
© 2022 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2022, 3, 8705–8715 |  8705

Cite this: Mater. Adv., 2022,

3, 8705

Large variability and complexity of isothermal
solubility for a series of redox-active
phenothiazines†
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The development of redox-active organic molecules (ROM) with large solubilities in all states of charge

in organic electrolytes is imperative to the continued development of non-aqueous redox flow batteries.

The capability to a priori predict ROM solubility would be a game changer, allowing for a move away

from time and resource consuming trial-and-error approaches to materials design and deployment.

However, it is not presently clear that such predictions are generally possible, even for chemically

related ROM, given the large number of physicochemical factors in play. Here we use quantitative

structure–property relationships (QSPR) to examine solubility trends for a set of thirty phenothiazine

derivatives. The solubility in all states of charge (neutral and charged forms) of these molecules were

obtained experimentally, and multiple linear regression models were used to correlate these properties

with a large set (4100) of molecular descriptors. Minimal QSPR models rationalizing these data include

four-to-six molecular descriptors, and cannot be further reduced. However, even such relatively

complex models show limited ability to predict solubility of an unknown homologous compound. Thus,

even in the controlled experimental environment, ‘‘predicting’’ the solubility may not be easy, suggesting

the need for high-throughput measurements to develop the large data sets required for machine-

informed materials design. The NMR method presented in this study is promising in this regard as it

lends itself to automation.

Introduction

Redox-active organic molecules (ROM) are of interest for many
applications, including (opto)electronics, energy generation,
energy storage, sensing, and catalysis.1–7 For energy storage,
advanced technologies are required for effective utilization and
greater adoption of intermittent renewable energy resources
such as solar and wind. With their wide electrochemical
stability windows, non-aqueous redox flow batteries (NAqRFB)

can operate at higher voltages, which potentially increases their
energy density, than their aqueous counterparts, making this
technology promising for mid to large-scale energy storage.8–12

Current techno-economic models suggest that NAqRFB, to
be competitive with other energy storage technologies, need to
operate with large ROM molarities (3–5 M).13,14 As ROM are
composed of earth-abundant elements and offer almost un-
limited synthetic tunability, their large-scale production is not
likely to be resource limited. However, their limited solubilities
in organic electrolytes is a major concern, as it prevents
the attainment of the large energy densities that remain a key
potential advantage of NAqRFB over aqueous redox flow
batteries.13,15 Efforts to improve solubility are hampered by
limited understanding of the factors that govern ROM solubi-
lity in different states of charge, e.g., the neutral and singly or
multiply charged states.15–19

Though several methods have been reported, there exist
practical issues of measuring molecular solubilities in concen-
trated solutions containing reactive radical species. The spectro-
photometric method, where a calibration curve is constructed
using known concentrations to determine the optical density and
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the concentration of a suitably diluted saturated solution, often
fails to determine the solubility of charged molecules as the
ongoing decomposition of radical ions leads to variations in the
absorption properties over time; moreover, this method is both
time and material consuming compared to other techniques.20

Solubility determination using weight measurements is limited by
the supporting electrolyte’s interference with the mass of the
ROM and the requirement of additional analyses (e.g., 1H NMR)
to ensure the complete evaporation of the solvent.21 The Shake
flask method is restricted by the inability to account for volume
expansion, and does not allow one to observe complete dissolu-
tion accurately due to the intense colors of radical ions; further,
errors arise from solvent evaporation if the experiment requires
long times to attain complete dissolution.22,23 A means to over-
come errors from volume expansion during dissolution is by
densimetry or pycnometry: the volume of the solution is calcu-
lated from the density. Here we used an NMR spectroscopic
method,24 where the solubility is determined by comparing the
resonance signals from the solute and standard to directly obtain
mole fractions of the solution components. In charged solutions,
radical ions were neutralized prior to this NMR analysis, as
otherwise nuclear resonances become shifted, broadened, or
completely unobserved through their interaction with paramag-
netic species present in solution.

While it is beneficial to measure ROM solubility a posteriori,
moving beyond such heuristic approaches requires the cap-
ability to predict the properties of interest a priori. Quantitative
structure–activity/property relationships (QSAR/QSPR) correlate
chemical structures with physicochemical properties across a
range of compounds. With this approach, regression models
are used to statistically correlate predictor variables (molecular
descriptors) and the response variables (chemical and physical
properties). Over the last decade, this approach has made
inroads into the development of materials for flow batteries,
though the field is still dominated by trial and error. For
example, Sigman and co-workers constructed QSPR models to

characterize chemical properties over small sets of homologous
ROM, including their stability and solubility.21,25–31 Aspuru-
Guzik and co-workers made advances in using machine learn-
ing for ROM design.32–38 Lengeling and co-workers predicted
solubility for organic semiconductors and drug compounds.37

In this study, we describe a QSPR model to rationalize solubility
trends for neutral and charged phenothiazine (PT) molecules in
a set of 30 homologous ROM (Fig. 1).

Among the active materials (posolytes) that are used to store
positive charge in NAqRFBs, the PT derivatives have been
studied extensively.12,23,39–43 Several approaches to increase
PT solubility in their neutral and charged states have been
demonstrated,12,23,24,39,41 but a complete physicochemical
understanding of the solubility trends is lacking. In the experi-
ments reported here, the PT radical cation is paired with
tetrafluoroborate anion (BF4

�). The solubility in acetonitrile
(ACN), with or without electrolyte (0.5 M tetraethylammonium
tetrafluoroborate, TEABF4) was determined experimentally, and
these data were used to develop the QSPR models. While the
QSPR methods described here ‘‘work’’, the models are complex,
and provide limited insight into the multiplicity of factors that
control solubility, suggesting that this statistical approach
cannot replace high-throughput solubility studies. So many
factors acting in so many ways affect ROM solubility that
‘‘predicting’’ this parameter over a sufficiently large and diverse
set of neutral and charged ROM may be practically impossible.

Methods
Solubility determination using 1H NMR spectroscopy24

A saturated solution was prepared by adding an excess amount
of a PT to electrolyte (ACN or 0.5 M TEABF4 in ACN) and then
dissolving this material by vortexing and/or heating. The
solution was stored overnight to equilibrate, after which the
precipitate was removed by filtering the solution through a

Fig. 1 Chemical structures and abbreviations of the phenothiazine (PT) derivatives examined in this study.
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microporous syringe filter (25 mm, PTFE). With liquid PT
derivatives, where two phases were observed (e.g. BuPT and
HpPT) upon equilibration, the saturated solution was carefully
removed using a syringe. An NMR sample was then prepared by
mixing a known aliquot (100 mL) of the saturated solution with
an aliquot (100 mL) of an NMR standard (1,4-bis(trifluoro-
methyl)benzene) at a known concentration (1.0 M) in deuterated
dimethyl sulfoxide, DMSO-d6 (Fig. S1, ESI†). To this mixture,
300 mL DMSO-d6 was added. The NMR standard conveniently
yields singlet resonances both in the 1H and 19F NMR spectra.
By referencing the 1H and 19F resonances to this standard, it is
possible to determine the mole fractions not only of organic
components (such as ACN, TEA cation, and PTs) but also of
fluorinated inorganic anions, so it can also be used for alkali
electrolytes, in which the electrolyte cation cannot be quantified
by 1H NMR. The NMR spectra were recorded using a 25 s delay
between the excitation pulses to ensure the complete relaxation
of the magnetic nuclei between the pulses. The solubility was
calculated by integrating the solute and the standard peaks in the
1H NMR spectrum and obtaining their ratios (Fig. S2, ESI,† see
example with 2-CF3EPT shown in Fig. 1).44 When analyzing radical
cations, excess sodium thiosulfate (Na2S2O3) was added to the
DMSO solution to reduce the species. The quenching of radical
cations can be recognized through the color change of the
solution. All measurements were carried out at 298 K.

Solubility determination using the weighing method

A weighing method was also employed to determine the solubi-
lities and compare the results with the NMR method. Three
PT derivatives with low, moderate, and high solubilities deter-
mined by the NMR method were analyzed (Table 1). For
solubility determination, a saturated solution of the compound
was prepared (as described in the NMR solubility method).
Then, a known volume of the saturated solution was measured
into tared vial. The solvent was evaporated using a Schlenk line.
The mass of the compound in that known volume was obtained.
The concentration of the compound was calculated using the
volume of the solution and the mass of the compound obtained.
This method cannot be used to determine the solubility in the
presence of a supporting electrolyte and, hence, the solubility
comparison was limited to sample solutions in ACN.

QSPR models for PT solubility

As we were interested in using molecular shape-dependent
descriptors (computational workflow used for descriptor genera-
tion is presented in Fig. 2), it was important to obtain representa-
tive conformations of the PT molecules. Conformational searches,

based on an internal coordinate Monte Carlo (MC) method, were
performed using the BOSS 4.9 script, with 500 starting structures
used to sample the molecular conformational space.45 The energy
scoring was based on the OPLS-AA forcefield.46,47 The conformers
generated were then subject to geometry optimization with the
PM6 semi-empirical method.48 Select conformers, excluding
duplicate minima, were subsequently used for optimization using
density functional theory (DFT) with the B3LYP functional and
6-311G(d,p) basis set49,50 using the CPCM implicit solvation
model51,52 with ACN as the solvent in the Gaussian 16 software
suite.53 This approach was used to provide a consistent set of
results from previous modeling studies of PT.39,54–57 Normal
mode calculations were used to verify that all DFT-optimized
structures are minima on the potential energy surface.

Molecular descriptors derived from the DFT calculations
(Fig. 3) include dipole moment, polarizability, thermal energy,
heat capacity, configurational entropy, Mulliken charges on the
sulfur and nitrogen atoms in the aromatic core, adiabatic
ionization potentials, and solvation energies. Additional descrip-
tors, such as the solvent accessible surface area (SASA),58 the
butterfly angle between the planes of the phenyl rings in PT, and
conformationally weighted Sterimol values59 were also included;
the latter were used to account for the conformational degrees of
freedom.59 The PT conformers for these analyses were generated
using the MOPAC 201660 software with semi-empirical PM6-D3H4
method,61 which has been shown to perform well in other
systems.62 The temperature for the Boltzmann distribution was
298 K, and the energy cutoff for conformers was 20.9 kJ mol�1.
These calculations used the publicly available wSterimol package
written in Python.59

The Python library ‘Mordred’ was used to generate 1800+
descriptors for each neutral ROM from 48 basic categories.
A complete table of these descriptors can be found in the
original publication by Moriwaki et al.63 A large fraction of
these descriptors can be rejected as they are linearly dependent
over the data set. Highly correlated (with the Pearson’s correla-
tion coefficient 40.9) descriptors and descriptors with almost
constant (variance threshold 40.9) values for all molecules
were removed to reduce the dimensionality of descriptor space.
A description of this filtering is available in ESI.†

QSPR modeling was carried out using the multiple linear
regression (MLR) approach64 via built-in functions from the
statistics and machine learning and bioinformatics toolboxes
in MATLAB.65 The procedure and the algorithms involved are
presented in detail by Guo et al.31 To obtain MLR models,
forward stepwise linear regression was performed with cross-
validation and selection of training and validation sets were

Table 1 Comparison of two solubility methods – NMR and weighing method

Neutral

Solubility (M)

Radical cation salts

Solubility (M)

Weighing method NMR method Weighing method NMR method

2-CF3EPT 0.925 � 0.001 0.96 � 0.01 MEEPT-BF4 0.512 � 0.001 0.526 � 0.004
3-MeOEPT 0.2119 � 0.0002 0.225 � 0.005 2-CF3MEEPT-BF4 0.195 � 0.001 0.185 � 0.001
DBrEPT 0.0546 � 0.0003 0.0576 � 0.0005 DBrEPT-BF4 0.0847 � 0.0005 0.0751 � 0.0006
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Fig. 2 Computational workflow used in modeling, where Schr – the Mulliken partial charge on the sulfur atom, RP – the redox potential from DFT
computations, SsssN – the sum of electro-topological state indices for N atom, ZMIC3 – the order-3 Z-modified information content, AATS7i, ATSC2Z,
ATSC4v, ATSC3p are Moreau–Broto autocorrelation of topological structure (ATS) descriptors associated with the Gasteiger’s ionization potential,
atomic number, VdW volume, and polarizability.

Fig. 3 Representations of select molecular descriptors used in the QSPR models: (a) the butterfly angle (depicted in red) of PT; (b) the solvent accessible
surface as determined by assuming the PT (yellow) and solvent (blue) molecules as spheres; (c) sterimol values L and B5 of 2-CF3EPT; (d) Mulliken partial
atomic charges, here shown for the radical cation of 3,7-B(MEEO)EPT, with positive and negative partial charges are depicted in red and green,
respectively.
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automated with pre-set rules as explained in the ESI.† To ensure
the models avoided overfitting, several validation techniques –
such as k-fold cross validation (CV) and leave-one-out (LOO) CV
method – were used. k-fold validation R2, Q2 from the LOO CV
method, along with Pearson R2 values for the training and whole
set are available in the ESI.†

Results and discussion
PT solubility determination

The PT set includes N–R derivatives (Fig. 1), where R are small
alkyl groups, (Me, Et, Pr, i-Pr) larger aliphatic chains (Hp, Ph,
Bz), or glycol chains (ME, MEE, Me-MEE), linear or branched.
Other PT derivatives include symmetric and asymmetric sub-
stitution with electron donating and electron withdrawing
groups on the phenyl rings. The charged PT (radical cations)
were isolated as tetrafluoroborate salts using chemical oxida-
tion of the corresponding PT with nitrosonium tetrafluoro-
borate (NOBF4); note that tBuPT, AcPT, BOCPT, BzPT, PRT,
DIEPT, DCNEPT, 2-MeOEPT, and 3-MeOEPT formed unstable
radical cations.

The solubilities of both neutral and charged PT were deter-
mined at 298 K using the NMR method. To not limit solubility
determination to one method and compare the accuracy of the
NMR method, selected PT had solubilities determined using
the weighing method (Table 1); these PTs were chosen as
their NMR solubilities spanned small, moderate, and large
solubility. The solubilities obtained using the two methods
were comparable within the limits of experimental uncertainty.

Fig. 4 provides the complete set of NMR-determined solu-
bilities for both neutral PT and the radical-cation salts in the
solvent (ACN) and electrolyte (0.5 M TEABF4 in ACN). Some
radical-cation salts (denoted by an asterisk * in the figure)
decomposed before isolation; no estimates are provided for
these salts. Neutral PT with glycol chains are viscous liquids
that are miscible with the solvent and electrolyte, so their
solubilities are also not reported. PrPT (in ACN) and BCF3EPT
formed viscous solutions, in these cases solubility could not be
determined as no precipitate was observed. Among the N-alky-
lated PTs, the n-butyl derivative is the most soluble. In general,

for neutral PT, introduction of long glycol chains, charged
(e.g., onium) and trifluoromethyl groups, and asymmetry
improve the solubility. For the BF4

� derived radical-cation salts,
the solubilities are o1 M, regardless of the functional groups
on the PT. Smaller solubilities are observed in the presence of
electrolyte as can be expected due to increased ionic association
in such solutions.

Interestingly, some of the N-alkyl substituted PT compounds
show larger solubility in the charged state compared to the
neutral state, while for other derivatives, the radical-cation salts
have smaller solubilities compared to the corresponding
neutral precursors. Most of the miscible (neutral) PT show
significantly smaller solubilities in their charged state when
coupled with BF4

� as the counter-anion. Overall, the data set
shows great variability, but no obvious trends. This high
variability suggests multiple factors are in play across the varied
chemical landscape.

QSPR modeling

To derive the QSPR models, the data were divided into training
and validation sets. The selection of the training and the
validation set was automated in an iterative way to choose the
best performing validation/training sets with few constraints to
let certain data points remain exclusively only in the training
set so that the structure variability could be captured effectively.
The PT core is rigid for all derivatives, though there is a change
in the ‘‘butterfly angle’’ when the molecule is oxidized.54,66,67

Importantly, a large degree of structural variability is possible
given the chemical groups appended to the PT cores. To account
for these conformers and find low-energy structures, a molecular
dynamics (MD)-based conformation search was implemented,
with select low energy conformations followed by geometry
optimizations with both semi-empirical and DFT-based appro-
aches, as described in the Methods.

To reduce the computational cost associated with MLR,
the number of descriptors was reduced to 125 by using the
descriptor reduction method explained in the ESI.† The select
molecular descriptors and their values are provided in the ESI†
(note that the descriptor sets differ for the neutral and
charged PT). Even after using pre-set rules to identify the best

Fig. 4 Solubility of various phenothiazines in their neutral and charged forms in acetonitrile and 0.5 M TEABF4/ACN labeled ‘‘electrolyte’’ (*: unstable
radical cations failed to be isolated as solids).
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performing models, the stepwise MLR computations yielded
50 and 72 different, yet comparably performing, four-to-six-
descriptor models for neutral and radical-cation systems,
respectively, requiring human arbitration among these models.
The down-selection ultimately resulted in seven models for
neutral PT and ten models for charged PT. Data on the QSPR
models after the initial benchmark are provided in the ESI.† A
close examination of the MLR models reveals that the mole-
cular descriptors in the best-performing models recurred fre-
quently, though in different combinations (as the descriptors
are linearly correlated over the data set). Notably, the molecular
descriptors of primary importance in the neutral models differ
from those for the charged PT. We further note that the
availability of data points in this study, though we have a large
number of systems, is limited, as many phenothiazine deriva-
tives are either miscible (which cannot be used in modeling
since a numerical value for solubility cannot be obtained) or
have solubilities less than 0.5 M in the solvent/electrolyte of
choice. To examine the impact of the clustering, we system-
atically removed data points for the model input below 0.5 M to
observe how the fit would change, as detailed further in the

ESI.† Importantly, it was observed that neither the model fit nor
the prediction were significantly affected by this alteration
(Fig. S8 and S9, ESI†).

To explore the predictive capability of the QSPR models, the
down-selected models were used to estimate the solubility of
neutral and charged sec-butyl-PT in ACN and 0.5 M TEABF4

solution. Representative plots are shown in Fig. 5, and numer-
ical data are given in Table 2. For the neutral compound, the
model and experimental estimates are within 28% of each
other. The QSPR model for the neutral PT used the following
molecular descriptors: Schr – the Mulliken partial charge on the
sulfur atom, RP – the redox potential derived from DFT, SsssN –
the sum of electro-topological state indices for a nitrogen
atom with three s bonds (as in the N in the PT core),68,69 and
ZMIC3 – the order-3 Z-modified information content.70,71 For
the PT radical-cation six-descriptor QSPR model, the model
estimate is within 15% of the experimental estimate. This QSPR
model uses four Moreau–Broto autocorrelation of topological
structure (ATS) associated with the atomic number and
Gasteiger’s ionization potential and polarizability, and a mole-
cular descriptor that describes partition coefficient/surface area.

Fig. 5 Predictive models for neutral and charged of sec-butylPT in ACN and 0.5 M TEABF4 in ACN.
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A Moreau–Broto autocorrelator describes how an atomic property
correlates over the atomic connectivity graph, with the lag
representing the number of chemical bonds between the
correlated atoms; each such correlation is taken over the entire
molecule.72–76 ATSC7p, which is the centered Moreau–Broto
autocorrelation of lag 7 weighted by atomic polarizability,
characterizes the distribution of polarizability, including the
correlations between the polarizable atoms in the chains and
the S atom in the PT ring.

Perhaps it is not surprising that at least four-to-six descrip-
tors are necessary to obtain even limited quality QSPR models
over a set of 30 compounds. When the solubility is small, it is
determined by interactions of PT molecules (or their radical
ions) with the solvent and electrolyte. When the solubility is
large, it is additionally limited by aggregation. For PT, stacking
of the aromatic rings is observed both in the neutral and
charged states in reported X-ray crystal structures, so solubility
is a complex property. QSPR is a statistical tool, offering no
explanation as to why certain descriptors are selected while
other descriptors are rejected, yet the prominence of certain
types of molecular descriptors begs explanation.

For the radical cation, we believe that the QSPR selections
hint that (i) charge delocalization and (ii) the surface area of
solvophilic groups are important factors in determining solu-
bility. This delocalization is implicit in the QSPR model, as the
most important descriptors are ATS correlators for atoms in the
PT ‘‘heads’’ and ‘‘tails,’’ as the molecule strives to achieve
the optimum balance of polarity and polarizability between
the head group and the appendages. A greater delocalization
of the positive charge over the PT core and lowering of charge in
this core helps to reduce localization of this charge in the
heteroatoms, which increases the association of the radical
cations with anions, thereby decreasing their solubility. The
importance of the ring nitrogen is also suggested by the SsssN
descriptor that is prominent in the QSPR models for neutral PT
molecules.

The second important factor is the increase in the solvophilic
area. Without substitution, the solvophobic PT molecule (in either
state of charge) has very small solubility. That is, the increased
solubility originates entirely through the substitution, hence
the importance of solvent interactions in the appendages.
This is seen from the best QSPR models, which always include
molecular descriptors associated with such interactions,
e.g., molecular descriptors such as PEOE_VSA (which describes
the surface area contributions to binned partial charges in the
molecule) and PNSA (which describes the partial negative sur-
face area) that characterize these interactions.

Finally, the shape matters. Generally, molecular asymmetry
increases the solubility (discussed further in ESI†). This asym-
metry can be characterized by the moment of inertia about
the principal axis. This trend can be explained through the
increased polarity (at low solubility) and frustration of packing
of oddly shaped molecules that inhibits crystallization (at high
solubility).

Conclusions

Solubilities for neutral and charged ROM in organic electrolytes
are important quantities that determine the energy density of
battery fluids. This property is difficult to predict computation-
ally as it reflects the complexity of molecular interactions in
multicomponent systems. Still, how difficult is this ‘‘difficult?’’
This is the question that our colleague and friend Susan Odom,
a brilliant and inquisitive scientist, posed before us at the onset
of this study. If the general trends are difficult to elucidate,
could these trends be recognized in a smaller set of related
ROM? As Susan amassed a large collection of phenothiazine
derivatives, we decided to find out.

To answer Susan’s question, we obtained isothermal solu-
bilities for 30 phenothiazine derivatives in their neutral and
charged states. We were able to isolate the charged forms
(of 21 derivatives) that were stable under ambient conditions
for the duration of experimental analysis. We then used QSPR
to correlate these measurements with molecular descriptors,
starting with a set of 1800+ descriptors. The simplest QSPR
models that we found involved four-to-six molecular descrip-
tors, as required for a fairly complex chemical space, and even
with so many descriptors, the model quality was middling. The
QSPR models were only moderately successful in predicting
the solubility of an unknown PT compound within 10–15%
deviation from the experimental value when charged state was
considered. In conclusion, predicting ROM solubility proved to
be as challenging to a statistics program as it is to a human
chemist. Modeling the solubility of a molecule class such as PT
with only a few descriptors is difficult as solubility is affected by
multiple attributes of such a molecule in varying degrees.
Nevertheless, by using a higher number of descriptors (with
statistical and analytical validation to reject overfitting) we were
able to obtain a general understanding of how to increase PT
solubility.

The analysis of molecular descriptors that were selected by
successful models hints the contributions of factors such as a
surface area with delocalized positive charges, effects due to
asymmetry and entropy, the susceptibility of the N atom on the
PT core, the contribution of substituents at 3,7 positions, and
the effectiveness of these contributions with respect to strain/
steric and charge hindrance that positively affect the solu-
bility of PT derivatives. The high variability in the data and
‘‘irreducible complexity’’ of QSPR models are sobering. In flow
batteries, the temperature and composition change continu-
ously during electrochemical cycling. If the machine-based
‘‘prediction’’ of ROM solubility is so problematic even in the

Table 2 Experimental and predicted solubilities of neutral and radical
cation forms of sec-butylPT in ACN and electrolyte (0.5 M TEABF4 in ACN)

sec-ButylPT or sec-butylPT+�BF4
�

Experimental
solubility (M)

Predicted
solubility (M)

Neutral in ACN 0.44 0.32
Neutral in electrolyte 0.40 0.29
Radical cation salt in ACN 0.60 0.66
Radical cation salt in electrolyte 0.50 0.57
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tightly controlled environment, how much more difficult would
it be in a realistic setting? Predictive modeling/machine learn-
ing can be an effective tool, when utilized within an applicable
context. However, a task such as the determination of solubility
of a complex organic molecule in a non-aqueous solution
environment is rather limited due to the unavailability high-
throughput synthesis and solubility measurement methods.
Hence, the success of efficient and robust prediction is hindered
in non-trivial systems as this case.

Thus, our results suggest that in the foreseeable future ROM
solubility trends will be discerned through experimental mea-
surements, and developing high-throughput methodologies
should be prioritized. In this connection, the NMR method
presented in this study is of considerable interest, as it easily
lends itself to the automation.
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