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The quantum mean square displacement of
thermalized CO on Cu(100) in the short
time approximation

Roberto Marquardt

The mean square displacement h(x(t) � x(0))2i of the position x of a CO molecule adsorbed at thermal

equilibrium on a Cu(100) substrate and moving along the h100i direction is evaluated quantum

mechanically. The problem is treated in the independent particle formalism via the numerical solution of

the time dependent Schrödinger equation with an initial thermal wave packet. The results are discussed in

relation to observables from neutron scattering or helium-3 spin-echo experiments, and their

interpretation in terms of classical or quantum mechanical expressions for the mean square displacement.

1 Introduction

The motion of adsorbed molecules along a substrate is an
essential step in heterogeneous catalysis.1 Being essentially
two-dimensional, it is apparently simple. Despite decades of
investigations, in particular on particle diffusion,2–10 the surface
dynamics of adsorbates is still far from being fully understood.

Theoretically, diffusion has been understood as the result of
randomized many-body interactions since more than a century11,12

in the framework of both classical and quantum mechanics.13,14

Experimentally, diffusion has been investigated by neutron scatter-
ing in liquids15 and, more specifically related to surface diffusion,
by laser induced thermal desorption measurements,16 optical
diffractometry,17 NMR spin-echo techniques,18,19 scanning tunnel-
ing microscopy (STM)20–22 and helium spin-echo spectroscopy at
crystal surfaces (see ref. 9 and 23 for reviews). Helium spin-echo23,24

and more generally helium atom scattering have been central for
the investigation of the surface structure also in the work of
Wolfgang E. Ernst.25–30

Recently, it was shown that the quantum mechanical eva-
luation of the mean square displacement (MSD) of a single
particle moving freely at thermal equilibrium inherently carries
the characteristic elements of Brownian motion.31 Quite para-
doxically, the assertion holds specifically for time intervals
during which interactions with other particles can be neglected,
i.e. in the absence of friction. Friction and random many-body
interactions are connected via the fluctuation–dissipation theorem.
The finding is related to the wave nature of a single adsorbate, the
extreme delocalization of its thermal probability density and the

ensuing uncertainty to find the particle at a specific position on the
adsorption substrate.

Studying the MSD of thermalized quantum particles following
ref. 31 is one possibility to approach quantum diffusion.
Alternative quantum mechanical approaches were also
proposed7,32–34 (see below). Quantum mechanical effects on the
diffusion of particles have been observed in other theoretical
works based on centroid35,36 and ring–polymer molecular
dynamics,37,38 Monte Carlo39,40 and instanton path-integral
techniques.41 In these approaches, quantum statistical properties
are considered, whereas the actual particle dynamics is treated
classically. Similarly, diffusion rates have also been calculated
using transition state theories on the basis of the flux–flux
correlation function42–44 and theories of thermally activated
structures with the inclusion of quantum corrections.45–47 In this
context, the work of Pollak and coworkers over the past three
decades deserves particular attention, see ref. 6, 48 and 49 and
references cited therein. Other authors solve the time indepen-
dent Schrödinger equation to obtain transmission probabilities41

or rates by perturbation theory.50 In some of these works,
potential energy functions were obtained from ab initio calcula-
tions. Truly time dependent quantum mechanical methods used
to investigate diffusion are based on Bohmian dynamics,51,52 wave
packet dynamics using a stochastic Schrödinger equation,53 or
quantized forms of the generalized Langevin equation.54,55 None
of these time dependent methods are ab initio, however, and
many rely on coupling models with adjustable parameters. In
ref. 56, a pseudo-thermal wave packet was studied, which
describes a CO molecule initially localized in the Wigner-Seitz
cell of a top adsorption site on the Cu(100) surface. The time
evolution of the wave packet was obtained by the solution of the
time dependent Schrödinger equation in a four-dimensional
potential energy surface from ab initio calculations. The study
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rendered a time dependent escape probability and gave evidence
of CO tunneling at 200 K in the picosecond time domain. However,
this study, albeit multidimensional, did not infer directly on experi-
mental observables. In particular, diffusion coefficients cannot be
extracted from there. Methods to calculate diffusion coefficients in a
time dependent approach from first principles, multidimensional
quantum mechanical calculations are still needed.

One aim of the present study is therefore to work toward
such a method. Although being grossly approximate, the inde-
pendent particle approach is the simplest one to start with. The
neglect of many-body interactions is a strong approximation
and the present approach is correspondingly expected to yield
realistic results in the short time dynamics, i.e. for time inter-
vals smaller than the typical time parameter t, to use the
notation from ref. 11, in which the independent particle picture
is valid. The values for t can be estimated from collision rates
or friction constants.

As an exemplary system, we shall focus on the quantum
dynamics of a CO molecule moving at thermal equilibrium in a
one-dimensional periodic potential representing the h100i
direction along the Cu(100) surface. More specifically, we shall
evaluate and analyze the mean square displacement (MSD)
defined by eqn (1):

dx
2(t) = h(xy(t) � xy(0))2iy (1)

here, xy(t) is the quantum mechanical expectation value of the
position of the molecule at time t in a typical member state of a
thermal ensemble. Such states can be characterized by a set of
random numbers y, and h�iy is the ensemble average in the
sense of the arithmetic mean over these states.

In ref. 7, 32–34, the alternative expression dx
2(t) = Tr(r̂(T)(x̂(t)�

x̂(0))2) was used, where r̂(T) is the ensemble averaged thermal
density operator, and x̂(t) is the Heisenberg representation of the
position operator. This alternative definition is related to a
quantum correlation function of the position operator14 and
can be shown to yield, under particular conditions, the expres-
sion of the MSD expected in the classical limit. Nevertheless, this
definition of the MSD cannot be given as the time dependent
expectation value of a quantum mechanical operator in the
Schrödinger representation, and is therefore somewhat proble-
matic. In contrast, the definition in eqn (1) can be evaluated in
both the Schrödinger and Heisenberg representations, but does
not have a classical counterpart, as discussed in ref. 31. We shall
consider eqn (1) exclusively in the present work. A thorough
discussion of the alternative definitions of the MSD will be
carried out elsewhere.

The MSD is connected to the self-part Gs(r,t) of the pair
correlation function introduced by van Hove,57 more particularly
to its space Fourier transformation, the intermediate scattering
function (ISF). In ref. 31, it was suggested that, while the real
part of the ISF can be related to the classical mechanical
expression of the MSD, its imaginary part might possibly be
related to the quantum mechanical expression eqn (1). This
hypothesis could in principle be verified by the example of
xenon atoms moving on a platinum substrate, which are
essentially freely moving particles. It will be further elaborated

in the present work using the example of CO molecules moving
on a copper substrate.

This paper is an extension of the work presented in ref. 31.
Here, a numerical protocol is proposed for the determination of
diffusion coefficients from ab initio calculations. The free
particle case treated before is reviewed here from the numerical
perspective, by which the numerical approach can be validated.
The numerical protocol is then applied to the specific case of
a CO molecule moving on the copper surface Cu(100). The
paper is structured as follows: in Section 2, theoretical and
computational aspects of the treatment will be presented; these
include the development of the aforementioned numerical
protocol. In Section 3, the results are presented and analyzed.
A discussion follows in Section 4 and the work is concluded in
Section 5 with a discussion of its perspectives.

2 Theory and computational aspects
2.1 Theoretical frameworks

The mean square displacement (MSD) given by eqn (1) is
evaluated quantum mechanically from the expectation value
xy(t) = hc(T)

y (t)|x̂|c(T)
y (t)i of the position of the particle at time t in

a typical member state |c(T)
y (t)i of the thermal ensemble.

Following Tolman,58 such a state is given as

|c(T)
y (t)i = e�iĤt/h�|c(T)

y (0)i (2)

where |c(T)
y (0)i is a thermal wave packet58–61

jcðTÞy ð0Þi �
X
n

e�bEn=2þiynffiffiffiffi
Q
p jfni (3)

Ĥ is the Hamiltonian of the system and h� is the Planck constant
divided by 2p. The quantities 0 r yn r 2p are random angles,
En and |fni (n = 1,2,. . .) are eigenvalues and eigenstates of Ĥ,
which, without lack of generality, are supposedly countable,
and Q is the canonical partition function:

Q ¼
X
n

e�bEn (4)

Here and in the following, b � 1/(kBT), where T is the tempera-
ture and kB is the Boltzmann constant.

Quite obviously

jcðTÞy ðtÞi ¼
X
n

e�bEn=2þiyn�itEn=�hffiffiffiffi
Q
p jfni (5)

It is straightforward to show that xy(t) = hc(T)
y (t)|x̂|c(T)

y (t)i is
equivalent to xy(t) = Tr(r̂(T)

y (t) x̂), where r̂(T)
y is the density operator

of a typical member of the thermal ensemble.31 In eqn (5), the
Schrödinger picture is used, but the same quantity xy(t) is
obtained in the Heisenberg picture, as Tr(r̂(T)

y (t) x̂) = Tr(r̂(T)
y x̂(t)).

In ref. 31, it was shown that eqn (1) and (5) lead to the
following general expression of the MSD

dx2ðtÞ ¼
4

Q2

X
i

X
j

e�bðEiþEjÞjxij j2 sin2 ðEi � EjÞt=2�h
� �

(6)

where xij = hfi|x̂|fji.
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The system considered is a particle of mass m moving in a
one-dimensional potential, periodic in the lattice constant a:
V(x) = V(x + a). Ĥ is the corresponding system Hamiltonian:

Ĥ ¼ � �h2

2m

@2

@x2
þ VðxÞ (7)

The system is cast in periodic super-cells of length L = N � a.
The ratio a/L = 1/N can then be considered to be the coverage
degree of the one dimensional lattice.

2.2 Computational methods

Instead of solving eqn (6), when the calculation of eigenstates
becomes too involved, it is more convenient to evaluate eqn (1)
fully numerically. This will be the main method used here.

In practice, one first solves numerically the time dependent
Schrödinger equation to propagate via eqn (2) the initial
thermal wave packet |c(T)

y (0)i, given by eqn (3), in a finite
representation space of basis states |wni, where n = �K,. . .,K
(KAN). The coordinate choice �L/2, r x r L/2 is made.
Because of the periodic boundary conditions and the periodi-
city of the potential, it is always possible to label eigenstates
with whole quantum numbers nAZ, while granting En = E�n.
While the individual matrix elements of the position operator
may depend on the particular choice of the coordinate space,
the overall result from eqn (1) or eqn (6) does not depend on
this choice.

The initial thermal wave packet, at a finite temperature T,
is generated following ref. 60 from propagating a ‘‘white state’’
(at an infinite temperature), defined by

jcð1Þi �
XK
n¼�K

eiynffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K þ 1
p jwni (8)

along the negative imaginary time axis until �it = �ih�/(kBT):

|c(T)
y (0)i = e�Ĥt/h� |c(N)i (9)

In eqn (8), individual phases yn are drawn from random
number generators.

Statistical averages are computed on the basis of maximal
800 sets of random phases. This number was found to yield
converged results with respect to the size of random sets. The
results of the MSD from eqn (1) expectedly converge to those
from eqn (6) for sufficiently large representation bases.

In the present work, for practical reasons, both imaginary
(eqn (9)) and real time propagations (eqn (2)) are calculated
using the Multiconfigurational Time-Dependent Hartree
(MCTDH) program.62,63 To this end, an exponential discrete
variable representation (DVR) is chosen to represent operators
and wave functions. The corresponding finite basis functions

are periodic plane waves wnðxÞ ¼ e�iqnx=
ffiffiffiffi
L
p

, qn = 2pn/L, i.e. the
periodicity is L. The Schrödinger equation was integrated using
the variable mean field integration scheme of MCTDH with a
Runge–Kutta integrator of order 8, an error tolerance of 10�8

and a zero initial time step size. Using the MCTDH program to
treat the present one-dimensional problem is not a necessity.
It is convenient, however, in view of the prospective extension

of this study to many dynamically coupled dimensions in
the future. Routines to generate thermal wave packets were
implemented64,65 and tested61 in MCTDH, but not used in the
present work.

We should consider the specific potential function

VðxÞ ¼
X

k¼4;6;8
Vk sin px=að Þk (10)

where V4 E 381 hc cm�1, V6 E �698 hc cm�1, V8 E 582 hc cm�1,
and a = 255.6 pm. This form describes the first ‘‘adiabatic
channel’’ for the diffusion of CO on the Cu(100) surface in the
h100i direction,56,66,67 in which the variation of the zero point
energy was included approximately from the variation of the
harmonic zero point energies between the top and bridge sites as
calculated in ref. 66. The barrier for this potential is 270 hc cm�1

E 33.5 meV (a plot of the potential is depicted in ref. 67).

3 Results and analysis
3.1 CO molecules as ideal and quasi-ideal particles

We should first consider a hypothetical case where the CO
molecule moves as a free particle in a zero (or constant)
potential V(x) � 0. In this case, En = h�qn

2/(2m), the matrix
elements xnn0 are given analytically and it is straightforward
to carry out the sum in eqn (6) numerically. In ref. 31, it was
shown that, for L - N, eqn (6) yields the simple analytical
expression:

dx2ðtÞ ¼
lth2

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

tT

� �2

þ1

s
� 1

0
@

1
A (11)

here, lth ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT
p

is the thermal de Broglie
wavelength,68,69 and tT � h�/(kBT). In ref. 31, the natural unit lT =
lth/2p was used to denote the thermal de Broglie wavelength.

Eqn (11) was termed the MSD of an ideal particle in ref. 31.
In contrast, a free particle bound to move in periodic super cells

Fig. 1 Quantum dynamical time evolution of the mean square displace-
ment (MSD) dx

2(t) of a CO molecule (m E 28 u) moving on the hypo-
thetically flat Cu(100) surface (a E 256 pm) at a temperature T of 190 K.
The interrupted lines show the MSD of quasi-ideal particles for finite values
of L: L = 15a (–––), L = 30a (––––), L = 60a (—––—). The continuous
black line is for L -N (ideal particle). See ref. 31 for the definitions of ideal
and quasi-ideal particles in the context of this study, and the corres-
ponding Fig. 2 therein.
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with finite cell lengths L was named quasi-ideal. The terminology
is related to a stochastic collision model inferred in that work to
rationalize the resulting MSD for varying values of L (see below).

The results from eqn (6) and (11) are shown in Fig. 1 at a
temperature of 190 K. The mass is m E 28 u. The length scale
a E 256 pm corresponds to the nearest neighbor distance
along the h100i direction on a perfect Cu(100) substrate. This
length scale is used here for the sake of comparison with the
MSD obtained in the presence of the adsorption potential
eqn (10), to be discussed later on.

The interrupted lines show the MSD of the quasi-ideal
particle moving in super cells of lengths L = N � a, where N =
15, 30 and 60 (see caption). They correspond to 6.7, 3.3 and
1.7% coverage degrees, respectively. Bases contain K = 100 � N
functions, i.e. a constant number of functions per elementary
cell of length a, and the results are numerically converged. The
continuous black line shows the MSD for the ideal particle,
eqn (11), corresponding to a 0% coverage degree situation.
Fig. 1 corresponds to Fig. 2 of ref. 31 in terms of the natural
units lth E 0.094a and tT E 40 fs at T = 190 K.

Initially, the MSDs of the quasi-ideal match those of the
ideal particles. The larger L, the longer is the agreement. The
very early evolution is quadratic in time,31 dx

2(t) p t2 for t t tT,
which cannot be seen at the scale of the figure, but can
analytically be concluded from both eqn (6) and (11).

For t - N, the MSD of the quasi-ideal particle stagnates
asymptotically forming a plateau which is also its upper bound.
The positions of the plateaus increase linearly with the super-cell
length L. In the limit L - N, one reaches the situation of the
thermalized particle that can be ideally treated as an indepen-
dent particle. In this limit, the long time MSD increases linearly
with time and the slope may be interpreted as a quantum
diffusion coefficient Dq = h�/2 mCO of the free CO particle.31

Strictly, the departure from the linear time evolution of the
MSD at finite values for L is an artificial boundary effect in the
first place. This effect can obviously be reduced by increasing L.
Albeit being artificial, the asymptotic stagnation of the MSD
has the characteristic behavior of a confined diffusion9 or of the
diffusion in a Debye crystal.70 As explained in ref. 31, it can be
interpreted within a stochastic collision model as being the
consequence of random collisions that classical particles resid-
ing in neighboring cells would incur under the same thermal
conditions. The average collision time inferred by that model
increases linearly with L. This will be further exploited in the
next section.

3.2 Initial slope method

The result unveiled by Fig. 1 has a methodological perspective.
Quite obviously, the initial MSD of the quasi-ideal particle is a
good approximation of the MSD of an ideal particle. Boundary
effects deteriorate the ideal result for longer times. The larger
the super-cell, the longer can the time window be made, in
which boundary effects can be neglected within acceptable
error limits in the numerical evaluation of the MSD.

More specifically, the asymptotic slope of the MSD of the
ideal particle may reliably be determined from a graphical or
numerical evaluation of the slope of the MSD of the quasi-ideal
particle during a certain initial time interval at the scale of the
figure. This method is termed as the initial slope method.

The length of this initial time interval has an impact on the
precision of the method. It must not be too short, in order to
avoid the initial quadratic growth, nor must it be too long, in
order to avoid the boundary effects. In appendix 1, the error
made in the determination of the slope is investigated in detail
as a function of the length of the initial time interval and L. We
found, for instance, that, for L E 40 a, the graphical determi-
nation of the slope entails a relative error of 10%, when
restricted to the first 4 ps of the time evolution. Approximately,
the length of the initial time interval needed for a reliable
determination of the MSD from numerical evaluations of the
free particle scales linearly with L.

To apply the initial slope method to a particle moving in a
general potential, rather than using eqn (6), the procedure
outlined in Section 2.2 to evaluate eqn (1) is to be used, as
eigenvalues and eigenfunctions are not necessarily known.
Hence, in addition to the systematic errors discussed above,
statistical errors arise from the numerical integration of the
Schrödinger equation with initial randomized thermal wave
packets. Fig. 2 depicts the MSD of a quasi-ideal CO molecule
in a super-cell of length L = 10a, otherwise under identical
conditions as in Fig. 1. Almost all lines were obtained with 100
basis functions per elementary cell. The magenta line shows
the result for a single set of random numbers, i.e. a single
quantum trajectory. The green line is the result of the average
over 10, the dark blue line is over 200 and the red line is over
800 trajectories. The light blue line is the result for the average
over 800 trajectories and 200 basis functions per elementary
cell, i.e. twice as many basis functions as for the red line.
The drawing of this line includes error bars of �1 standard

Fig. 2 MSD of a freely moving CO molecule and conditions as in Fig. 1.
The continuous lines show the MSD of the quasi-ideal particle with a
super-cell length L = 10a. The black line, with a label ‘‘n’’, results from the
numerical evaluation of eqn (6). The dotted black line, labeled as ‘‘t’’, is
the result for the ideal particle from eqn (11). The colored lines result from
the direct evaluation of eqn (1) via the numerical solution, eqn (2). Color
codes relate to averages over different sizes of the statistical ensemble of
random phases, as indicated by the key table (see text). The line labeled as
800* was calculated using 200 functions per elementary cell of length a
and 800 sets (see the text); for this line, statistical error bars of �1 standard
deviation are also indicated as vertical bars.
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deviation to show an example of the statistical uncertainty. The
solid black line is the result from eqn (6), and the interrupted
black line is the analytical result from eqn (11) (valid for L -N).

Up to about 1 ps, at the beginning of the evolution depicted
in Fig. 2, dx

2(t) obtained from the evaluation of eqn (1) agrees
well with the evaluations from eqn (6) and (11) within accep-
table errors of maximal 10%. Statistical errors are vanishingly
small in this interval, when more than 200 quantum trajec-
tories are run. For times beyond about 2 ps, dx

2(t) from eqn (1)
and (6) still differs even after averaging over 800 trajectories.
Differences can be reduced, however, if the basis is increased.

Boundary effects are one aspect determining the accuracy of
the initial slope method. They are obviously related to the
degree of coverage a/L of the substrate. Hence, the coverage
degree must be small, in order to reduce the boundary effects.
Being formally related to the aforementioned stochastic colli-
sion model, the average collision times must be long enough to
obtain accurate results.

A second aspect is the independent particle picture. The
reliability of the calculation is limited to times smaller than the
time parameter t, beyond which interactions between particles
must not be neglected. In the low coverage limit, the actual
average collision time between CO molecules is expected to be
long and insignificant. t may then be estimated as the reciprocal
of the friction constant. In the case of CO moving on the Cu(100)
surface, coupling to substrate phonons is believed to be the
major source for friction.71 The friction constant is estimated
experimentally72 to be g E 0.12 ps�1, such that t E 8 ps.
Consequently, the minimal super-cell length for the evaluation
of the MSD of CO on Cu(100) with the initial slope method
should be about L E 80a.

The initial slope method outlined in this section will be used
in the following section to investigate the MSD of the surface
bound, but otherwise independent CO molecules.

3.3 CO along the h100i direction on Cu(100)

In this section, eqn (1) is evaluated following the method
presented in Section 2.2 to simulate quantum dynamically
the MSD of a CO molecule along the h100i direction of the
Cu(100) crystal. The potential function is given in eqn (10). As
discussed above for the free particle case, the numerical
evaluation of eqn (1) is subjected to boundary effects, basis
sizes and the number of random phase samples, which are
examined in detail in Appendix 2. The resulting MSD is
depicted as a black continuous line in Fig. 3.

The red continuous line in this figure yields the MSD of the
freely moving CO molecule (constant potential) as a quasi-ideal
particle from eqn (6). In test calculations not reproduced here,
the potential barrier of eqn (10) was gradually reduced from
B34 meV to zero. In this way, it was verified that the red line is
the limiting MSD when the potential becomes completely flat.
Clearly, the surface corrugation resulting from the potential
barrier leads to a significant reduction of the MSD, when
compared with the freely moving molecule. The interrupted
red line is the MSD of an ideal CO molecule. The difference
between the two red lines allows us to assess quantitatively the

deviation from the independent particle picture induced by the
finite value of the super-cell length. This picture looses anyway its
physical validity for times beyond t B 8 ps, as discussed above.

The black continuous line features a nearly periodic behavior of
the MSD and a slight, more or less linear ascension of the base line.
The nearly periodic behavior of the MSD is more pronounced
initially. In the following, we show that it can be related to a CO
molecule bouncing forth and back in a harmonic potential repre-
senting the confinement in an elementary cell of length a. The MSD
for a classical harmonic oscillator has a periodic variation of dx

2(t)
with a period of tvib = 2p/o, where o is the angular frequency of the
oscillator.73 The same result holds for the quantum mechanical
MSD from the evaluation of eqn (6) (see eqn (5) in the appendix).
The fundamental transition of CO moving in the potential of
eqn (10) is B14.6 cm�1.67 If this value is assumed to be the
harmonic wave number of a CO molecule moving in a harmonic
potential, one gets tvib = 1/~n c E 2.3 ps. The evolution of the MSD is
not perfectly periodic, because the potential is quite anharmonic.

As a guide of the eye for the linear increase of the MSD in
Fig. 3, a linear function c1 � t + c0 is fitted to dx

2(t), with equal
weights to the 1000 points used in Fig. 3 to draw the MSD. This
linear function is shown there as an interrupted black line. It
describes the evolution of the base line or the median of the
MSD. This median is defined as the average of the MSD over
one period of intra-cell diffusion. For a statistically relevant fit,
it is interesting to include many periods. The time interval of
10 ps includes about 5 periods of length B2 ps. The relevant value
resulting from the fit is the slope c1 E (1.2 � 0.4) 10�3 a2/ps.

4 Discussion

It is interesting to note that the general form of the MSD given
by the black continuous line in Fig. 3 resembles the typical

Fig. 3 One dimensional quantum simulation of the MSD dx
2(t) of a CO

molecule moving along the h100i direction on the Cu(100) crystal surface
at T = 190 K according to eqn (1) (continuous black line). The method
described in Section 2.2 and the potential function of eqn (10) were used
with 800 random phase sets, 100 states per elementary cell and a super-
cell size N = L/a = 80. The time resolution of the drawing is 10 fs. The
interrupted black line is a linear fit to dx

2(t) (see the text). The red lines
describe the free CO particle in the absence of any potential function (as
discussed in Fig. 1): the continuous red line is a direct numerical evaluation
of eqn (6), and the dotted red line is the analytical result from eqn (11) with
Dq = h�/2mCO E 113 Å2 ns�1.
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results obtained from neutron scattering experiments in
liquids. Fig. 3 in ref. 15 and Fig. 1 in ref. 70 show for instance
the time evolution of the width of the main peak of the self-part
of the pair-correlation function obtained in the classical
approximation from incoherent neutron scattering in liquid
lead. Some similarity of the behavior with Fig. 3 from the
present work is clearly apparent, both regarding the qualitative
aspects of the functions and, rather fortuitously, the order of
length and time scales. Chudley and Elliott70 analyzed the
neutron scattering data using a jump diffusion model.

The evolution of the MSD depicted in Fig. 3 reflects such
discrete jumps with ‘‘some slight increases at large t’’, see
ref. 70, p. 358. In their work, Chudley and Elliot considered a
time beyond a few multiples of the characteristic jump time to
be large. In Fig. 3, a large time is considerably longer than the
vibrational period tvib, but smaller than t B g�1, the time
beyond which the independent particle picture becomes inva-
lid; here, g is the friction constant. Continuous diffusion sets in
at times longer than g�1.

The analysis suggests that the quantum mechanical MSD of
a thermalized particle moving in a periodic potential may be
interpreted, following Chudley and Elliot, as being the conse-
quence of two convoluted processes: an intra-cell diffusion,
characterized by the approximately periodic motion confined to
one elementary cell – this process was termed as ‘‘vibrational
dephasing’’ in ref. 9; and an inter-cell diffusion, characterized
by the monotonically increasing median of the MSD for times
larger than a few multiples of the vibrational period. In the
limiting case of a flat potential, the former disappears and the
latter becomes a Brownian type motion with a nearly to linear
increase of the MSD. The interpretation is meaningful for times
shorter than t and, in this sense, the inter-cell diffusion would
more appropriately correspond to an intermediate jump-
diffusion from ref. 70 before continuous diffusion sets in.

In this spirit, the slope c1 of the linear function describing
the median of the MSD over a few vibrational periods in Fig. 3
may be interpreted as a quantum mechanical result for the
inter-cell diffusion coefficient D(inter) = c1/2 E 4.1 Å2 ns�1. The
uncertainty of this value is estimated to be at least �1 Å2 ns�1

because of the limited precision of the initial slope method.
Calculations can be carried out at different temperatures and
for other crystallographic directions along the substrate. For
instance, D(inter) decreases to about 1 Å2 ns�1 at 150 K. Because
of the large errors, however, it is unreasonable to give a
quantitative account of these studies at this stage.

An experimental value of the unidirectional diffusion coeffi-
cient of the CO molecule on Cu(100) along the h100i crystal-
lographic direction can be determined from the broadening of
the dynamical structure factor (DSF) S(DK,o) in the quasi-
elastic helium-3 scattering experiments.74 The width of the
DSF at o E 0 in the long wave length limit (DK = 0) increases
quadratically with DK, and its curvature is four times the
diffusion coefficient.4,70 The evaluation of Fig. 1 of ref. 74, at
T = 190 K, yields D(DSF) E (0.6 � 0.2) Å2 ns�1.

D(inter) is about one order of magnitude larger than D(DSF).
A few remarks are in place here:

1. D(DSF) is the diffusion coefficient corresponding to con-
tinuous diffusion in the long time limit t c t, i.e. after friction
will have largely influenced the dynamics. D(inter) reflects
an intermediate diffusion coefficient for inter-cell diffusion
determined in the short time limit t t t, before friction can
effectively take place. It should be noted that the neutron
scattering data in liquid lead could only be modeled satisfacto-
rily for intermediate times. Chudley and Elliott argued70 that
the jump diffusion model was lacking a further source of
broadening. Here, we can only speculate about the further
evolution of the MSD in Fig. 3 beyond the independent particle
approximation including realistically collisions with other
particles. Collisions hamper the motion of a molecule and hence
decrease the diffusion coefficient in the course of time. The
inclusion of friction would presumably lead to an additional
flattening of the line at longer times. The statistical collision
model inferred in ref. 31 to interpret the asymptotic flattening of
the MSD for a quasi-ideal particle supports this view.

2. D(DSF) was obtained from experiments at a coverage degree
of 10% (0.1 ML); D(inter) was obtained in the present work at a
coverage degree of only about 1% and is hence not necessarily
comparable with the experimental result because of the different
conditions. Such a low coverage degree was necessary in the
theoretical treatment to reduce the boundary effects and thus
ensure accuracy in the relevant time window of the calculation. If
the coverage degree is to be increased, to reach a similarly
accurate theoretical treatment, the inclusion of explicit many-
body interactions becomes mandatory anyway.

3. The first peak of the MSD in Fig. 3 has an amplitude of
about 0.07a2. Assuming that the oscillations in that figure are
loosely related to the oscillations of one particle in one well
with a harmonic wave number of B15 cm�1, at the temperature
of the simulation in the figure, the amplitude of the first peak
should be about 0.013a2, from eqn (5). At this temperature,
bh�o E 0.1, and the classical limit is essentially reached. The
amplitude of the MSD of the classical oscillator is 4/(bmo2) E
0.49a2. As discussed in ref. 31, the MSD from eqn (1) does not
have any classical counterpart, however, and the comparison of
the results from Fig. 3 with classical mechanics is not relevant
in this sense. It would be interesting to evaluate the MSD using
alternative definitions which, as mentioned before, yield the
classically expected results under given conditions. Such a work
is in preparation and will be published separately.

4. As discussed in ref. 31, the broadening of the DSF reflects
the evolution of the MSD from within a classical mechanical
interpretation of the motion, whereas the quantum mechanical
MSD is related to the recoil energy or to the phase fISF(q,t) of the
intermediate scattering function (ISF). These correspondences
are theoretical conjectures and valid in the case of the ideal
particle and in the long time limit. They could in principle be
verified experimentally by the example of the Xe/Pt(111) system,
which mimics an ideal, two dimensional gas.75 If these corre-
spondences can be generalized to other systems, D(inter) and
D(DSF) would not be directly comparable anyway. It would there-
fore be interesting to verify experimentally the result depicted in
Fig. 3 by the inspection of fISF(q,t) from the measurement of the
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real and imaginary parts of the ISF of CO/Cu(100). Because the
width of the DSF for CO/Cu(100) is much smaller than that for
Xe/Pt(111), the ISF of the former system decays much slower
than that of the latter, and the analysis might work out to be
easier.

5. The value for D(inter) relies on the quality of the underlying
potential energy surfaces obtained from ab initio calculations.
In the present case, any discrepancy to experimental results
could as well be related to a wrong potential barrier obtained
from the calculations in ref. 66.

5 Conclusions

In the present work, the mean square displacement (MSD) dx
2(t)

of a thermalized CO molecule moving in a one dimensional,
periodic potential V(x) describing its interaction with copper
atoms of a Cu(100) substrate was calculated quantum mechani-
cally within an independent particle formalism. The potential
function was obtained from ab initio calculations.66 A key
aspect of the formalism is that a thermal state of the particle
is described by a typical member of the thermal ensemble,
rather than by its statistical average.31 As a consequence, the
probability density shows fluctuations which are essential to
obtain quantum mechanically a time dependent MSD.

Different approaches were analyzed leading to three in
principle equivalent equations for the MSD: the first one,
eqn (1), is evaluated by the numerical integration of the time
dependent Schrödinger equation for randomized initial ther-
mal states; the other by numerically evaluating the MSD while
avoiding the explicit numerical integration step (eqn (6)), and
an analytical result (eqn (11)), valid in the case V � 0 for an
ideal quantum particle. Solving eqn (6) is particularly suitable
when the energies En and wave functions fn(x) of the eigen-
states of the particle and the matrix elements xnn0 = hfn|x̂|fn0i
are accessible analytically.

Eqn (11) reveals an interesting behavior: while initially of
ballistic character, the MSD of the ideal quantum particle of
mass m moving in an unrestrained manner at a temperature T
gains the character of a Brownian diffusion after a time of order
tT � h�/(kBT). The temperature independent slope of the MSD
obtained at long times is given by Dq = h�/(2 dm), where d is the
dimensionality of the particle. While this quantity cannot be
directly related to a diffusion coefficient in the classical sense,
due to the absence of friction in the theoretical framework that
led to it, several arguments are presented in ref. 31 indicating
that it might hypothetically be a finite limit of the diffusion
coefficient of a free particle, which would be imposed by
quantum mechanics in the limit of zero friction.

A numerical method, termed the initial slope method, was
developed on the basis of the solution of the time dependent
Schrödinger equation and initial thermal wave packets. The
essential aspect of this method is that the MSD can be reliably
obtained from the numerical evaluation at least during a
certain initial time interval, as long as interactions perturbing
the independent particle formalism can be neglected.

The initial slope method was used to calculate the quantum
mechanical MSD of a CO molecule adsorbed at 190 K on
the Cu(100) surface. The careful analysis of the basis size
convergence and statistical errors leads us to conclude
that dx

2(t) is approximately given by the convolution of two
processes: an approximately periodic variation with time and
a linear increase of the base line. While the periodic variation
can be related to intra-cell diffusion, the steady increase of
the base line possibly reveals the inter-cell diffusion of
the Brownian type in the presence of the periodic potential.
This interpretation is based on the Chudley–Elliott model
for jump diffusion.70 While the jump-diffusion model is
entirely classical, the inter-cell diffusion inferred in the
present work is the consequence of the quantum nature
of the adsorbed particle, which can tunnel under the
potential barriers,56 and the fluctuations inherent to its
thermal state.

In the case of CO on Cu(100) at 190 K, the slope of the base
line leads to a value of about 4 Å2 ns�1 for the inter-cell
diffusion coefficient. This is about one order of magnitude
larger than the experimental value of B0.6 Å2 ns�1 derived
from ref. 74 in the classical approximation of the pair correla-
tion function. Several aspects of this comparison were dis-
cussed. The experimental value results from the broadening
of the dynamical structure factor which gives the coefficient
typical for the diffusion at times much longer than the inverse
friction constant, whereas the theoretical result reflects
a quantum mechanical diffusion coefficient valid for inter-
mediate times. To compare the two values more appropriately,
theory must be extended beyond the independent particle
approximation, i.e. by the explicit inclusion of friction.

Another aspect is that the quantum mechanical MSD of an
ideal particle, as defined by eqn (1), is related to the phase fISF

of the intermediate scattering function (ISF), whereas the
classical MSD is related to the width of the dynamical structure
factor (DSF). In this context, it would be interesting to deter-
mine fISF for the CO/Cu(100) system from the experimental
values related to the real and imaginary parts of the ISF,
but also to evaluate the MSD from alternative definitions, as
discussed in the Introduction section. Such a work is in
progress.

Despite the lack of quantitative agreement between theore-
tical and experimental results, the method proposed in this
work is promising. It should be understood as a first step
toward the determination of diffusion coefficients from first
principle calculations. It will next be extended to a full dimen-
sional treatment of the dynamics of the CO molecule on
Cu(100) using the MCTDH program on the global potential
energy surface calculated from ref. 66, first within a rigid
substrate model. By gradually inserting mobile copper atoms,
such as in ref. 76, we then plan to address the role of friction.
Other possibilities include using a hierarchical effective mode
approach,77 or stochastic operators.78,79 The theoretical results
should then become fully quantitative which would allow us to
ultimately verify the method and to assess the quality of the
potential energy surfaces calculated ab initio.
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Appendices

A. Free particle, graphical
determination of the slope

Fig. 4 depicts the relative slope sr in the initial 20 tT of the
evolution of the MSD (tT = h�/(kBT) is a natural time unit, here).
This quantity is defined by

sr ¼
1

2Dq

ddx2ðtÞ
dt

(A1)

where 2Dq is the maximal possible slope attained for the ideal
particle at infinite times.

sr rapidly increases from zero to a maximal value slightly
below one. The maximum marks an inflection point, beyond
which the slope of the quasi-ideal particle slowly but steadily
decreases. The inflection points are approximately at 5, 7 and 9
tT, respectively, for L = 10, 20 and 40a. The corresponding
maximal relative slopes of 0.95, 0.97 and 0.98 are good approx-
imations of the ideal one. Alternatively, one might take the
average relative slope say, between the inflection point and
some upper time limits. For the duration shown in Fig. 4 (20 tT),
the average slope determined this way for the L = 10a calcula-
tion is 0.91. In doing so, one commits a systematic error of
about 10%. For the L = 40a calculation, this average slope is
0.975 with a systematic error of about 2%. Let an acceptable
upper limit for this error to be of order 10%. Then the initial
time interval must not exceed B20 tT for the L = 10a calculation
and B80 tT for L = 40a. The inspection of Fig. 1 suggests an
initial time interval of about this length to be considered for the
determination of the average slope from the L = 40a line.
Indeed, the slope may even be determined graphically, with
an error of 10%, in the full initial interval [ 0, 100 tT], as the
initial, fast increase of the slope due to the quadratic increase

of the MSD can be neglected in the low resolution of the figure.
At t = 100 tT, the square root of the MSD is dx E 0.4a, which is
comparable with the thermal de Broglie wave length of CO at
190 K, lth E 0.1a.

B. Convergence tests for the MSD of
CO/Cu(100)

Fig. 5 shows the MSD in a super-cell of length L = 80 � a for
different basis sizes. At this super-cell length, the critical time
for the onset of boundary effects in the case of the free particle
under similar conditions is 200 tT. One might expect that this
critical time is similar for the particle moving under the
influence of an external potential, so that for the duration of
the evolution shown in this figure boundary conditions should
not severely affect the dynamics.

The evolution is not perfectly converged in this figure. For
instance, the relative difference between the black (100) and red
(125 functions per elementary cell) lines at t E 180 tT is about
20%. For the remainder of this study, we fix the basis size to 100
functions per elementary cell and estimate the maximal relative
error due to the lack of basis size convergence to be of the order
of 20%.

We next discuss the convergence of the MSD with respect to
the size of the super-cell. Fig. 6 shows the MSD for different
super-cell lengths L = N � a and 100 functions per elementary
cell. Again, the evolution is not perfectly converged in the first
250 tT of the evolution. Very clearly, however, a super-cell with
N = 20 readily drops off after 100 tT. Similarly to the free moving
particle case, this drop off is understood as an indicator for the
onset of boundary effects, which visibly takes place later than
that for the free particle (B40 tT). The N = 80 (black) and N =
120 (green) lines in this figure match well, while the N = 100
line (red line) clearly deviates from both. In the remainder of
this study, a super-cell containing 80 elementary cells will be
considered. From the relative difference between the black and

Fig. 4 Details of Fig. 1, see the caption of that figure for the definition of
line labels. The lines drawn in red are relative slopes (ordinate on the right
hand side), according to eqn (A1). In all cases, for t t tT, dx

2(t) B t2.

Fig. 5 dx
2(t) as in Fig. 3. The color codes relate to different numbers of

basis functions: blue to 75, black to 100 and red to 125 functions per
elementary cell. The average over 800 sets of random phases. The
statistical error from the ensemble average is maximal 6% toward t B
250 tT. The super-cell of length L = 80 � a, where a = 255.6 pm is the
crystal lattice constant. tT E 40 fs, as in Fig. 1.
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red lines in Fig. 6 at t E 180 tT, a maximal error related to
boundary effects of about 15% is estimated.

C Harmonic oscillator

For a harmonic oscillator with a mass m and a harmonic
frequency o, En = h�on (n = 0,1,2,. . .), and the position matrix
elements become

xnj ¼
ffiffiffiffiffiffiffiffiffiffi

�h

2mo

r
�

ffiffiffiffiffiffiffiffiffiffi
j þ 1
p

j ¼ n� 1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

n ¼ j � 1

0 else

8>>><
>>>:

(C1)

Insertion into eqn (6) yields

dx2ðtÞ ¼
4

Q2

�h

2mo

X1
n¼0

e�b�hoð2nþ1Þðnþ 1Þ sin2 ot
2

h i 

þ
X1
j¼0

e�b�hoð2jþ1Þð j þ 1Þ sin2 ot
2

h i!

¼ 4

Q2

�h

mo
sin2

ot
2

h i X1
n¼0

e�b�hoð2nþ1Þðnþ 1Þ
 !

¼ 4

Q2

�h

mo
sin2

ot
2

h i
eb�ho

X1
n¼0
ðnþ 1Þe�b�ho2ðnþ1Þ

 !

¼ 4

Q2

�h

mo
sin2

ot
2

h i
eb�ho

X1
n¼0

ne�b�ho2n

 !

(C2)

But

X1
n¼0

ne�an ¼ � d

da

X1
n¼0

e�an ¼ ea

ea � 1ð Þ2
(C3)

Q ¼
X1
n¼0

e�b�hon ¼ eb�ho

eb�ho � 1
(C4)

so that

dx2ðtÞ ¼
4�h

mo
eb�ho

eb�ho þ 1ð Þ2
sin2

ot
2

h i
(C5)
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Chem. Chem. Phys., 2021, 23, 7653–7672.
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34 D. K. Wójcik and J. R. Dorfman, Phys. Rev. Lett., 2003,

90, 230602.
35 S. W. Rick, D. L. Lynch and J. D. Doll, J. Chem. Phys., 1993,

99, 8183–8193.
36 A. Calhoun, M. Pavese and G. A. Voth, Chem. Phys. Lett.,

1996, 262, 415–420.
37 T. F. Miller and D. E. Manolopoulos, J. Chem. Phys., 2005,

123, 154504.
38 Y. V. Suleimanov, J. Phys. Chem. C, 2012, 116, 11141–11153.
39 T. R. Mattsson, U. Engberg and G. Wahnström, Phys. Rev.

Lett., 1993, 71, 2615–2618.
40 L. Y. Chen and S. C. Ying, Phys. Rev. Lett., 1994, 73, 700–703.
41 W. Fang, J. O. Richardson, J. Chen, X.-Z. Li and

A. Michaelides, Phys. Rev. Lett., 2017, 119, 126001.
42 K. Haug and H. Metiu, J. Chem. Phys., 1991, 94, 3251–3267.
43 P. Saalfrank and W. H. Miller, Surf. Sci., 1994, 303, 206–230.
44 D. H. Zhang, J. C. Light and S.-Y. Lee, J. Chem. Phys., 1999,

111, 5741–5753.
45 X. D. Zhu, Phys. Rev. B: Condens. Matter Mater. Phys., 1994,

50, 11279–11282.
46 J. Kua, L. J. Lauhon, W. Ho and W. A. Goddard, J. Chem.

Phys., 2001, 115, 5620–5624.
47 P. G. Sundell and G. Wahnström, Phys. Rev. B: Condens.

Matter Mater. Phys., 2004, 70, 081403.
48 I. Rips and E. Pollak, Phys. Rev. A, 1990, 41, 5366–5382.
49 R. Ianconescu and E. Pollak, J. Chem. Phys., 2019, 151, 024703.
50 T. R. Mattsson, G. Wahnström, L. Bengtsson and B. Hammer,

Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 56, 2258–2266.

51 A. B. Nassar and S. Miret-Artés, Phys. Rev. Lett., 2013,
111, 150401.

52 S. V. Mousavi and S. Miret-Artés, Eur. Phys. J. Plus, 2019,
134, 311.

53 X. Zhong and Y. Zhao, J. Chem. Phys., 2013, 138, 014111.
54 Z.-W. Bai, J.-D. Bao and Y.-L. Song, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2005, 72, 061105.
55 S. S. Sinha, D. Mondal, B. C. Bag and D. S. Ray, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2010, 82, 051125.
56 D. Zanuttini, F. Gatti and R. Marquardt, Chem. Phys., 2018,

509, 3–12.
57 L. van Hove, Phys. Rev., 1954, 95, 249–262.
58 R. C. Tolman, The principles of statistical mechanics, Oxford

University Press, Oxford (UK), 1938.
59 M. Quack, Adv. Chem. Phys., 1982, 50, 395–473.
60 D. Gelman and R. Kosloff, Chem. Phys. Lett., 2003, 381, 129–138.
61 U. Lorenz and P. Saalfrank, J. Chem. Phys., 2014, 140, 044106.
62 H.-D. Meyer, U. Manthe and L. S. Cederbaum, Chem. Phys.

Lett., 1990, 165, 73.
63 G. A. Worth, M. H. Beck, A. Jäckle and H.-D. Meyer,
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