave with
Teon-lined stainless steel walls, typically containing water in
a supercritical/sub-supercritical state.222,223,226 This method
operates under high temperature and pressure conditions,
resulting in oxidation and hydrolysis reactions that produce
MNPs of uniform size. Synthesis parameters affect crystallinity,
crystallite size, particle size, purity, and magnetic properties.226

Hydrothermal synthesis is preferred to produce highly crystal-
line MNPs with the desired size and shape.218 It allows the
development of different crystalline iron oxide nanoparticles,
ensuring high crystallinity, size, shape and homogeneous
composition.222

Thermal decomposition is an upscaled and extended
synthesis process using organic solvents and nonmagnetic
organometallic precursors.222 It produces MNPs under extreme
temperatures by decomposing organometallic precursors with
organic surfactants.215,223 The products' morphology, size, and
monodispersity can be tuned by modifying the experimental
conditions, and the annealing temperature affects the size and
magnetic properties of the MNPs.219,227 The obtained hydro-
phobic MNPs have limited applications (e.g., biomedical
applications).225 The hydrophobic MNPs obtained have limited
applications, and thermal decomposition is energy-, material-,
and time-consuming, using expensive and hazardous
substances.215

In the microemulsion process, a mixture of oil, surfactant,
and water is magnetically stirred at ambient temperature, with
RSC Adv., 2024, 14, 17946–17988 | 17949
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surfactants and co-surfactants stabilizing the inter-
phase.223,227,228 The mixed system undergoes nucleation, crystal
growth, aggregation and agglomeration, followed by precipita-
tion of spherical microdroplets in a solid phase. The desired
material is obtained aer adding organic solvent and centrifu-
gation.225 While the method offers precise control over shape
and particle size, high purity, good crystallinity, narrow size
distribution, and the synthesis of various MNPs, it has draw-
backs such as low-volume production, time consumption, and
specialized equipment.229

In recent years, biosynthesis has gained popularity as an
environmentally friendly and cost-effective approach compared
to chemical or physical routes.230,231 In this process, plants and
microorganisms stabilize and reduce gents.223,230,232 The
produced MNPs are biocompatible and suitable for biomedical
applications, and biosynthesis does not require expensive or
hazardous chemicals, providing a simple and rapid processing
route.223,231 However, biosynthesis may result in poor dispersion
of nanoparticles, and the related shortcomings, such as yield
and MNP dispersion, still need to be investigated.223

2.4 Structural characterizations

The techniques used to synthesize and characterize magnetic
nanoparticles (MNPs) are vital in understanding their proper-
ties. Characterization is a critical preliminary step, especially
given the diverse synthesis routes and applications of
MNPs.175,183,184,223,233,234 Structural characterizations are essential
to verify the effects on MNPs aer synthesis and modications,
and different techniques are used in MNPs research.175,181 Fig. 4
summarizes the signicant approaches to the structural char-
acterization of MNPs.

Powder X-ray diffraction (XRD) is critical in determining
nanomaterials' crystal structure and crystalline nature.233,234 It
provides insight into the crystallinity, diameter, and structural
Fig. 4 The main structural characterization approaches of MNPs.

17950 | RSC Adv., 2024, 14, 17946–17988
changes introduced by coatings, functionalization, and immo-
bilized materials on MNPs.196,233,235,236 However, XRD alone may
not distinguish iron oxide nanoparticles such as g-Fe2O3 and
Fe3O4 because of their similar patterns originating from iden-
tical cubic spinel structures. Mössbauer spectroscopy, a precise
technique, is used to study the local structure of Fe and provides
detailed information about the composition.192,237 Mössbauer
spectroscopy, a precise technique, is used to investigate the
local structure of Fe, providing detailed information about the
composition.238 While giving a screening approach, Raman
spectroscopy does not determine the exact amount of Fe3O4,
a capability that Mössbauer spectroscopy has.239

Energy dispersive X-ray (EDX) analysis and energy dispersive
spectroscopy (EDS) are used to identify the chemical composi-
tion of synthesized MNPs.178,230,240 These techniques are critical
to conrm the material's successful modication and evaluate
the impact of surface modications,178,181,230,234 such as enzyme
immobilization on MNPs.235,236,241 X-ray photoelectron spec-
troscopy (XPS) conrms each magnetic nanoparticle surface
modication step and successful enzyme binding.183,194 XPS is
a powerful method to verify the existence of the Fe3O4 phase due
to the coexistence of Fe2+ and Fe3+ cations.237 Fourier-transform
infrared spectroscopy (FTIR) is used to evaluate functional
groups and their possible interactions, providing insight into
the formation of MNPs and surface modications.189,194,214,235,241

Vibrating sample magnetometer (VSM) measurements
assess nanostructured magnetic materials' magnetic behaviour
and magnetic moment when subjected to vibrations perpen-
dicular to a uniform magnetic eld.233,242 VSM reveals changes
in magnetization that may indicate the presence of a non-
magnetic layer at the core of the material.196 The magnetiza-
tion curve obtained from VSM can provide information about
the behaviour of immobilized enzymes on MNPs and verify the
superparamagnetic properties of the composite material.188,214

Successful immobilization of enzymes on MNPs is oen
conrmed by studying their saturation magnetization Ms.241

Magnetization curves indicate superparamagnetism without
hysteresis, visible coercivity and remanence, and a fully
reversible magnetization process.194,196 The analysis of super-
paramagnetism can be further rened by calculating the
material's diamagnetic properties by comparing the sample's
mass and the corresponding magnetic properties.233
3. Enzyme immobilization onto
magnetic nanoparticles
3.1 Enzymes and enzymes immobilization techniques

Enzymes are essential biocatalysts involved in biosynthesis and
biodegradation that enable a wide range of human activities,243

providing energy for most of the metabolic processes of the cell
and assisting in a variety of biochemical reactions that generally
occur under favourable conditions in the physiological
environment.243–245

In addition, they have high chemo-, regio-, and stereo-
selectivity, resulting in more pure and selective reactions that
can even reduce the need for functional group protection,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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reduce purication steps, and increase the atom economy of the
process, resulting in shorter synthetic routes.246,247

Become an essential pillar of the bio-economy, indispens-
able for the sustainable development of various scientic and
technological sectors, industry, medicine, and society. Playing
a notable role in several segments (such as energy production
processes, biofuels, pharmacists, biosensors, the food industry,
and textiles).248,249

However, enzymes' applications and desirable properties are
constantly hampered by their instability at elevated tempera-
tures or in aggressive solvents. Their inability to be recovered
and reused makes their widespread use challenging. Immobi-
lization can overcome these disadvantages, which enhances
photocatalysts, making them more robust and resistant to
thermal and solvent stress and preserving their catalytic activity
under extreme conditions.248,249

Thus, immobilization improves the stability, selectivity, and
kinetics of the enzyme, the main goal of which is to strengthen
the biocatalyst's physical and enzymatic stability. Several
methods are used to immobilize the enzymes. However, the
industry always chooses the most accessible and economical
ones based on physical or chemical immobilization, such as
adsorption, covalent bonding, crosslinking, and encapsula-
tion.250 Fig. 5 shows the enzymatic immobilization techniques
according to their classication and approaches.251

3.1.1 Adsorption. The adsorption process is simple, inex-
pensive, reagent-free, and generally does not cause chemical
changes in the enzyme as it does not involve functionalization
of the support.252,253 It occurs through physical forces of attrac-
tion, and enzymes are immobilized on supports via van der
Waals bonds, hydrophobic interactions, hydrogen bonds, and
ionic bonds.254,255

3.1.2 Covalent attachment. Enzymes can be covalently
immobilized on supports through chemical interactions, which
provides high stability and enzymatic adherence to the support
matrix, resulting in low leakage of the supported enzyme and
attesting to the rigidity of its structure, which in turn can be
naturally preserved against destructive agents such as heat,
organic solvents, extreme pH, and others.256

The covalent immobilization method usually involves two
steps. First, the support surface is activated by bifunctional
Fig. 5 Methods for enzymatic immobilization.

© 2024 The Author(s). Published by the Royal Society of Chemistry
agents such as glutaraldehyde,257 and then the enzyme is
immobilized on the covalently activated surface. The cross-
linkers, generally used in covalent binding, link the support
material and the enzyme molecules.256,257

3.1.3 Crosslinking. In this method, enzymes are cross-
linked to the support matrices by bifunctional reagents, of
which glutaraldehyde is usually one of the most commonly
used. Based on intermolecular reactions, the enzymes are thus
immobilized with solidity through covalent bonds to improve
reusability and stability. However, the catalytic activities of the
enzymes may disappear during crosslinking.258,259

Essential cross-linking techniques are obtained by crystal-
lizing, atomizing, and aggregating enzymes; at the end of cross-
linking, the enzyme is immobilized, resulting in the production
of cross-linked enzyme (CLE), cross-linked enzyme crystals
(CLEC), bound enzyme aggregates (CLEA), and cross-linked
spray drying enzyme (CSDE).258,259

3.1.4 Encapsulation. In immobilization by encapsulation,
enzymes are held in polymeric structures with pores that allow
substrates and products to pass through. Unlike adsorption,
encapsulation protects the enzyme from direct contact with the
reaction medium, minimizing inactivation effects because of
the nature of the solvent in the medium. In addition, the
method allows the enzymes to remain stable for a relatively long
time and does not require extraction of the enzymes from the
medium.258,259
3.2 Magnetic nanoparticles as supports

Good support material and its interaction with the enzyme are
essential in immobilization, as the support properties can alter
biocatalyst activity and enzyme loading.260

Thus, several nanostructured materials represent a relevant
and new class of support matrices that have been investigated
for the immobilization of various enzymes,261 such as nano-
particles,262 nanobers,263 nanotubes,264 and nanosheets.265

Thus, they have promising applications in the biotechnology
industry, as the catalytic activity of nanomaterials is similar to
that of enzymes266 because of their low cost, exible catalytic
activity, and high operational stability.267

In addition, the magnetization of substrates before use has
shown great potential for recyclable applications.268 Since
nanomaterials can be easily collected and recycled by an
appropriate external magnetic eld through the incorporation
of magnetic nanoparticles,268,269 magnetite (Fe3O4) is considered
to be favourable as a nanocarrier for immobilization of enzymes
due to its large surface area.268,269

Recently, several published works have developed such
support for the presence of magnetic compounds to immobilize
enzymes. The relevance of Fig. 6 can be seen in a Scopus search
using the keywords nanoparticles and magnetic supports.

Yang et al. (2016) synthesized in situ rGO-Fe3O4 nano-
composites to support the immobilization of catalase enzyme
(CAT) up to 312.5 ± 12.6 mg g−1, with almost no enzymatic
leaching and the recovery of CAT activity can be increased to
about 98% due to the high surface area of graphene and
a magnetic eld effect of Fe3O4 nanoparticles. Studies direct
RSC Adv., 2024, 14, 17946–17988 | 17951
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Fig. 6 Trends in the number of articles retrieved from Scopus using
keywords such as “nanoparticles” and “magnetic supports”.
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nanocomposites as versatile nanosupports for biological or
chemical reactions and separations.270

In this study, Lin et al. (2017) synthesized Fe3O4 nano-
particles and coated them with chitosan, and glutaraldehyde
was used as a cross-linking reagent for cellulase immobiliza-
tion. The tests showed that the immobilized particles exhibited
optimum cellulase loading efficiency (LE) of 99.6% and stan-
dard recovery rate (RR) of 68.5%, with a broader range of
adaptability to pH and hydrolysis temperature compared with
free cellulase, in addition to hydrolyzing efficiently for ve
experiments, maintaining an average of 80% of free cellulase
activity. They were suggested to have promising potential in
applying cellulose hydrolysis.271

Mehnati-Najafabadi et al. (2018) immobilized the xylanase in
graphene oxide (GOMNP) superparamagnetic nanolms func-
tionalized with polyethene glycol bisamine (PEGA). The results
showed that the xylanase was bound to the functionalized
nanocomposite, yielding 273 mg of enzyme per gram of PEGA-
GOMNP. The immobilized enzyme retained approximately
40% of the initial activity aer eight cycles and 35% of the initial
catalytic activity aer 90 days of storage at 4 °C. The study
indicated that the support is biodegradable and suitable for
bioengineering.272

Xue et al. (2019) immobilized lysozyme in a 1,2,3,4-butano-
tetracarboxylic acid-modied cellulose magnetic microsphere
(BTCA), which exhibited better properties such as resistance to
temperature, pH, and thermal and storage stability compared to
free lysozyme. The apparent kinetics of immobilized lysozyme
showed that its Km value was 1.37 times higher than that of free
lysozyme, and its Vmax was slightly lower, with an acceptable
reuse of 51.9 ± 2.2% of activity aer six cycles.273

Bezerra et al. (2020) immobilized Thermomyces lanuginosus
(TLL) on a new hetero-functional divinyl sulfone (DVS) support
in superparamagnetic nanoparticles functionalized with poly-
ethyleneimine (SPMN@PEI-DVS), the remaining DVS groups
were blocked with ethylenediamine (EDA), ethanolamine (ETA)
and glycine (GLY) to prevent uncontrolled enzyme support
reactions. As a result, 100% immobilization yield was achieved
17952 | RSC Adv., 2024, 14, 17946–17988
in 1 hour at pH 10. However, at pH 5.0, they obtained the most
excellent stability during thermal inactivation and good enan-
tioselectivity for the hydrolysis of racemic methyl mandelate,
the nanocatalysts blocked with EDA and ETA being 68% and
72%, respectively. They showed that the biocatalyst has excel-
lent potential for industrial applications.274

Coutinho et al. (2020) used the co-precipitation method to
synthesize hydroxyapatite (HA)/cobalt ferrite (CoFe2O4)
composites with different mass ratios to evaluate the viability
support for the immobilization of b-glucosidase, phytase, and
xylanase enzymes. The results showed that the composite with
the highest cobalt ferrite content (2 : 1 ratio) was highly effective
for immobilizing the three different enzymes, with immobili-
zation yields (IYs) between 70 and 100% and recovered activities
of 78 to 100%. Biocatalysts could be recovered rapidly, espe-
cially b-glycosidase, which could be reused 10 times while
retaining about 70% of its initial activity.275

Carvalho et al. (2020) used magnetic nanoparticles (Fe3O4)
for the physical adsorption of Yarrowia lipolytica MUFRJ50682
lipase, achieving a high immobilization efficiency of 99%, and
this biocatalyst was recycled 30 times with 70% lipase activity at
the end. Moreover, they showed that immobilization on
magnetic nanoparticles could achieve high pH tolerance and
thermostability with a 40% improvement in thermodynamic
parameters at 60 °C.276

Coşkun et al. (2021) aimed to increase the enzymatic activity
and enantioselectivity of the lipase Candida antarctica B (Cal-B)
by immobilization on graphene oxide (GO) nanoparticles, iron
oxide (Fe3O4) and graphene oxide/iron oxide nanocomposites
(GO/Fe3O4). The prepared samples were used as biocatalysts in
the enantioselective transesterication reaction of (R,S)-1-phe-
nylethanol reported for the rst time in the literature.277

Perveen et al. (2021) fabricated a bioanode using nano-
composites containing magnetic particles of iron oxide (Fe3O4),
carbon nanotubes (CNT), gold nanoparticles (Au), and
a conductive polypyrrole polymer (PPy), which was used as
a support electrode for the immobilization of glucose oxidase
(GOD) and investigated for its application in an enzymatic
biofuel cell (EBFC) of glucose to improve the electron transfer
kinetics and electrode stability. The bioanode was considered as
a prospective material for the development of better electro-
chemical biosensors and biofuel anodes and showed promising
results, such as the maximum current density of 6.01 mA cm−2

(0.22 V vs. Ag/AgCl) in 40 mM glucose concentration at 0.38 V
open circuit potential (OCV).278

Paz-Cedeno et al. (2021) synthesized magnetic graphene
oxide (GO-MNP). It was used as immobilization support for an
industrial preparation containing cellulase and xylanase, which
showed high activity for hydrolysis of pretreated sugarcane
bagasse (PSB) and related activities of endoglucanase, xylanase,
b-glucosidase and b-xilosidase of 70%, 66%, 88% and 70%,
respectively, aer 10 cycles, also maintained about 50% and
80% of their efficiency for cellulose and xylan hydrolysis. Thus,
the study indicated the biocatalyst as a potential candidate for
industrial applications such as second-generation ethanol
production.279
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Thus, immobilising enzymes on magnetic supports has
demonstrated efficacy and promise across chemical, biochem-
ical, and industrial reactions. Studies have documented
improvements in thermal stability and pH, facilitating fast and
easy recovery for the reuse of biocatalysts at acceptable rates
and over multiple cycles for diverse catalytic systems. In this
sense, Table 1 presents the different enzyme carriers and their
applications.
3.3 Immobilization via entrapment

Numerous methods are used for enzyme immobilization,294–297

each designed to improve the physicochemical properties of
enzymes for various applications.296 The choice of immobiliza-
tion technique and the properties of the enzymes signicantly
inuence.

The degree of enzyme immobilization and the retained cata-
lytic activity.295 Enzyme immobilization can be carried out on
a variety of organic and inorganic materials,294 with factors such
as the physicochemical properties of the enzyme and substrate,
the need for robust attachment between the support and the
enzyme, and the number of reuse cycles taken into account when
determining the optimal immobilization method.297

The effectiveness of these methods is highly dependent on
the support used. To optimize immobilization efficiency, the
carrier should have a large surface area, good stability,
substantial porous structures, and be readily adaptable to
facilitate enzyme immobilization.296 Improved enzyme activity
and thermal stability are observed when the support's pore size
matches the enzyme's hydrodynamic size. Although organic
and inorganic materials can be used for enzyme immobiliza-
tion, hydrophobic nanomaterials oen exhibit higher immo-
bilization.294 An important consideration when selecting
a matrix for immobilization via the entrapment approach is the
efficient diffusion of substrate and product molecules.298

Among the various immobilisation methods, entrapment
has proven to be among the most successful.294 Entrapment is
a physical process for immobilizing enzymes on carriers or
transporters,299 where enzymes are bound to a substrate by
hydrogen bonding, ionic interactions, and van der Waals forces.
This simple and inexpensive adsorption process can be purely
physical or involve covalent bonding,294 an irreversible immo-
bilization.296 Enzymes are conned with limited mobility in
entrapment but remain in circulation as free entities.294 The
enzyme becomes entrapped within the material matrix as the
carrier material grows, making it more stable and accessible to
separate and recycle.300 This entrapment prevents the unfolding
of the enzyme, thus avoiding activity loss due to conformational
changes.297 Entrapment methods allow easy tuning and opti-
mization of the support, creating an ideal environment to
stabilize and enhance enzyme activity.300 However, defects in
the matrix300 andminimal adsorption interactions298 can lead to
enzyme leaching, a challenge that can be overcome by
combining entrapment with covalent immobilization
methods.298

Enzyme entrapment can be achieved by four primary
methods on gels: sol–gel methods (hard gel), cross-linking of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 The four main methods for the entrapment of enzymes out on
gels.
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biopolymers (hard or so gels), polymerization to form insol-
uble polymers (hard or so gels), and supramolecular assembly
(so gel),300 as shown in Fig. 7. The sol–gel method is particu-
larly suitable for immobilising or encapsulating labile enzymes
in inorganic oxide matrices, offering the advantage of low
temperature and pressure conditions. The extent to which the
molecule retains its native properties depends on the interac-
tion between the matrix network and the encapsulated enzyme.
This process has successfully encapsulated various enzymes,
including therapeutic enzymes, cellobiase, amylase, and
lipase.301 The sol–gel method, especially for hydrophobic
enzymes such as lipase, forms a wide range of active biocatalytic
materials, and the hybrid carriers produced can prevent enzyme
leakage while providing increased mechanical stability.300,302

Recent advances in enzyme entrapment include 3D printing,
metal–organic frameworks, smart gels (enzyme-responsive
entrapment), ionic liquids, and hybrid materials.300 The eld
of 3D printing for enzyme immobilization by entrapment is,
with a few exceptions, primarily dominated by hydrogel-based
3D printing, with direct ink writing being the most commonly
used method.303 Enzymes such as b-galactosidase and laccase
have been successfully used in 3D printable bioinks for enzyme
entrapment. 3D printing is promising, particularly in industrial
biocatalysis for ow reactions.300
3.4 Crosslinked enzymes

The aggregation of enzymes characterizes the method of
enzyme immobilization via cross-linked enzyme aggregates
(CLEAs) by cross-linking, where a collection of active molecules
is linked by chemical interactions, forming cross-links that hold
the enzymes together.304 Moreover, cross-linked aggregates
represent an irreversible technique of enzyme immobilization,
providing autonomous and reusable stable biocatalysts with
high enzyme activity retention, making them applicable in
various industrial elds.305,306

Enzymatic aggregates are synthesized by crosslinking
enzyme aggregates prepared by mixing an aqueous protein
solution with organic solvents, polymers, or anionic salts and
then crosslinking with a bifunctional chemical reagent.307 The
cross-linking reagent is a molecule with at least two reactive
© 2024 The Author(s). Published by the Royal Society of Chemistry
ends that bind to specic regions of the enzyme that are not
essential for catalytic activity, allowing the enzyme molecules to
interact with macromolecular structures308,309 physically. The
resulting covalent cross-links are rigid and effectively prevent
enzymatic denaturation, thereby preserving or enhancing
catalytic activity and increasing enzyme stability.310 In this
method of enzyme immobilization, the enzyme is not attached
to a solid support.311

This enzyme immobilization protocol highlights two cross-
linking immobilization approaches: cross-linking enzyme
aggregate (CLEA) and cross-linking enzyme crystal (CLEC).309,311

The CLEA technique involves the addition of salts, organic
solvents, or nonionic polymers to form enzyme aggregates with
high catalytic activity.312 The CLEC technique is more complex
and involves controlled enzyme precipitation to produce
microcrystals, followed by the formation of crystal aggregates
through covalent bonding with a cross-linking agent to promote
this chemical interaction.313 Both protocols use cross-linking
agents to form enzyme aggregates. CLECs offer several advan-
tages, including high operational stability, catalytic activity, and
ease of recycling. However, the protocol is complex and costly
regarding time and resources.314–316 CLEAs, on the other hand,
are advantageous due to their simplicity, low cost of protein
processing, and robustness of the biocatalyst. However, cross-
linking agents can sometimes lead to structural changes or
enzyme formation that may block active groups.317

In their innovative research, Akkas et al. (2020) presented
a novel method for immobilizing ureases. This method involves
a reticulated enzyme aggregation technique using lyophiliza-
tion to enhance enzyme stabilization. In this study, lyophiliza-
tion of bovine serum albumin (BSA), crosslinking with
polyaldehyde dextran (DPA), and pH optimization of the
crosslinker were used to immobilize jack bean urease (JBU).
Notably, the relative catalytic activity of urea-CLELs was
approximately 1.47 times higher than free urease's. In addition,
the biocatalyst exhibited enhanced thermal stability, allowing it
to function in reactions at temperatures up to 85 °C while
maintaining catalytic efficiency. According to the authors, the
shelf life of the immobilized enzyme was extended to 4 weeks
with unchanged catalytic activity. In addition, the recyclability
of the enzyme was demonstrated, as its residual activity
remained unchanged aer 10 reaction cycles, and its thermal
stability was nearly doubled. This approach opens new
perspectives for enzyme engineering, providing access to new
information and potential industrial applications.316
3.5 Covalent attachment

The covalent enzyme immobilization protocol is one of the
most commonly used methods because it increases or main-
tains operational stability, thereby improving catalytic perfor-
mance.318 This method involves the formation of stable covalent
complexes or bonds between the functional groups of the
support and the enzyme, making it a chemical method of
immobilization.319 The enzyme-binding functional groups need
not be essential for enzyme activity.311 The primary functional
groups involved in interactions with the support are typically
RSC Adv., 2024, 14, 17946–17988 | 17955
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found in the side chains of the enzyme, such as cysteine (thiol
group), aspartic acid, glutamic acid (carboxyl group), and lysine
(3-amino group).320 The major functional groups capable of
interacting and forming a covalent bond with these side-chain
enzyme groups include the imidazole, thiol, indole, hydroxyl,
amino, and sulydryl groups.321–324

In most covalent coupling immobilization protocols, two
essential steps are required to maintain the technique's effi-
ciency.325 The rst step involves the activation of the surface of
the solid support. In this step, one region of the ligandmolecule
covalently interacts with the surface of the support, activating
the support while leaving the other region of the ligand mole-
cule free for interaction with the enzyme.326 Several activating
reagents can be used for this purpose, including glutaralde-
hyde, carbodiimide, glycidol, epichlorohydrin, and formalde-
hyde.327 The binding molecules bridge the support surface and
the enzyme at this stage through covalent interactions. These
binding reagents are multifunctional, thus allowing for this
covalent coupling.328 The next step involves the interaction
between the activated solid support and the non-essential
region of the enzyme. The pre-activated support forms a cova-
lent bond with the enzyme, establishing a bond between the
free portion of the binding reagent and the enzyme binding
region.329,330 The selection of the activating reagent and the
immobilization protocol is determined based on the analysis of
the support surface and the structural and conformational
characteristics of the enzyme.331

Covalent xation is characterized as an efficient technique
for the immobilization of enzymes.332,333 This protocol provides
vital links between enzymes and solid support. Therefore, the
leaching of the enzyme immobilized on the support is minimal,
thus improving the stability of the immobilized enzymes and
the immobilization yield.334,335 Notably, the high uniformity of
the bonds between enzyme and support allows reasonable
control of immobilised enzyme amounts.328,335,336

Much of the work published in the last ve years has shown
that the parameters associated with enzyme immobilization
(e.g., immobilization yield, protein content, enzyme activity,
thermal stability, and pH) are favourable.328 In particular, the
expressed activity of the biocatalyst is oen maintained or
increased aer immobilization, as the conformations of the
enzymes remain unchanged.335 Therefore, the covalent xation
approach to immobilization mitigates the desorption
phenomenon, reduces the spontaneous deactivation rate of the
enzyme, and prolongs its useful life and operational stability.

The covalent xation technique is oen preferred as the
primary immobilization protocol because of its proven efficacy
in the literature. Helm et al. (2019) reported the covalent
immobilization of the hydroxy-nitrile lyases HbHNL (from
Hevea brasiliensis L.) andMeHNL (fromManihot esculenta C.) on
porous silica substrates, achieving high immobilization
performance. Because of the high enantioselectivity of these
enzymes, biocatalysts have been used in kinetic resolution
reactions to achieve superior chiral construction. As a result,
a project was developed for a continuous ow micro-reactor
with minimal HNL loads, resulting in a signicant improve-
ment in catalytic performance compared to the batch system.
17956 | RSC Adv., 2024, 14, 17946–17988
The application of the constant ow system enabled the rapid
production of chiral cyanohydrins with high conversion (97%)
and high enantiomeric excess (98%) in only 3.2 minutes, using
the lowest possible enzymatic load. The monolith immobiliza-
tion protocol achieved high protein loads with immobilization
yields of 89% (11.3 mg total protein; 1120 U per monolith) and
72% (17.4 mg total protein; 1310 U per monolith) for HbHNL
and MeHNL, respectively, demonstrating the overall versatility
of the covalent immobilization method. This protocol increased
enzyme activity, improving substrate conversion rates and
superior chiral construction.337
4. Enzymatic magnetic nanoparticle
applications
4.1 Oxirreductases

Oxidoreductase (EC 1) enzymes include at least 26 subclasses of
enzymes (https://enzyme.expasy.org/enzyme-byclass.html) that
play a central role in metabolic pathways critical for cell
function (https://www.brenda-enzymes.org). They catalyze
oxidation–reduction reactions that involve the transfer of
electrons, either as free entities or as hydrogen atoms,
between a donor (reducing agent, which is oxidized) and an
acceptor (oxidizing agent, which is reduced), or the transfer of
oxygen atoms from O2, which is reduced, to an organic
molecule, which is oxidized. These reactions account for at
least one-third of all enzymatic reactions recorded in the
BRENDA (Braunschweig ENzyme DAtabase).338,339

Oxidoreductases are a diverse group of enzymes that play
a central role in various chemical oxidation–reduction
reactions. These enzymes facilitate the transfer of electrons or
the performance of oxidation and reduction reactions
between different substrates.338,340 They have a variety of
properties that make them useful in many elds, including
agriculture, environmental management, medicine, and
analytical chemistry. These enzymes include oxidases,
peroxidases, dehydrogenases, and oxygenases.338,341,342

Oxidoreductases can be functionally classied into several
categories: (i) oxidases catalyze oxidation reactions using
oxygen as the nal electron acceptor. A well-known example is
laccase, one of the rst oxidases studied.338,343 (ii) Peroxidases:
these enzymes catalyze the oxidation of substrates using
a peroxide, with hydrogen peroxide (H2O2) being the most
commonly used peroxide.344 (iii) Dehydrogenases: these
enzymes oxidize substrates by transferring electrons from
hydrogen atoms to acceptor or donor cofactors. Some dehy-
drogenases can use molecules other than oxygen as electron
acceptors.338,345 (iv) Oxygenases: these enzymes catalyze oxida-
tion reactions that directly incorporate oxygen into the
substrate.346

Kouasse et al. (2020) used cholesterol oxidase (CHO) to be
bound to magnetic nanoparticles via carbodiimide activation.
FTIR spectroscopy analyses conrmed the binding between
CHO and the nanoparticles, with efficiencies ranging from 98%
to 100%. Aer nanoparticle association, comparative kinetic
studies between free and immobilized CHO showed signicant
© 2024 The Author(s). Published by the Royal Society of Chemistry
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stability and enzymatic activity improvements. In addition, the
bound enzyme exhibited improved resistance to variations in
pH, temperature, and substrate concentration.347 Cholesterol
oxidase has industrial and commercial importance, particularly
in bioconversions, for clinically determining total or free serum
cholesterol and agricultural applications.348,349

Huang et al. 2023 covalently bound lipase to magnetic iron
nanoparticles using carbodiimide activation. The efficiency of
lipase binding to magnetic nanoparticles was conrmed by
FTIR analysis. Compared to the free enzyme, the nanoparticle-
bound lipase showed a 1.41-fold increase in activity, a 31-fold
improvement in stability, and better tolerance to temperature
and pH variations.350

Ren et al. 2023 carried out the immobilization of yeast
alcohol dehydrogenase (AmDH) on titanium nanoparticles.
First, AmDH was coated with polyethyleneimine (PEI), which
created a hydrophilic environment that stimulated the hydro-
lysis and condensation reaction of titanium, resulting in the
formation of nanoparticles. This process created a rigid matrix
that acted as a pocket, preventing the enzyme structure from
unfolding. The immobilized enzyme, named AmDH-PEI-Ti,
retained 80% of the activity observed in the free enzyme, with
an entrapment efficiency of 90%, showing potential for indus-
trial production.351,352

Oxidoreductases represent biocatalysts of great interest, with
signicant potential in producing polymeric building blocks,
sustainable chemicals and materials derived from plant
biomass in lignocellulose bioreneries. However, despite these
promising applications, the chemical industry, especially in
large-scale chemical manufacturing, has not yet widely adopted
enzymatic oxidation reactions.353

This reluctance is mainly attributed to the lack of bio-
catalysts that possess the necessary selectivity, are commercially
available, and are compatible with stringent process conditions.
Such conditions include high substrate concentrations, use of
solvents, and strongly oxidative environments. Overcoming
these challenges is crucial for effectively integrating enzymatic
oxidation reactions into industrial processes, presenting the
potential to contribute signicantly to the sustainable produc-
tion of diverse chemical products and bio-based materials.353,354
4.2. Transferases

Transferases are enzymes that are part of a group responsible
for transferring various functional groups, such as the methyl
group of a compound, to other groups that accept them, thereby
creating a bond between the donor group and the acceptor
group.355 Transferase enzymes can be divided into subgroups
based on the transferred functional groups. The rst subgroup,
known as glutathione S-transferases (GSTs), catalyzes the
transfer of a methyl group from glutathione (GSH). The second
subgroup, N-acetyltransferase (NATs), transfers an acetyl group.
The third subgroup, sulfotransferases (SULTs), transfer one or
more sulfate groups. The fourth subgroup, UDP-
glucuronosyltransferases (UGTs), transfers a glycosyl
group.356,357 The scope and outcomes of transferases are still
poorly understood and require further investigation. However,
© 2024 The Author(s). Published by the Royal Society of Chemistry
it is known that transferase enzymes are mainly used in the
health eld, especially in pharmacology and biochemistry, as
their primary function is to conjugate drug metabolites, making
the studied drugs more hydrophilic, facilitating their absorp-
tion and allowing for their natural elimination.

Glutathione S-transferase enzymes (GSTs) are the most
extensively studied of the transferases and are known as drug-
metabolizing enzymes (DMEs). Based on the sequential catal-
ysis analysis, these enzymes can be divided into phases I, II, and
III, each with a different role.358 Glutathione S-transferases
(GSTs) are part of phase II and crucial enzymes in combating
oxidative stress. They act as detoxication enzymes, conjugating
products from phase I reactions. Phase I involves the oxidation
of drugs, and the primary function of GSTs is to conjugate drug
or xenobiotic metabolites to make them more hydrophilic. This
occurs through several pathways, including methylation, glu-
tathionylation, acetylation, and sulfation. Sulfotransferase
enzymes (SULTs) are also part of phase II and are involved in the
sulfation pathway.359 In addition to their detoxication role,
GSTs have isomerase and peroxidase functions and can bind to
numerous endogenous substances and exogenous ligands.360,361

Transglutaminase (TGM) enzymes are a subgroup of trans-
ferase enzymes. Transglutaminases (TGMs) facilitate intra-
molecular and intermolecular cross-links between glutamine
and lysine residues, with the former serving as acyl donors and
the latter as acyl acceptors. These residues are commonly found
in peptides and various proteins.362,363 Transglutaminases
(TGMs) play an essential role in the food industry, enhancing
the properties of proteins and improving the texture and overall
quality of food products. Viable technological methods
contribute to more efficient use of raw materials, thereby
improving the cost–benet ratio of food production.364,365 TGMs
also have potential applications in other industries, including
the leather and textile sectors.366

In a recent study, transglutaminase enzymes (TGMs) were
subjected to enzymatic immobilization using magnetic nano-
particles (MNPs). Microbial TGMs were investigated to create
cleaner and more environmentally friendly industrial applica-
tions. Immobilization of TGMs was achieved by covalent
attachment, starting with the preparation of MNPs, which were
then modied by a co-precipitation process with Fe2+ and Fe3+.
Subsequent modications included carboxymethyl dextran
(CMD) and CMD with oleic acid. The MNPs were activated with
the crosslinking agent's pentamethylene hexamine (PEHA) and
glutaraldehyde (GA), the latter being a common choice for
enzyme immobilization techniques.367 The immobilized TGMs
on magnetic nanoparticles were thoroughly analyzed, including
protein concentration, activity, thermal stability (in both free and
immobilized forms), stirring speed, and reuse (cycles). The study
concluded that the enzymes were quickly recovered from TGMs
immobilized in CMD-oleic and CMD-MNPs, with CMD-MNPs
showing the highest success rate in terms of immobilization.
The enzymes were also hyperactivated, showing % residual
activity of 110% and excellent thermal stability at 50 °C and 70 °
C. This led to the conclusion that the immobilization studies
with magnetic nanoparticles of TGMs were successful and could
be used in industrial applications as an economical and
RSC Adv., 2024, 14, 17946–17988 | 17957
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biodegradable biocatalyst, with potential applications mainly in
the leather and wool industries.368–370 In a recent study, trans-
glutaminases (TGMs) were subjected to enzymatic immobiliza-
tion, a widely used method for enzyme stability. Two different
approaches were used, magnetic cross-linked enzyme aggregates
(mCLEAs) and cross-linked enzyme aggregates (CLEAs), to obtain
promising results regarding the enzymatic activity of the
enzymes immobilized by these methods. Aer studying the
techniques, the TGMs were subjected to a colourimetric
hydroxamate procedure using CBZ-glutamine glycine (CBZ-Gln-
Gly) as an amine acceptor substrate to identify the activity of
the TGMs.371 The TGMs showed the highest results among the
enzymes included in the study. The ideal reagent for CLEAS
TGMs was 2-propanol, resulting in a residual activity of 231%. In
addition, both immobilization techniques, CLEAS and mCLEAS,
showed more excellent storage stability when exposed to 4 °C for
44 days. mCLEAS TGMs showed very positive results compared to
CLEAS TGMs, with residual activity of 53% under these condi-
tions, providing more excellent stability of the immobilized
TGMs. The study showed that mCLEAS had better operational
stability and catalytic efficiency than CLEAS, demonstrating that
magnetic nanoparticles signicantly affect stabilization results.
The two immobilization techniques have particular specicities
and depend on the behaviour of the enzymes in specic envi-
ronments and conditions to which they are subjected. Both
immobilization techniques are promising, but the enzymes have
no particular rules or parameters, whether CLEAS or mCLEAS.
Both methods could be used in many future bioapplications.372

Scientists are increasingly studying and analysing trans-
ferases worldwide, with several studies presenting promising
analyses for future applications. Although studies on
Table 2 Applications of immobilized hydrolases on magnetic nanoparti

Enzyme Support
Imm
yiel

Rhizomucor miehei (RML) and
Thermomyces lanuginosa (TLL)

Fe3O4@SiO2
a 81–

Bacillus subtilis ZnO nanoparticles 71.9
Rhizopus oryzae (ROL) Magnetite nanoparticles 74.7
Pseudomonas uorescens (PFL) AGMNP-Co2+b 89%
Thermomyces lanuginosus (TLL) Fe3O4@PEIc 69.6
Rhizomucor miehei (RML) Carbon nanotubes 95–
Bacillus atrophaeus (BaL) Graphene oxide

nanosheets
81.3

Proteases produced by solid state
fermentation

Magnetic iron oxide
nanoparticles

93–

Rhizopus oryzae (ROL) CoFe2O4
d 77.4

Candida rugosa (CRL) Multiwalled carbon
nanotubes with Co

88.5

Tannase from Aspergillus cuum mDE-PANIe 90%
Bacillus subtilis A (BsLA) Fe3O4@SiO2 89.9
Candida antarctica B (CALB) Fe3O4@CHIf 95%
Burkholderia cepacia (BCL) GTAMNPsg 98.8

a Note: magnetic nanoparticles coated with silica. b Magnetic nanopart
c Superparamagnetic magnetite nanoparticles modied with polyethyl
nanoparticles composed of polyaniline-coated diatomaceous earth.
glutaraldehyde dendrimer-like polymers graed on aminated magnetic n

17958 | RSC Adv., 2024, 14, 17946–17988
immobilization in magnetic nanoparticles (MNPs) and trans-
ferases are still in their infancy, guidelines for future scientic
analysis already exist, especially in the food industry.373–375

Although still in its infancy, scientic work on transferase
enzymes aimed at enzymatic immobilization is already avail-
able, especially for TGMs. For example, an enzymatic
membrane reactor (EMR) has been developed to recover whey
protein.376 In addition, a study describes the usefulness of TGM
enzymes for immobilization in poly(N-isopropylacrylamide).377

Glutathione S-transferases (GSTs) are used in enzymatic activity
studies because of their high detoxifying properties.378 They are
also used to separate and purify proteins when labelled with
GSTs. These enzymes protect the body from chemical carcino-
genesis and conjugate glutathione (GSH) to various electro-
philic substrates.379 Transferases are expected to become the
most studied group of enzymes for enzyme immobilization
because they have desirable properties for all elds, especially
for current studies focusing on cleaner, ecologically correct, and
economically sustainable technologies. These enzymes have
large-scale and industrial applications.
4.3. Hydrolases

Hydrolases (EC 3) catalyse hydrolysis reactions in living organ-
isms.380,381 They are divided into subclasses based on the
particular bonds they target during chemical reactions. The
diversity and adaptability of these enzymes in hydrolyzing
a wide range of substrates, from small to large molecules, make
them particularly attractive for industrial applications.382

Of the various subclasses of hydrolases, certain enzymes
such as tannases, a-amylases, b-galactosidases, proteases,
cles

obilization
d Application Reference

100% Biodiesel production 390

–79.5% Detergent formulation 391
% Synthesis of triacylglycerols 392

Biodiesel production 393
–74.4% Synthesis of ethyl valerate 394
98% Hydrolysis of p-nitrophenyl butyrate 395
5% Synthesis green apple avor ester 396

96% Hydrolysis of different protein sources 397

3% Biodiesel production 398
% Synthesis of fruit avors 399

Removing tannins from aromatic drinks 400
4–93.72% Hydrolysis of p-NPC 401

Photo-curable functional esters 402
% Standard esterication reaction between lauric

acid and 1-dodecanol
403

icles with glycidoxypropyltrimethoxysilane (GOPTS), 5-AIPA and Co2+.
eneimine (PEI). d Core–shell cobalt ferrite nanoparticles. e Magnetic
f Magnetic nanoparticles cross-linked with chitosan. g Melamine-
anoparticles.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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phospholipases, and various lipases have been used in immo-
bilization processes using magnetic nanoparticles as
supports.383–389 Table 2 provides some examples of these appli-
cations in industrial processes.

Studies indicate that proteases are increasingly used for
enzymatic immobilization with magnetic nanoparticles.404–406

Ibrahim et al. (2021) demonstrated that the nanobiocatalyst
prepared by covalent immobilization of alkaline protease from
Salipaludibacillus agaradhaerens in mesoporous double-core
nanospheres (DMCSS) exhibited enhanced enzyme stability in
high concentrations of NaCl, solvents, surfactants, and
commercial detergents. Furthermore, the immobilized protease
exhibited excellent operational stability, retaining 79.8% of its
activity aer ten cycles, thus proving to be a promising nano-
catalyst for industrial applications.407 Razzaghi et al. (2018)
concluded that immobilization of the protease Penaeus vanna-
mei in zinc sulde (ZnS) nanoparticles improved the function-
ality of the enzyme at high temperatures, extreme pH
conditions (pH 3 and 12) and during storage while also
extending its optimal temperature range.408

In their study, Li et al. (2018) aimed to develop a novel bio-
catalyst for tea infusion clarication. To achieve this, they
immobilized Aspergillus niger tannase on chitosan-coated
magnetic nanoparticles (Fe3O4-CS). The immobilized tannase
retained more than 50% of its initial activity even aer eight
reaction cycles. It exhibited improved pH and thermal stability
and effectively enhanced the colour of both black and green tea
infusions.385

In recent years, magnetite (Fe3O4)-based nanoparticles have
emerged as a successful choice for immobilizing various lipases
due to their numerous advantages, including high stability, low
toxicity, and easy separation by an external magnetic
eld.392,401,409–411 Sarno et al. (2017) used citric acid-
functionalized Fe3O4 nanoparticles to immobilize Thermo-
myces lanuginosus (TLL) lipase and applied the resulting bio-
catalyst in banana avour synthesis. In particular, they achieved
a remarkably high activity recovery compared with the free
Table 3 Applications of lyases immobilized onto magnetic nanoparticle

Enzyme Support Im

Alginate extracted from
Escherichia coli

Fe3O4 97

Pectate lyase from
Clostridium thermocellum

Fe3O4 96

Benzaldehyde lyase from
Pseudomonas uorescens

Epoxy-chelate magnetic
support

87

Pectate lyase Calcium hydroxyapatite
nanoparticles and single-
walled nanotube

>7

Phenylalnine ammonia lyase Hybrid nanoowers 90
Cystathionine g-lyase TiO2 95
Pectin lyase from
Acinetobacter calcoaceticus

Magnetic carboxymethyl
cellulose nanoparticles

80

© 2024 The Author(s). Published by the Royal Society of Chemistry
lipase, with values reaching up to 144% at pH 7 and 323% at pH
7.5. Furthermore, the immobilized enzyme exhibited superior
stability and improved reusability, retaining 75% of its initial
activity aer 60 days of storage during the third cycle of banana
aroma production and 64% aer 120 days. These results
demonstrated the improved performance of the immobilized
enzyme compared to its free counterpart.412

Lipases immobilized onto magnetic nanoparticles are also
widely used in biodiesel production reactions.413–418 In a recent
study, Zulqar et al. (2021) developed a novel nanobio-catalyst
by immobilizing lipase from Aspergillus niger onto titanium
dioxide nanoparticle-modied polydopamine (PDA-TiO2). They
used it to synthesise biodiesel via enzymatic transesterication
using Jatropha curcas seed oil. The immobilized lipase exhibited
greater resilience to changes in pH and temperature conditions.
Moreover, the optimal biodiesel yield of 92% was achieved by
conducting the transesterication process for 30 h at 37 °C with
a 10% concentration of the nanobio-catalyst.419

Thus, research conrms hydrolases' considerable diversity
and adaptability while demonstrating the signicant benets of
using magnetic nanoparticles to aid immobilization. This has
improved their properties and efficiency in various reactions,
facilitating their application in numerous industrial processes.

4.4 Lyases

Lyases (EC 4) are enzymes that catalyze addition and elimina-
tion reactions. They cleave chemical bonds but do not undergo
this process by oxidation or hydrolysis.420–422 Studies have
demonstrated their use in vital areas such as agriculture and
food423,424 and medicine.425,426 Some of the applications of these
enzymes immobilized on magnetic nanoparticles are shown in
Table 3.

Like other classes of enzymes, lyases have their subclasses.
Among them are alginate lyases, which are synthesized by algae,
bacteria, marine molluscs, fungi, and viruses and play essential
roles in the degradation and assimilation of alginate.434–436 In the
study by Jiang et al. (2021), the alginate lyase AlgL17 was
s

mobilization yield Application Reference

.8% Antioxidant and
antiapoptotic bioactivities in
human umbilical vein
endothelial cells

427

.5% Bioscouring of coarse cotton 428

% Synthesis of critical
synthons for pharmaceutical
products

429

0% Processes of both high and
low temperatures

430

% Biosensors 431
% Biomineralization 432
% Purication of some fruit

juices
433
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immobilized onto magnetite (Fe3O4) nanoparticles. In the end,
they obtained a new biocatalyst that showed superior thermal and
pH tolerance, excellent storage stability, and capacity for reuse.
This biocatalyst was used to produce alginate oligosaccharides,
which showed antioxidant activities and prevented cell self-
destruction, being effective against hydrogen peroxide-induced
oxidative stress in human umbilical vein endothelial cells.427

Another study by Shin et al. (2010) revealed a new biocatalyst
prepared by immobilizing marine alginate lyase from Strepto-
myces sp. (ALG-5) in magnetic iron oxide and hybrid magnetic
silica nanoparticles. It exhibited the most signicant alginate
degradation activity and could be reused more than ten times
aer magnetic separation.437

Another subclass of lyases is pectate lyases (PLs), which act
on the degradation of pectin produced by pathogenic organ-
isms and can potentially have industrial applications.438–441

Chakraborty et al. (2017) immobilized the recombinant Clos-
tridium thermocellum pectate lyase in magnetite nanoparticles
and, from this process, produced a biocatalyst with more
signicant activity, improved thermal stability 32 times at 80 °C
and 14 times at 90 °C, and with the ability to be reused for ve
cycles followed by 70% of the initial activity. Its application in
the biofouling of cotton fabric showed an efficient removal of
pectin from the fabric surface.428

An analysis of the existing research shows that lyases are
enzymes that have not been widely studied in immobilization
processes using magnetic nanoparticles as a support. However,
the limited number of published studies highlights the poten-
tial applicability of these enzymes and the advantages of
immobilizing them on these particles.

4.5. Isomerases

Isomerases catalyze reactions that can induce intramolecular
changes that convert the substrate into an isomer.

Immobilization magnetic nanoparticles increase isomer-
ases' stability and offer advantages in the reaction medium
because of their large surface area, ease of separation from the
reaction medium by an external magnetic eld, mobility, and
mass transfer. Consequently, isomerases immobilized on
magnetic particles nd applications in various industrial
sectors, as shown in Table 4.

The industrial production of phenylacetaldehyde is essential
in the avour and fragrance industry because it synthesises
various products, including insecticides, disinfectants, and
pharmaceuticals. This aromatic aldehyde is obtained from the
isomerization of styrene oxide in the presence of alkali-treated
silica or various zeolite compounds. In addition, oxidation of
Table 4 Applications of industrial isomerases

Enzyme Application

L-Arabinose isomerase Food industry
Glucose isomerase High fructose c
Protein disulde isomerase (PDI) Thiol-disulde
Triose phosphate isomerase High denition
D-Psicose 3-epimerase Food additives

17960 | RSC Adv., 2024, 14, 17946–17988
2-phenylethanol can be performed using hexavalent chromium
compounds or rhodium complexes.

The enzyme L-arabinose isomerase is of industrial impor-
tance because of its applicability. The process can occur in vivo,
catalyzing the isomerization of L-arabinose to L-ribulose. In
vitro, it can generate the reaction of D-galactose to D-tagatose in
nutraceutical foods.446 Therefore, the overall applicability of the
process can be optimized when L-arabinose isomerase is
immobilized on chitosan supports with magnetic nano-
particles.447,448 Moreover, using chitosan with magnetic nano-
particles acts in applications, sewage, water treatment, and food
preservatives in the food industry and presents a tremendous
antioxidant specicity and antimicrobial practice.449

Lactose, a by-product of yoghurt and cheese production, is
used in various food and pharmaceutical products.450 However,
industrial production of lactose is limited by its low solubility,
sweetness, and bioavailability.451 Concentrated lactose yields
less sweet D-tagatose than sucrose.452 D-Tagatose, an isomer of D-
galactose, exists in a-D-tagatose-2,6-pyranose, b-D-tagatose-2,6-
pyranose, a-D-tagatose-2,5-furanose, and b-D-tagatose-2,6-
furanose structures catalyzed by the enzyme L-arabinose isom-
erase.453 D-Tagatose synthesis involves catalytic isomerization at
high pH using soluble bases that are neutralized with sulfuric
acid aer conversion. However, D-galactose isomerization with
essential catalysts results in lower D-tagatose selectivity due to
by-product formation.454 Using magnesium-based catalysts
(MgO) improves the isomerization of glucose, galactose, and
arabinose with satisfactory yields. Supported by various mate-
rials such as carbon nanotubes, hydrotalcite, and aluminates,
the stabilization of MgO during the reaction is improved.455–457

Glucose isomerase, an enzyme that catalyzes reversible
isomerization reactions, is critical in the conversion of D-
glucose and D-xylose to D-fructose and D-xylulose, which are
widely used in industrial contexts.458 In the food sector, its role
is prominent in producing high fructose corn syrup (HFCS),
a mixture of glucose and fructose suitable for people with dia-
betes.459,460 The process can also involve the interconversion of
xylose to xylulose by glucose isomerase. Therefore, magnetic
particle immobilization provides an efficient method for easy
recovery and reuse while reducing costs.461 As a result, glucose
isomerase and other enzymes present an opportunity for large-
scale industrial mobilization and are widely used in various
food industry sectors.462,463

The disulde isomerase (PDI) enzyme is a redox chaperone
with applications in thiol oxidoreductase and isomerase in
nascent proteins in the endoplasmic reticulum.464 The PDI
enzyme has several functions at the cell surface, primarily
References

442
orn syrup (HFCS) production 443 and 444
of ADAM17 and aIIbb3 444
protonmagnetic resonance study 445

444 and 445

© 2024 The Author(s). Published by the Royal Society of Chemistry
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maintaining redox homeostasis and the thiol-disulde isom-
erization process of ADAM17 and aIIbb3.465 Therefore, the
effects associated with thrombosis, platelet activation, and
vascular thiol isomerases466 can be reduced or inhibited by
using the PDI process as an antithrombotic criterion.467 Using
chitosan-polyacrylic hybrid microspheres offers advantages
regarding Hof stabilization, temperature, and operation during
its application. Consequently, a technique is required for GI
mobility with a high enzymatic reactivity process and stabili-
zation at the junction of iron changes.468

Triosephosphate isomerase extracted from rabbits and chicken
was analyzed by high-resolution proton magnetic resonance
imaging. The analytical techniques detected ve possible histi-
dines in the chicken protein and one histidine in the rabbit
enzyme over a pH 5.4 to 9 range in the amino acid sequences.469

Specically, the resonances of histidine 100 in chicken and
rabbit and only histidine 195 in the chicken enzyme were
considered.470 Histidine 100 is destabilized by the addition of
ligands such as D-glycerol-3-phosphate, which changes the
conformation of the enzyme but remains stabilized in the pres-
ence of inhibitors such as phenyl phosphate. In this way,
a peptide-NH proton exchange occurs in the histidine resonance
regions, eliminating any deformation of the enzyme.471

D-Psicose production via the epimerization reaction of D-
fructose using class 3 epimerases is under consideration.472 D-
Psicose, the carbon-3 epimer of the sugar D-fructose, is rare and
has a lower sugar content than sucrose. It is a food additive with
functions such as suppressing glucose in type 2 diabetes,
producing a near-defensive effect, and inhibiting hepatic lipo-
genic proteins.473 D-Tagatose 3-epimerase from Pseudomonas
cichorii catalyzes the C-3 epimerization of D-fructose to produce
D-psicose.474 The D-psicose-3-epimerase from Agrobacterium
tumefaciens was selected because of its substrate preference.
This enzyme is also present in several other species, such as
Ruminococcus sp. and Clostridium bolted.475 However, certain
factors limit the production of D-psicose-3-epimerase on an
industrial scale. The immobilization process can optimize the
reaction yield, and titanium dioxide (TiO2) is oen used as
a support material for nanoparticle immobilization due to its
conductivity physical and chemical stability.476–478
4.6. Other enzymes

Trehalose is an enzyme developed by amechanism thatmaintains
the processability and biological properties while preserving the
activity of macromolecules.479 Therefore, the reaction process
through metal–organic frameworks (MOFs) is optimised using
ZIF-8 to permeabilize two encapsulated enzymes from Bacillus
subtilis coated with glycemic isomerase. The enzyme glucose
isomerase converts trehalose synthase and the by-product
glucose to fructose for industrial applications.480 Because of its
stability, the trehalose-protected enzyme is used in biological
studies, agriculture, and the pharmaceutical and food industries.
In addition, the food industry creates a stable, protective layer to
delay nutrient loss and adjust food avour.481,482

Lipases are enzymes widely used in biodiesel synthesis due
to their mild reaction conditions, easy product recovery, and
© 2024 The Author(s). Published by the Royal Society of Chemistry
environmental sustainability compared to chemical
processes.483,484 Therefore, immobilization of lipases allows
reuse and improves stability and catalytic activity. The support
choice provides the most suitable surface area and low cost.485

Using magnetic silica/iron oxide nanoparticles promotes
advantages in partitioning the material controlled by
a magnetic eld.486 Covalent bonds have been used on various
supports to produce the reaction between an active group on the
support and the amino acid residue of the lipase.487

The enzyme Burkholderia cepacialipase (BCL) is considered
a chiral high-resolution catalyst.488 Immobilization in nano-
particles increases enzyme activity and stability. When immo-
bilized in nanoparticles, they can be modied by dendrimer
polymers to protect the structure of Burkholderia cepacialipase
and thus increase the contact levels between substrates and the
enzyme centre.489 Applications in the pharmaceutical eld
through drugs are chiral drugs that present differences in
dynamics and kinetics in vivo, requiring the separation of drug
enantiomers. The surface modication controls the
morphology (i.e., improves the affinity of the compounds by the
active groups), increasing the charge and favouring the recovery
of the enzyme. Therefore, these chiral programs are widely used
in the spice, textile, and pharmaceutical industries.490

The protein from Thermomyces lanuginosus (TLL) is a lipase
with high catalytic efficiency due to its enantioselectivity and
isoelectric point (pI).491 Therefore, the use of the support with
the reactive group divinyl sulfone (DVS) with polyethyleneimine
(PEI) provides the hetero-functionality of the DVS-PEI support
to generate intense multivalent covalent bonding.492 Thus, the
octyl DVS matrices in the immobilization process by super-
paramagnetic nanoparticles allow interfacial activation to
occur, ensuring stabilization through the points of multivalent
bonds.493,494 The coating by nanoparticle immobilization
protects the surface from oxidation and minimizes non-specic
interactions. Thus, covalent nanoparticle immobilization opti-
mized on DVS-containing supports provides a better pH ratio,
incubation time, and different blocking intermediates. There-
fore, its applications are targeted to the medical and ne
chemical industries.495–497

Glutathione (GSH) enzyme is a tripeptide protein (g-L-glu-
tamyl-L-cysteinyl-glycine). When used with GSH-agarose, it
allows the isolation and purication of recombinant protein
with glutathione S-transferase (GST) activity by GSH-GST inter-
action chromatography.498 The composition of GSH has one free
amino group, two free carboxyl groups and several free thiol-
reduced structures. Therefore, the GSH enzyme and agarose
microbead are activated and cross-linked by the amino group
medium.499 Its application in closed GSH nanoparticles is used
to conjugate folic acid in cancer cell detection.500,501 Iron oxide
nanoparticles are coated with GSH and are also used to promote
the stability of immobilized GSH through covalent bonds such
as tetraethoxysilane (TEOS).502 Thus, magnetic nanoparticles
attached to GSH can couple enzymes fused to GST through the
GSH-GST interaction. In this way, the protease enzyme used
with nanoparticles is bound to GSH in identifying the three-
dimensional structure as they improve the stability and solu-
bility of the protein.503,504
RSC Adv., 2024, 14, 17946–17988 | 17961

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02939a


Fig. 8 Prominent countries have published the most and were most
cited in magnetic nanomaterials for enzyme immobilization in the last
five years.
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5. Bioreactor projects with enzymatic
magnetic nanoparticles

The content presented above highlights a growing interest in
nanotechnology applications in bioreactor projects, focusing on
using enzymatic magnetic nanoparticles. Dutta S. et al. (2023)505

highlight the use of nanoparticles in various stages of bio-
ethanol production from lignocellulosic (LB) materials, helping
to overcome challenges associated with complex compositions
and inefficient degradation processes. The authors outline
nanotechnological methods during pretreatment that offer
signicant advantages for different types of LB, improving both
biofuel yield and quality. Recent experiments have shown that
using magnetic nanoparticles offers remarkable advantages,
facilitating the recovery and reuse of immobilized
enzymes,506–508 leading to an overall reduction in process costs.

The study by M. V. C. da Silva et al. (2023)509 highlights the
creation and verication of methods and processes for using 2-
ethylhexyl oleate catalyzed by Candida antarctica lipase immobi-
lized in poly(styrene-co-divinylbenzene) magnetic particles (STY-
DVB-M). The detailed analysis focuses on the physical proper-
ties of the STY-DVB-M copolymer, such as the glass transition
temperature of 85.68 °C and the onset of thermal degradation,
which occurred at 406.66 °C, demonstrating the importance of
support stability in bioreactors. Additionally, the work investi-
gates the inuence of magnetic eld strength on reaction yield
and productivity, emphasizing the versatility and control enabled
by magnetization in the systems,510,511 crucial aspects when
exploring bioreactors with magnetic nanomaterials.

N. K. Abd-Elrahman et al. (2022)512 deal with the production
of biohydrogen by microbial electrolysis cells (MECs). By eval-
uating various parameters, including the conguration of
MECs, electrode materials, substrates, pH, temperature,
applied voltage, and nanomaterials, the MEC stands out for its
efficiency in converting substrates to hydrogen, achieving
between 80 and 100% efficiency, compared to dark fermenta-
tion with 33% and water electrolysis with 65%. The preferential
choice of carbon materials due to their high porosity highlights
the importance of careful material selection,513,514 while the use
of nanomaterials in MECs to increase the efficiency of anodic
and cathodic reactions indicates the strategic potential of this
application in bioreactors. Their approaches validate and
suggest the feasibility of integrating both methods discussed in
bioreactor projects with enzymes in magnetic nanoparticles.515

Although at an early stage of development, both studies
emphasize the urgency of further research to ensure the
improvement and effectiveness of bioreactors considering
kinetic and engineering aspects, another emerging challenge is
the aggregate use of AI and computer simulations.509,516,517
6. Study of countries, journals, and
institutions

Bibliometric data analysis provides a quantitative and objective
view of scientic publications, allowing the identication of the
most inuential countries in the production of knowledge in
17962 | RSC Adv., 2024, 14, 17946–17988
a given research area. Brazil, China, and Spain emerged as the
most important countries regarding citations and a number of
publications on the research topic. As shown in Fig. 8, Brazil
recorded 2450 citations associated with 80 publications, fol-
lowed by China with 1794 citations and 58 publications, and
Spain with 1683 citations and 60 publications during the study
period. These data highlight the signicant impact of research
on the topic in the international academic and scientic sphere.
The high production of articles and the substantial number of
citations attributed to these countries indicate an active interest
and a signicant contribution to the advancement of knowledge
in this specic eld.

Fig. 9A illustrates the scientic collaboration between
countries, with Brazil and China emerging as central players in
this network. Brazil (58% of total citations) and China (42% of
citations) are the most cited countries and have strong
connections, as indicated by their size, the number of connec-
tions with other countries, and the thickness of the connecting
lines. This suggests that both countries are major contributors
to global research and have extensive international connec-
tions. Strengthening these collaborations could further
promote the exchange of knowledge and resources worldwide.
Fig. 9B visualises the temporal landscape of cross-country
collaborations from 2016 to 2023. The map shows the
strength of connections between countries and their clusters,
with purple shades representing older years and light green
shades representing more recent publications. This progression
suggests a continued consolidation of research over time. In
particular, clusters such as Brazil, China, Spain, Italy, and the
United States maintain their relevance and signicant contri-
bution to knowledge in the eld, laying a solid foundation for
future scientic progress.

In Fig. 10A, we observe the importance of leading journals in
different groupings (represented by clusters in yellow, red, and
purple), with a focus on the journal with the highest impact, the
Journal of Molecular Catalysis, which has 2441 citations across
63 publications, averaging 38.74 citations per article. This
journal stands out as a central hub within its respective cluster
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Bibliometric maps of country co-authorship. (A) Network of
clusters of most cited countries. (B) Overlay visualization of country
link power.

Fig. 10 Bibliometric analysis map of country networks. (A) The most
influential journals. (B) Number of significant documents per journal.
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(yellow) and explores the molecular and atomic aspects of
catalytic activation and reactionmechanisms. We also highlight
the Process Biochemistry cluster (purple), with 32 publications
and 422 citations, focusing on processes related to bioactive
molecules and living organisms. The Biochemical Engineering
Journal (red), with 354 citations and 11 publications in the
research topic clusters, is instrumental in developing biological
processes, from preparing raw materials to recovering relevant
products for industry.

The presence of these journals in the same thematic area
underscores the concentration of efforts and interests in
specic areas of science as well as the active networking and
collaboration among researchers working in this eld. This
interconnectedness is fundamental to the exchange of knowl-
edge. Furthermore, when analyzing Fig. 10B, which shows the
number of publications over ve years, the Journal of Molecular
Catalysis accounts for 60% of the published documents, fol-
lowed by Process Biochemistry with 30% of the publications
and Biochemical Engineering Journal with 10%. This visual
representation highlights the interactions between countries
regarding citations and mutual collaborations. It also high-
lights the importance of the links between different research
centres and academic institutions, underscoring the crucial role
of international cooperation in driving scientic and techno-
logical progress on a global scale.
© 2024 The Author(s). Published by the Royal Society of Chemistry
In Fig. 11A, the top institutions are ranked by the number of
published documents, most citations, and total link strength,
highlighting those that have contributed the most to the
research and their collaborative interactions. Aligarh Muslim
University stands out, leading with 997 citations and 18 publi-
cations, reaffirming its dominance in research on magnetic
nanomaterials for enzyme immobilization. The Superior
Council for Scientic Investigations (CSIC) appears in second
place with 841 citations and a higher number of 27 published
documents, indicating increasing progress in research on this
topic.

In third place is the Federal University of Ceará, in Brazil,
with 722 citations and 14 published documents, highlighting
Brazil's role in researching new technologies and advances. On
the other hand, Fig. 11B provides a visualization map of the
most important universities, identifying the clusters with the
highest number of connections between universities. The
Federal University of Ceará cluster (yellow) leads with 74
connections, followed by the CSIC cluster (orange) with 52
connections, and the University of São Paulo cluster (blue) with
36 connections. These results show that the total number of
connections reinforces the strength of the overall connection of
each institution. Of the 10 universities analyzed by the VOS-
viewer soware, six are of Brazilian origin, highlighting Brazil as
an important research center in this area.
RSC Adv., 2024, 14, 17946–17988 | 17963
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Fig. 11 Bibliometric analysis of institutions. (A) Main institutions that
published and cited. (B) Map of collaboration networks between
institutions.
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7. Future trends (current challenges
and prospects)

Magnetic nanoparticles are carriers with high potential for
enzyme immobilization due to their easy separation and
recovery from the reactionmedium, large surface area, and high
mass transfer capacity.518–521 However, the specic interactions
between the carrier and the enzyme require optimization
protocols to enhance the enzymes' catalytic activity, stability,
and recyclability.522–524 Furthermore, the engineering and
design of new magnetic nanomaterials with tailored structural
properties and functionalities for specic applications while
ensuring properties such as minimal toxicity, high biocompat-
ibility, low environmental impact, and the selection of the
appropriate immobilization method are critical considerations
for industrial use.524–527

An example of a recently developed nanomaterial is cellulose
nanocrystals, a versatile natural-based nanocarrier that has
gained more attention in recent years due to its renewability,
low cost, feasible synthesis and modication, high mechanical
strength, and high stability against temperature and chemical
compounds.528–534 Incorporating magnetic nanoparticles into
the support matrix can facilitate the recovery and reuse of bio-
catalysts in practical applications.528–535 Another important
aspect of using magnetic cellulose is that it allows for a single-
step purication and immobilization of recombinant enzymes.

Enzymes fused with cellulose-binding domains.524–532 On the
other hand, the diversity of biocatalysts available and the diffi-
culty in scaling up the production process of this biocatalyst
indicate the need for new strategies to incorporate these
17964 | RSC Adv., 2024, 14, 17946–17988
biotechnological units in the industrial sector.527,530,532 Dopa-
mine is a functionalization reagent that gives excellent results
for this type of nanomaterials.525,533–535 Dopamine is gaining
attention for its versatility in anchoring various biologically
active macromolecules such as antibodies, enzymes, DNA, and
growth factors.525,534,536–539 The presence of catechol and amine
in dopamine provides efficient conjugation of enzymes to
various nanocarriers and does not require additional coupling
reagents/complex linkers or organic solvents.525,533–535

In addition to the aspects already discussed, for the use of
magnetic nanoparticles on an industrial scale, it is also neces-
sary to have a complete understanding of the functionalization
effects of the support, the surface density of enzymes, the
binding sites between nanoparticles and enzymes, how immo-
bilization chemistry can affect the activity and stability of the
biocatalyst, the involvement of conformational changes in the
immobilization process, and the design and development of
immobilized enzyme-based bioreactors.522,540,541 From the topics
discussed, it can be concluded that magnetic nanoparticles
have a broad perspective in biocatalysis and several other
elds.522,541–546

8. Conclusions

In summary, this review presents an overview of the develop-
ment and construction of nanomaterial supports for possible
applications in immobilising and stabilising enzymes. It is
worth mentioning that enzymes immobilized on magnetic
supports present advantages for commercial application due to
their ease of separation and reuse, enabling greater scalability
in the industrial sector. Furthermore, magnetic biocatalysts
grouped by lipases have shown diverse applications and
growing interest in the pharmaceutical and biofuel industries.
It should also be noted that the bibliometric analysis explained
that cooperation between countries and researchers is
increasing on a large scale. Citations between journals and
institutions generate high-impact articles and increase cita-
tions. The relevance of this topic and the high impact generated
by the production of magnetic catalytic derivatives with bio-
logical content are increasingly apparent. However, magnetic
biocatalysts still present some challenges that need to be over-
come. Even though the advantages provided by enzyme
immobilization add value, such as the possibility of recycling
and improving their catalytic properties, the complexity of the
synthesis and the different particularities of the lipase immo-
bilization process still require more signicant investments.
Therefore, more research is needed to address these issues for
long-term industrial applications of enzymes in addition to
increased investment in this sector. To conclude, prospects are
promising and have high industrial potential, allowing them to
enhance existing processes further and produce new reaction
routes that favour the sustainability and scalability of processes.
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© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.3390/molecules190811465
https://doi.org/10.1016/j.ccr.2019.02.024
https://doi.org/10.1016/j.ccr.2019.02.024
https://doi.org/10.1016/j.ijbiomac.2020.02.258
https://doi.org/10.1016/j.ijbiomac.2018.09.025
https://doi.org/10.1016/j.ijbiomac.2018.08.126
https://doi.org/10.1016/j.ijbiomac.2018.08.126
https://doi.org/10.3389/fmats.2018.00025
https://doi.org/10.3389/fmats.2018.00025
https://doi.org/10.1016/j.fuel.2021.120126
https://doi.org/10.1021/acs.iecr.0c03281
https://doi.org/10.3390/magnetochemistry5020036
https://doi.org/10.3390/magnetochemistry5020036
https://doi.org/10.1007/s12088-020-00912-4
https://doi.org/10.1007/s12088-020-00912-4
https://doi.org/10.5101/nbe.v11i1.p18-27
https://doi.org/10.1016/j.porgcoat.2019.105283
https://doi.org/10.1016/j.physb.2019.411907
https://doi.org/10.1016/j.porgcoat.2019.105227
https://doi.org/10.1016/j.porgcoat.2019.105227
https://doi.org/10.1016/j.porgcoat.2019.105259
https://doi.org/10.1016/j.physb.2019.411907
https://doi.org/10.1016/j.porgcoat.2019.105227
https://doi.org/10.1016/j.porgcoat.2019.105227
https://doi.org/10.1016/j.porgcoat.2019.105259
https://doi.org/10.1002/smll.200901360
https://doi.org/10.1002/smll.200901360
https://doi.org/10.1039/c3tb20881h
https://doi.org/10.1016/j.jmmm.2016.05.042
https://doi.org/10.1016/j.jmmm.2016.05.042
https://doi.org/10.1039/c3nr33218g
https://doi.org/10.1016/j.procbio.2009.05.001
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02939a


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
ju

nh
o 

20
24

. D
ow

nl
oa

de
d 

on
 0

7/
10

/2
02

4 
23

:1
5:

39
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Nanoparticles Prepared from Nano-Emulsion Templates as
New Folate Binding Haemocompatible Platforms, Mater.
Sci. Eng. C, 2020, 120, 1–45, DOI: 10.1016/
j.msec.2020.111682.

96 S. O. Aisida, P. A. Akpa, I. Ahmad, T. kai Zhao, M. Maaza
and F. I. Ezema, Bio-Inspired Encapsulation and
Functionalization of Iron Oxide Nanoparticles for
Biomedical Applications, Eur. Polym. J., 2020, 122, 109371,
DOI: 10.1016/j.eurpolymj.2019.109371.

97 B. Thangaraj and P. R. Solomon, Immobilization of Lipases
– A Review. Part II: Carrier Materials, ChemBioEng Rev.,
2019, 6, 167–194, DOI: 10.1002/cben.201900017.

98 F. Alnadari, Y. Xue, L. Zhou, Y. S. Hamed, M. Taha and
M. F. Foda, Immobilization of b-Glucosidase from
Thermatoga Maritima on Chitin-Functionalized Magnetic
Nanoparticle via a Novel Thermostable Chitin-Binding
Domain, Sci. Rep., 2020, 10, 1–12, DOI: 10.1038/s41598-
019-57165-5.

99 X. Qiu, S. Wang, S. Miao, H. Suo, H. Xu and Y. Hu, Co-
Immobilization of Laccase and ABTS onto Amino-
Functionalized Ionic Liquid-Modied Magnetic Chitosan
Nanoparticles for Pollutants Removal, J. Hazard. Mater.,
2021, 401, 1–35, DOI: 10.1016/j.jhazmat.2020.123353.

100 A. Soozanipour, A. Taheri-Kafrani, M. Barkhori and
M. Nasrollahzadeh, Preparation of a Stable and Robust
Nanobiocatalyst by Efficiently Immobilizing of Pectinase
onto Cyanuric Chloride-Functionalized Chitosan Graed
Magnetic Nanoparticles, J. Colloid Interface Sci., 2019, 536,
261–270, DOI: 10.1016/j.jcis.2018.10.053.

101 G. Y. Li, Z. De Zhou, Y. J. Li, K. L. Huang and M. Zhong,
Surface Functionalization of Chitosan-Coated Magnetic
Nanoparticles for Covalent Immobilization of Yeast
Alcohol Dehydrogenase from Saccharomyces Cerevisiae, J.
Magn. Magn. Mater., 2010, 322, 3862–3868, DOI: 10.1016/
j.jmmm.2010.08.008.

102 G. Cheng, J. Xing, Z. Pi, S. Liu, Z. Liu and F. Song, a-
Glucosidase Immobilization on Functionalized Fe 3 O 4
Magnetic Nanoparticles for Screening of Enzyme
Inhibitors, Chin. Chem. Lett., 2019, 30, 656–659, DOI:
10.1016/j.cclet.2018.12.003.

103 M. L. Verma, S. Kumar, A. Das, J. S. Randhawa and
M. Chamundeeswari, Chitin and Chitosan-Based Support
Materials for Enzyme Immobilization and
Biotechnological Applications, Environ. Chem. Lett., 2020,
18, 315–323, DOI: 10.1007/s10311-019-00942-5.

104 M. I. A. Abdel Maksoud, A. M. Elgarahy, C. Farrell, A. H. Al-
Muhtaseb, D. W. Rooney and A. I. Osman, Insight onWater
Remediation Application Using Magnetic Nanomaterials
and Biosorbents, Coord. Chem. Rev., 2020, 403, 213096,
DOI: 10.1016/j.ccr.2019.213096.

105 Z. Cai, Y. Sun, W. Liu, F. Pan, P. Sun and J. Fu, An Overview
of Nanomaterials Applied for Removing Dyes from
Wastewater, Environ. Sci. Pollut. Res., 2017, 24, 15882–
15904, DOI: 10.1007/s11356-017-9003-8.

106 B. Thangaraj and P. R. Solomon, Immobilization of Lipases
– A Review. Part II: Carrier Materials, ChemBioEng Rev.,
2019, 6, 167–194, DOI: 10.1002/cben.201900017.
© 2024 The Author(s). Published by the Royal Society of Chemistry
107 W. Shuai, R. K. Das, M. Naghdi, S. K. Brar and M. Verma, A
Review on the Important Aspects of Lipase Immobilization
on Nanomaterials, Biotechnol. Appl. Biochem., 2017, 64,
496–508, DOI: 10.1002/bab.1515.
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Santoscoy, E. A. Flores-Contreras, R. Parra-Sald́ıvar,
E. M. M. Mart́ınez and H. M. N. Iqbal, Magnetic
Nanomaterials Assisted Nanobiocatalysis to Abate
Groundwater Pollution, MethodsX, 2023, 10, 102161, DOI:
10.1016/j.mex.2023.102161.

183 R. L. F. Melo, M. B. Sales, V. de Castro Bizerra, P. G. de
Sousa Junior, A. L. G. Cavalcante, T. M. Freire, F. S. Neto,
M. Bilal, T. Jesionowski, J. M. Soares, et al., Recent
Applications and Future Prospects of Magnetic
Biocatalysts, Int. J. Biol. Macromol., 2023, 253, 1–26, DOI:
10.1016/j.ijbiomac.2023.126709.

184 K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao and Y. Hou, Magnetic
Nanomaterials: Chemical Design, Synthesis, and Potential
Applications, Acc. Chem. Res., 2018, 51, 404–413, DOI:
10.1021/acs.accounts.7b00407.
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Stability and Activity of Immobilized Trypsin on Modied
Fe3O4 Magnetic Nanoparticles for Hydrolysis of Bovine
Serum Albumin and Its Application in the Bovine Milk,
Food Chem., 2016, 212, 460–468, DOI: 10.1016/
j.foodchem.2016.06.011.

283 C. C. S. Fortes, A. L. Daniel-da-Silva, A. M. R. B. Xavier and
A. P. M. Tavares, Optimization of Enzyme Immobilization
on Functionalized Magnetic Nanoparticles for Laccase
Biocatalytic Reactions, Chem. Eng. Process., 2017, 117, 1–8,
DOI: 10.1016/j.cep.2017.03.009.

284 M. Heidarizadeh, E. Doustkhah, S. Rostamnia, P. F. Rezaei,
F. D. Harzevili and B. Zeynizadeh, Dithiocarbamate to
Modify Magnetic Graphene Oxide Nanocomposite (Fe3O4-
GO): A New Strategy for Covalent Enzyme (Lipase)
Immobilization to Fabrication a New Nanobiocatalyst for
Enzymatic Hydrolysis of PNPD, Int. J. Biol. Macromol.,
2017, 101, 696–702, DOI: 10.1016/j.ijbiomac.2017.03.152.

285 W. S. Galvão, B. B. Pinheiro, L. R. B. Golçalves, M. C. de
Mattos, T. S. Fonseca, T. Regis, D. Zampieri, J. C. S. dos
Santos, L. S. Costa, M. A. Correa, et al., Novel Nanohybrid
Biocatalyst: Application in the Kinetic Resolution of
Secondary Alcohols, J. Mater. Sci., 2018, 53, 14121–14137,
DOI: 10.1007/s10853-018-2641-5.

286 W. Xie and M. Huang, Immobilization of Candida Rugosa
Lipase onto Graphene Oxide Fe3O4 Nanocomposite:
Characterization and Application for Biodiesel
Production, Energy Convers. Manage., 2018, 159, 42–53,
DOI: 10.1016/j.enconman.2018.01.021.

287 F. Xue, Q. Chen, Y. Li, E. Liu and D. Li, Immobilized
Lysozyme onto 1,2,3,4-Butanetetracarboxylic (BTCA)-
Modied Magnetic Cellulose Microsphere for Improving
Bio-Catalytic Stability and Activities, Enzyme Microb.
Technol., 2019, 131, 109425, DOI: 10.1016/
j.enzmictec.2019.109425.

288 R. M. Bezerra, R. R. C. Monteiro, D. M. A. Neto, F. F. M. da
Silva, R. C. M. de Paula, T. L. G. de Lemos, P. B. A. Fechine,
M. A. Correa, F. Bohn, L. R. B. Gonçalves, et al., A New
Heterofunctional Support for Enzyme Immobilization:
PEI Functionalized Fe3O4 MNPs Activated with Divinyl
Sulfone. Application in the Immobilization of Lipase from
Thermomyces Lanuginosus, Enzyme Microb. Technol.,
2020, 138, 109560, DOI: 10.1016/j.enzmictec.2020.109560.

289 T. C. Coutinho, J. O. D. Malafatti, E. C. Paris, P. W. Tardioli
and C. S. Farinas, Hydroxyapatite-CoFe2O4Magnetic
RSC Adv., 2024, 14, 17946–17988 | 17977

https://doi.org/10.1016/j.ijbiomac.2016.12.051
https://doi.org/10.1016/j.ijbiomac.2016.12.051
https://doi.org/10.1016/j.ijbiomac.2017.09.013
https://doi.org/10.1016/j.ijbiomac.2017.09.013
https://doi.org/10.1016/j.enzmictec.2019.109425
https://doi.org/10.1016/j.enzmictec.2019.109425
https://doi.org/10.1016/j.enzmictec.2020.109560
https://doi.org/10.1021/acsanm.0c02811
https://doi.org/10.1021/acsanm.0c02811
https://doi.org/10.1016/j.ijbiomac.2020.05.174
https://doi.org/10.1007/s12010-020-03443-2
https://doi.org/10.1016/j.ijhydene.2020.02.175
https://doi.org/10.1016/j.renene.2020.09.059
https://doi.org/10.1007/s00449-015-1385-8
https://doi.org/10.1016/j.foodchem.2015.09.009
https://doi.org/10.1016/j.foodchem.2015.09.009
https://doi.org/10.1016/j.foodchem.2016.06.011
https://doi.org/10.1016/j.foodchem.2016.06.011
https://doi.org/10.1016/j.cep.2017.03.009
https://doi.org/10.1016/j.ijbiomac.2017.03.152
https://doi.org/10.1007/s10853-018-2641-5
https://doi.org/10.1016/j.enconman.2018.01.021
https://doi.org/10.1016/j.enzmictec.2019.109425
https://doi.org/10.1016/j.enzmictec.2019.109425
https://doi.org/10.1016/j.enzmictec.2020.109560
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02939a


RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
ju

nh
o 

20
24

. D
ow

nl
oa

de
d 

on
 0

7/
10

/2
02

4 
23

:1
5:

39
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Nanoparticle Composites for Industrial Enzyme
Immobilization, Use, and Recovery, ACS Appl. Nano
Mater., 2020, 3, 12334–12345, DOI: 10.1021/
acsanm.0c02811.

290 S. Shanmugam, S. Krishnaswamy, R. Chandrababu,
U. Veerabagu, A. Pugazhendhi and T. Mathimani,
Optimal Immobilization of Trichoderma Asperellum
Laccase on Polymer Coated Fe3O4@SiO2 Nanoparticles
for Enhanced Biohydrogen Production from Delignied
Lignocellulosic Biomass, Fuel, 2020, 273, 117777, DOI:
10.1016/j.fuel.2020.117777.
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Immobilization of Candida Antarctica Lipase on
Nanomaterials and Investigation of the Enzyme Activity
and Enantioselectivity, Appl. Biochem. Biotechnol., 2021,
193, 430–445, DOI: 10.1007/s12010-020-03443-2.
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387 L. Krǐznik, K. Vasić, Ž. Knez and M. Leitgeb, Hyper-
Activation of ß-Galactosidase from Aspergillus Oryzae via
Immobilization onto Amino-Silane and Chitosan
Magnetic Maghemite Nanoparticles, J. Cleaner Prod.,
2018, 179, 225–234, DOI: 10.1016/j.jclepro.2018.01.117.

388 X. Cao, H. Xu, F. Li, Y. Zou, Y. Ran, X. Ma, Y. Cao, Q. Xu,
D. Qiao and Y. Cao, One-Step Direct Transesterication of
Wet Yeast for Biodiesel Production Catalyzed by Magnetic
Nanoparticle-Immobilized Lipase, Renewable Energy, 2021,
171, 11–21, DOI: 10.1016/j.renene.2021.02.065.
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