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Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) materials have emerged as
promising metallic conductors and semiconductors in photovoltaics, light-emitting diodes,
thermoelectrics, photodetectors and strain sensors. PEDOT:PSS serves as flexible transparent electrodes,
hole transporting/injection layers, thermoelectric layers, perovskite hybrid components, motion- and
temperature sensors and stretchable conductors, and it remains the research frontiers of the modern
electronics. This review first introduces the basic principles of the functionalized films and their current
research status. It illustrates the approaches to raise the optoelectrical and thermoelectrical properties,
work function, stretchability, stability and wettability of the films. Then, the cutting-edge progresses on
the aforementioned devices are highlighted. The underlying mechanism of device performance
enhancements are illustrated. Besides, striking advantages but plausible issues are also pointed out.
Finally, perspectives, challenges and suggestions are put forward to promote a true implementation of
the optoelectronics and thermoelectrics. This featured review raises the awareness of the importance of
the relationships between PEDOT:PSS properties and device performances. It guides the continued
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1. Introduction

Efficient photoelectric and thermoelectric energy conversions
with flexibility and stretchability merits are driving the modern
electronics. To maintain a competitive advantage in the elec-
tronic market, it is essential to produce a conductive and semi-
conductive material for the electronic integration. Poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
is a classic electrically conducting polymer (CP) that has the
fascinating merits of superior opt-electrical properties of metals
or semiconductors, adjustable work function, high thermo-
electric properties, good mechanical flexibility and stretch-
ability, high thermal stability, and aqueous solution-
manufacturing.*® PEDOT:PSS is regarded as the most
successful CP which has been very widely applied in the fields of
photovoltaics (PVs), displays, thermoelectrics, touch sensors,
and flexible and stretchable electronics.*** These fields give
rise to considerable demands of organic solar cells (OSCs),**">*
perovskite solar cells (PSCs),*3* perovskite photodetectors
(PPDs),*** light-emitting diodes (LEDs),*** polymer-type
thermoelectrics (TEs),"”** intelligent robotics and health
monitors,*® transistors,*** and so on. In these modern elec-
tronics, this CP material can serve as flexible transparent elec-
trodes (FTEs), hole transporting layers (HTLs), hybrids with
perovskites, hole injection layers (HILs), thermoelectric layers,
motion and temperature sensors, electroactive layers, and
stretchable conductors. In the past 20 years, Ouyang et al. have
made plenty of pioneer works regarding doping treatments of
the PEDOT:PSS and polystyrene for high optical-, electrical-,
thermoelectrical- and mechanical-properties.®**® Since 2012,
Fan et al. have devoted much effort to high-quality depositions
of the PEDOT:PSS and MoO; HTLs and chemical modifications
of the PEDOT:PSS electrodes for high electrical conductivity (o),
large elongation, high work function (¢), high sensitivity to
tensile strain (¢), and promoted electrical and electrochemical
stabilities.”*™° As a result, memory devices, fully solution-
processed flexible OSCs, stable inverted PSCs, stable colloidal
quantum-dot LEDs, polymeric TEs, and plastic and durable
strain sensors were subsequently realized; and new concepts of
these unprecedented devices were proposed as well.®¢**°
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Table 1 Characteristics of Clevios and Orgacon™ PEDOT:PSS aqueous solutions, PEDOT dispersions and the films for a broad application
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A series of PEDOT:PSS aqueous solutions are developed
using the product names of Clevios™ by Heraeus, Orgacon™
by Agfa, etc. Table 1 summarizes the product information of the
commonly used types of the PEDOT:PSS dispersions along with
their multifunctional applications. Among them, the chosen
PEDOT:PSS aqueous solutions (Clevios™) are very widely
employed to prepare flexible and stretchable electrodes
(Clevios™ PH500,"** PH510,'° and PH1000 commonly used)
and hole transporting/injection layers (Clevios™ P VP Al 4083,
Solar, and P VP8000 (ref. 107 and 108) generally employed) in
lab-size electronics. The PEDOT:PSS can be very cheap if it is
produced in large scale, and the PEDOT:PSS films have emerged
as flexible or stretchable transparent electrodes with a superior
g, stable HTLs or HILs with an adjustable ¢, hybrid components
in PPDs, active TE layers, motion- and temperature sensors with
high gauge factors and broad sensing regions, which have
enabled emergent and promising applications that no other
materials could achieve.

As a complex composed of substituted polythiophene and
polyanionic compounds, as-cast PEDOT:PSS films have high
uniformity and smoothness when coated on either rigid glass or
thermoplastic substrates. Upon chemically doping treatments,
the PEDOT:PSS thin films exhibit a high optical transparency
(T%) over 92% at A = 550 nm with 30-40 nm thickness,**'*’
tunable electrical conductivity of 10 to 10° S cm *, adjustable
work function of 4.7-5.3 eV, high Seebeck coefficient (S) of =50
uv K, superior mechanical flexibility and large tensile strain
of at least 20%. Inspiringly, the highest electrical conductivity
and maximum tensile strain of the PEDOT:PSS films has been
promoted to the best of all commercial products to date, beyond
4000 S ecm ™' and 100%, respectively.®***** Since much effort
has been devoted to the PEDOT:PSS materials that play a key
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role in each modern electronic, it brings PEDOT:PSS close to
practical adaptations.

Several critical reviews were published with regard to PEDOT
synthesis, understanding of PEDOT:PSS properties and an
integration of OSCs, PSCs or TEs.'"''® Such reviews gave an
overview of the regulations of the electrical, optoelectrical or
thermoelectric properties, but there is still a much room not
only for a fundamental understanding of the metallic
PEDOT:PSS and semiconductors, but also for a substantial raise
in the film properties (o, ¢, S, ¢, sensitivity, stability, durability,
wettability, etc.) that dominate the device performances.
Furthermore, considering (i) a great universality of the modifi-
cation methods of PEDOT:PSS for potentially guiding other
device construction despite the different roles of the
PEDOT:PSS films played in these OSCs, PSCs, PPDs, LEDs, TEs,
strain sensors and flexible and stretchable electronics; (ii) fast
developments and significant breakthroughs of the aforemen-
tioned electronics especially achieved in the last 4 years; and
(iii) a substantial lack of a featured review that can focus on the
cutting-edge methods and strategies and regulation mecha-
nisms of the PEDOT:PSS properties, which are strictly required
by the various modern electronics. Therefore, it become
reasonable, emergent and critical to make a panoramic review
with a specialized category introduced below.

In the review, we first present the fundamental basis on the
optoelectrical-, thermoelectric-, mechanical- and wettability-
properties, work function, stability as well as charge-transfer
underlying mechanisms of the PEDOT:PSS materials. Then, it
indeed provides a broad overview of the significant break-
throughs and most cutting-edge progresses on the modern
electronics including OSCs, PSCs, PPDs, TEs, LEDs, strain
sensors, and flexible and stretchable devices (Fig. 1). According

Flexible OSC

Heater Cooler =

Thermoelectric

! Al .
E

Light-Emitting Layer
PEDOT:PSS HIL —_—

LED

Stretchable Conductor

Fig. 1 Schematic diagram of PEDOT:PSS applications in various optoelectronic and thermoelectric devices discussed in the review.
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to the category of each device and the key role of PEDOT:PSS
which plays in each device, the sections are divided briefly into
five parts: (i) cutting-edge fabrication approaches of the
PEDOT:PSS electrodes used in ITO-free and flexible OSCs, (ii)
modification methods of the PEDOT:PSS HTLs along with
broad applications in inverted PSCs, (iii) three-type PEDOT:PSS
films (i.e., hybrids, HTLs and FTEs) for halide perovskite
photodetectors, (iv) strategies to raise thermoelectric properties
of PEDOT:PSS and its components, and (v) means to prepare
conductive, stretchable and motion-sensitive PEDOT:PSS
conductors for these stretchable electronics involving strain
sensors, stretchable optoelectronics and thermoelectrics. All
the methods to regulate the PEDOT:PSS properties are system-
atically summarized, directly linking them to the underlying
mechanisms of the performance enhancements of the modern
electronics. Finally, challenges, outlooks and suggestions on
both developments of emergent PEDOT:PSS materials and as-
integrated modern electronics are illustrated at the end of the
review.

2. Fundamental considerations for
PEDOT:PSS electrodes in OSCs

Indium tin oxide (ITO)-free and flexible OSCs have stimulated
tremendous attentions during the past decade. The flexible
OSCs are commonly composed of an active layer sandwiched
between a transparent electrode coated with a HTL and a metal
negative electrode coated with a low-work-function ETL.
PEDOT:PSS is one of the most representative FTEs owing to its
good conductivity, high optical transmittance, superior flexi-
bility, high uniformity, and low roughness. Since such highly
conductive PEDOT:PSS transparent electrodes were attained
through using the 1.0 M sulfuric acid (H,SO,) treatment” by
Ouyang et al. in 2012, a tremendous effort had been devoted to
the polymer electrode preparation and flexible OSC construc-
tion. On the basis of an optimal PEDOT:PSS FTE, the single-
junction normal flexible OSCs based on binary active layers
exhibited a record-high power conversion efficiency (PCE) of
16.61% reported by Fan et al. in 2021.**

A crucial factor in FTE performances is an electrical property.
The electrical property of a thin film is generally evaluated by
the sheet resistance (Rs) and ¢ using a van der Pauw four-point
probe technique, Rs, = wR/In 2, ¢ = Ry,/L, where R is the voltage
between AB contacts to CD contacts (A, B, C and D are the four
points of a square); ¢ is electrical conductivity; and L is the film
thickness. In order to achieve a high ¢, PEDOT crystallization,
phase-segregated morphology and PEDOT/PSS ratios in
matrices should be considered together with respect to the
electrode preparation. The PEDOT crystallization is mostly
determined by a structural conformation, which means a high
electrical conductivity that mostly arises from an evolution of
PEDOTs from benzoid structures to quinoid structures.**"** A
favorable phase-segregated morphology is induced by a weak
coulombic attraction between PEDOT and PSS. While a low
PEDOTY/PSS ratio in the polymer matrices rather than only upon
the surfaces demonstrates a lower sulfonate component, and it

18564 | J Mater. Chem. A, 2023, 11, 18561-18591
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results in a high electrical conductivity because PSS is an
insulating component.

In this section, we focus on the cutting-edge doping treat-
ments and unique processing technologies that substantially
raise the conductivity, work function and wettability of the
PEDOT:PSS FTEs. Progresses on ITO-free flexible OSCs are
highlighted briefly, and suggestions are provided for the
continued developments of both CP electrodes and flexible OSCs.

2.1. Secondary doping with HCIO, and CF;SO;H

In 2020, perchloric acid (HClO,) treatments are proposed for
the first time by Fan et al. to chemically dope the PEDOT:PSS
(Clevios™ PH1000) thin films as a FTE.” As the strongest
inorganic acid with ultrahigh acidity (pKa: —10) over those of
H,S0, (pKa: —3.0) and methanesulfonic acid (CH3;SO;H, pKa:
—1.9), the HCIO, treatments can provide a strong protonation of
hydrogen ions (H') to insulating PSS chains, thereby resulting
in a high electrical conductivity. This optimal 0.1 M HCIO,
treatment endowed the PEDOT:PSS electrodes with =32 Q sq ™"
sheet resistance, 90.4% transmittance at A = 550 nm, and
a better wettability towards the HTL droplet. The high wetta-
bility was due to a sulfonate-rich hydrophilic component on the
electrode surfaces and a unique spray-coating of HClO, ultra-
thin layers that bonded between the PEDOT:PSS electrodes and
PEDOT:PSS (Clevios™ P VP AI 4083) HTLs. Consequently, it led
to a small contacting angle (f) of only 17° for an intimate
interface contact. Besides, the HCIO, molecules induced a high
work function (estimated value: 5.39 eV) for the PEDOT:PSS
films via a polarization effect, owing to the polar chlorine-
oxygen bonds of HClO, with uncoupled charge centers. There-
fore, a small potential barrier was induced at the interfaces
through minimizing the energy level mismatch among the
FTEs, HTLs and electron donors of active layers. As a result, the
fully solution-processed flexible OSCs exhibited a 16.41% effi-
ciency on the basis of a binary active layer of PM6:Y6 (Fig. 2a).

In 2021, Fan et al. proposed a low-temperature (50 °C) and
low-concentration (0.8 M) trifluoromethanesulfonic acid
(CF3SO;3H) treatment for constructing a fully solution-processed
flexible OSC (Fig. 2b).** CF3SO;H is a super acid with an ultra-
high acidity (pKa: —15) and it provides a strong protonation of
H" into PSS for high conductivity and better morphology. Owing
to a polarization of polar carbon-fluorine (C-F) covalent bonds
of CF3;SO3;H with uncoupled charge centers, the PEDOT:PSS
films had a raised work function of up to 4.99 eV. The 0.8 M
CF;SO;H treatment at 50 °C induced a low sheet resistance of
~35 Q sq ', a transmittance of 87.5% at A = 550 nm, a high
work function of 4.99 eV and a superior hydrophilicity with 6 of
23.5°. The optimized flexible OSCs exhibited the highest PCE of
16.61% (Fig. 2b). To the best of our knowledge, 16.61% is the
highest PCE for single-junction ITO-free normal flexible OSCs
with binary active layers reported thus far. Notably, both HCIO,
and CF;SO;H treatments are indeed gentle and effective,
consequently, the photovoltaic cells showed a high flexibility
and a good thermal stability in a 200 hours thermal processing
at 85 °C, i.e., a decrease by 9.1% in PCE in the thermal stability
test. These optimal acid recipes open a methodology to invent

This journal is © The Royal Society of Chemistry 2023
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(a) (i) Inter-molecular interactions among PEDOT, PSS and HCLOy; (ii) XRD spectra of the pristine and HClO,4-treated films; (iii) wettability

of the droplets (P VP Al 4083) on the pristine and 0.1 M HClO4-treated electrodes; and (iv) J-V characteristics of flexible OSCs with the
PEDOT:PSS electrodes (active area: 0.3 cm?). Reproduced with permission.®® Copyright 2020, Royal Society of Chemistry. (b) (i) Sheet resistances
of the PEDOT:PSS electrodes; (ii) morphology of PEDOT:PSS nanoparticles; (iii) energy levels of the device components; and (iv) J-V charac-
teristics of flexible OSCs with PEDOT:PSS and ITO electrodes (active area: 0.04 cm?), and the rigid OSCs fabricated on ITO/glass substrates.

Reproduced with permission.®* Copyright 2021, Springer Nature.

high-performance fully solution-processed flexible OSCs based
on strong acid and super acid-treated PEDOT:PSS FTEs. Table 2
summarizes the photovoltaic characteristics of the ITO-free
flexible OSCs based on PEDOT:PSS electrodes and metal elec-
trodes reported recently.

2.2. Shearing technologies for thin film fabrication

A solution-shearing technology differs from conventional spin-
coating ones and spray-coating ones, and it allows for a kinetic
control over film morphology, composition and anisotropy via
controlling the blading rate and temperatures of rigid
substrates such as glass and silicon. Bao et al® reported
a PEDOT:PSS electrode deposited by solution shearing at 130 °©
C. The PEDOT:PSS films were deposited at 65-85 °C on
a temperature-controlled shearing stage; then, the films were
placed on a hotplate at 130 °C, followed by dropping methanol
on PEDOT:PSS tops. The solution-sheared PEDOT:PSS films
were thermally annealed, cooled to room temperature, and
rinsed with methanol. The specific control over deposition
conditions allows for a tunable phase separation and a prefer-
ential PEDOT backbone alignment, thereby leading to a high
conductivity. The solution-sheared electrodes showed more
prominent well-defined fibers which were more elongated at
a faster shearing speed of 3.0 mm s~ .

Alocal segmental chain dynamic is affected by the viscosities
of polar solvents,'** such as methanol, ethylene glycol (EG), and
ethanol (EtOH). For example, the solvation of PSS is sensitive to
the viscosities of the chosen polar solvents. Through adjusting
the PSS solvation and structural rearrangement of PEDOT,
a special shearing treatment using two solvents may induce

This journal is © The Royal Society of Chemistry 2023

PEDOT-rich domain ordering. On the principles, Bao et al.**
proposed a solvent-shearing technology using two solvents
(methanol : EtOH = 1:1) that resulted in a highly conductive
PEDOT:PSS electrode. The solvent-sheared PEDOT:PSS films
were prepared by solution shearing (90 °C and 1.5 mm s~ ') and
subsequently treated by the sheared solvents at 90 °C in
ambient air. This shearing deposition induced a larger PEDOT/
PSS ratio, which was attributed to the partial removals of PSS
and the improved - stacking of the PEDOTS.

It is suggested that all of the parameters (thickness, unifor-
mity, sheet resistance, and figure of merit) of each solvent-
sheared film should be rigorously measured for precisely esti-
mating the electrical conductivity. A main consideration is that
the manufacturing processes of solvent-sheared films are rather
complicated, at least involving solution-shearing, solvent-
shearing, pre- and post-thermal annealing, and submerging in
solvents. Film deposition quality, uniformity and thickness are
sensitive to blading parameters, evaporation rates of solutions
and solvents, ambient air conditions and storage times. In
addition, on the basis of these PEDOT:PSS electrodes with
superior conductivity, highly efficient lab-scale photovoltaic
cells should be realized. The high photovoltaic performances of
the photovoltaic cells not only can verify the reproducibility of
the high-merit transparent electrodes, but also exemplify the
great superiority of the most cutting-edge electrode preparation
methods in terms of raising the charge extraction.

2.3. Layer-by-layer doping treatments

The electrical conductivity of the PEDOT:PSS films has been
enhanced by the treatments of secondary polar solvents, strong

J. Mater. Chem. A, 2023, 11, 18561-18591 | 18565
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acids, ionic liquids, etc.*’**7>%%>* Among these methods,
a strong acid treatment has emerged as one of the most effective
methods to boost the film conductivity. One reason is the large
removal of insulating PSS on the surfaces of the CP films.
However, it hardly made a large removal of PSS from the whole
PEDOT:PSS matrices, especially from the bottom half of the
matrices. As such, the PEDOT:PSS transparent electrodes tend
to exhibit a limited opto-electrical trade-off with a figure of
merit (FoM) of <80.%®

A unique layer-by-layer (LBL) doping not only makes the
large removals of PSS in the whole matrices rather than on the
surfaces, but also induces a better phase-segregated
morphology extruding large-domain aggregates. In 2020, Fan
et al. proposed a unique LBL co-doping method that substan-
tially improved the optical and electrical properties of the
PEDOT:PSS electrodes coated on glass substrates.”® The
PEDOT:PSS electrodes exhibited a record-high FoM of =100,
which was due to (i) the effective doping of the PEDOT:PSS
matrices for a high hole concentration (7.25 x 10*' cm ™) and
hole mobility (3.62 cm® V™' s7%), (ii) a large removal of the
insulating sulfonate components in matrices, and (iii) a refined
phase-separated morphology without large-domain aggregates.
On the basis of the LBL-treated PEDOT:PSS electrodes,
a vacuum-free, all-solution and all-air processed OSC yielded
a high PCE of 11.12%. To clearly describe the morphological
evolution and structural rearrangement of the electrodes, the
schematic diagrams of the models were illustrated (Fig. 3a). It
explains why the LBL-treated CP electrodes have the
outstanding optoelectrical properties over the conventional
ones with secondary polar solvent or strong acid treatments.
Generally, with the conventional strong acid treatments, the
films which consist of small aggregates have many refined
PEDOT-rich nanofibrils on the top half. An achievement of
ordered stacking of PEDOT could be induced by the strong acid
treatments.’” After the unique LBL doping treatment, more
PEDOT-rich nanofibrils are induced from the coiled deforma-
tions to the linear/extended-coil deformations. Besides, it
largely reduced the insulating PSS components in the whole
matrices including the front and rear sides (Fig. 3b). As a result,
the CP electrodes not only yielded the record-high FoM of up to
100 along with ¢ of 4200 S cm™", but they also showed an
enhanced electrical stability and a much better electrochemical
stability under a cyclic voltammetry testing in anhydrous
dichloromethane while using 0.1 M Bu,NPF, as an electrolyte.

The limited electrical conductivity of PEDOT:PSS FTEs is
aremaining major challenge of the PEDOT:PSS FTEs at present.
Although many approaches dramatically improve the conduc-
tivity over 4000 S em™ ", such a film conductivity still lags far
behind the estimated values (13 000 (ref. 121) and 16 600 (ref.
91) S ecm ') of the commercial ITO electrodes sputtered on glass
substrates; furthermore, most of strong acid treatments re-
ported previously were corrosive to underlying metallic nano-
wires and grids. Therefore, novel recipes for strong acid
treatments and other acid-free doping treatments should be
developed to further improve the CP conductivity and such
methods need to be compatible with most of underlying ther-
moplastic substrates and the component transparent electrodes

This journal is © The Royal Society of Chemistry 2023
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(a) Schematic diagram of morphology of the acid-treated films and LBL-treated films, respectively. (b) Fitted S 2p XPS Spectra of the front

and rear sides of the PEDOT:PSS films: (i) the acid-treated PEDOT:PSS films at spin coating of 1800 rpm; and (ii) the acid and EG co-treated
PEDOT:PSS films at spin coating of 3500 rpm. Reproduced with permission.®® Copyright 2020, Wiley-VCH.

that consist of the CPs and metal nanowires or grids. The
improvement of the underlying mechanisms of both stability
and flexibility enhancements for the photovoltaic cells should
be sought in the future.

3. Fundamental considerations for
PEDOT:PSS HTLs in PSCs

Perovskite solar cells have been on the forefronts of novel
photovoltaics over the past decade.”® ™ The perovskites are
a category of compounds with the structure of ABX;, where A is
organic cations including CH;NH;" (MA") and HC(NH,)," (FA"),
B is Pb>* or Sn**, and X is a halogen anion such as I, Br_, and
Cl". The perovskite layers exhibit excellent optoelectronic
properties such as a wide visible light absorption spectrum,
high absorption coefficient, high charge carrier mobility, low
exciton binding energy, high defect tolerance, and long electron
and hole diffusion length. The current champion of the PSCs
exhibited an inspiring PCE as high as 26.08% (certified 25.73%)
under standard illumination." The single-junction PSCs have
two types of structures: conventional ones and inverted ones.
The conventional one involves a bottom ETL of metal-oxides
such as titanium dioxide (TiO,) and tin dioxide (SnO,) coated
onto ITO films. The inverted one involves a bottom HTL coated
on ITO films, such as PEDOT:PSS, polybis(4-phenyl)(2,4,6-
trimethylphenyl)amine (PTAA), and poly(3-(4-

This journal is © The Royal Society of Chemistry 2023

methylamincarboxylbutyl)thiophene) (P3CT-N). The inverted
PSC devices have the striking advantage of negligible device
hysteresis; meanwhile, the harsh sintering treatments at high
temperatures can be extruded in the device fabrication.

In the inverted PSCs, a HTL should have a high work func-
tion, good wettability and suitable electrical conductivity as
minimum requirements. The work function of the HTLs can be
confirmed by ultraviolet photoelectron spectra (UPS), ¢ = hv +
Ecutott — Erermi, Where Ecyiorr and Epermi is the low kinetic energy
cutoff and Fermi level, respectively. A hydrophilic PEDOT:PSS
HTL facilitates the target formation of perovskite crystallinity
consisting of large grains. Owing to an adjustable electrical
conductivity, high work function and high solubility, the
PEDOT:PSS (Clevios™ P VP AI 4083) products are the promising
HTL and HIL materials used to fabricate the currently existing
photovoltaics and LEDs, respectively.

A modified PEDOT:PSS film can have ¢ of 4.7-5.3 eV. A high
¢ of the HTLs allows for a formation of ohmic contacts and it is
favorable for hole transport from the perovskite layers to the
transparent electrodes. The work function of the CP HTLs
depends on the PEDOT:sulfonate ratios, electron withdrawing
groups (e.g., —Cl, -F, -Br, -SO;") of dopants, PEDOT crystal-
linity, etc. The section provides an overview of significant
progresses on both modified PEDOT:PSS HTLs and inverted
PSCs. Approaches to tune the properties of the PEDOT:PSS
HTLs are clearly introduced. The underlying mechanisms for
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enhancement of device-efficiency and some related suggestions
are illustrated as well.

3.1. Sulfonate treatments

Typically, exciton quenching occurs at the interfaces between
PEDOT:PSS (Clevios™ P VP AI 4083) HTLs and halide perovskite
layers, and thus, it delays the device efficiency via a radiative
recombination of charge carriers. Ding's group reported
a PEDOT:PSS (P VP AI 4083) HTL that was treated by the poly-
mer electrolyte of sodium polystyrene sulfonate (PSSNa) to
improve its work function.”® Compared to that of the pristine
one, the work function of the PSSNa-treated PEDOT:PSS HTL
was higher by 0.3 eV, which led to an open circuit voltage (Voc)
of 1.11 V and a PCE of 15.56% (Fig. 4a). Subsequently, Zang's
group employed sodium benzenesulfonate (C¢HsSO;Na) to
modify the PEDOT:PSS (P VP Al 4083) HTLs.**" It led to a smooth
surface of the PEDOT:PSS HTLs as well as a better energy level
alignment with the perovskite crystalline layers. Besides, the
Ce¢H5SO;Na treatment raised the hole extraction capacity and it
suppressed charge recombination, thereby increasing the grain
size and crystallinity of the MA, gFA, ,Pbl; ,Cl, perovskite films
(Fig. 4b). Consequently, the PCE and V¢ of the inverted PSCs
were improved to 19.41% and 1.08 V, respectively, which are
higher than those (PCE: 18.07% and Voc: 1.04 V) of the control
inverted PSCs without the C¢H5SO;Na treatment. It should be
also mentioned that sulfonate treatments caused rich sulfonate
components in PEDOT:PSS matrices, presumably resulting in
a stability issue of the PSCs due to the strong intrinsic hygro-
scopicity of the sulfonate components. Therefore, a small
doping content of the sulfonates is critical for an adaptation of
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the inverted PSCs based on the PEDOT:PSS HTLs with
promoted stability against humidity and ultraviolet lights.
Besides, with respect to the sulfonate treatments, other
concentrations and small gradients especially between 3 and
15 mg mL ™" should be used for the PSC device optimization. We
envision that a similar treatment using the sulfonates (e.g.,
CF;SO;3Na) involving electron withdrawing groups may further
raise the work function and morphology of the PEDOT:PSS
HTLs for a better photovoltaic cell.

3.2. Sodium- and cesium salt treatments

To illustrate the significant effect of the PEDOT:PSS HTL
modifications on PSC performances, Hu et al*** reported an
effective and simple treatment by adding 5 mg mL™" sodium
chloride (NaCl) into the PEDOT:PSS (P VP Al 4083) aqueous
solutions. The PCE of the inverted PSCs based on the NaCl-
doped HTLs was much higher than that of the control solar
cells with the pristine PEDOT:PSS HTLs (Fig. 5a). Note that the
best PSCs delivered a PCE of up to =18.2% with a fill factor (FF)
as high as 0.800. The high PCE is attributed to two factors as
follows: (i) a raised electrical conductivity and hole extraction of
the NaCl-treated PEDOT:PSS HTLs and (ii) a preferred orienta-
tion along the (001) direction of the uniform perovskite films on
the NaCl-treated PEDOT:PSS HTLs. Subsequently, Jiang et al.***
developed a similar strategy through doping the PEDOT:PSS
with cesium iodide (CsI). The CsI treatment reduced the voltage
loss and it enabled a high-efficiency inverted PSC based on the
PEDOT:PSS HTLs. CsI materials reacted with the PbI, materials.
This chemical reaction not only led to a formation of CsPbl; but
also induced a better interfacial contact for charge-carrier
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(@) UPS of PEDOT:PSS and m-PEDOT:PSS films; energy level diagram of the PSCs; and J-V curves of the PSCs with PEDOT:PSS or m-

PEDOT:PSS (1:2) as the HTL. Reproduced with permission.**® Copyright 2017, Wiley-VCH. (b) Energy level diagram of devices; SEM of perovskite
active layers deposited on PEDOT:PSS with CgHsSOsNa (9 mg mL™); and J-V curves of the devices with the PEDOT:PSS HTLs with CgHsSOsNa
(0, 3, 9 and 15 mg mL™%). Reproduced with permission.’s* Copyright 2021, Wiley-VCH.
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