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Correlation between crystal structures and polar
(ferroelectric) properties of hybrids of
haloantimonates(III) and halobismuthates(III)

R. Jakubas, M. Rok, K. Mencel, G. Bator and A. Piecha-Bisiorek *

Halogenoantimonates(III) and halogenobismuthates(III) are a highly versatile class of organic–inorganic

hybrid materials, applicable in optoelectronics and switchable dielectric devices. In this review, we discuss

the rich chemistry of molecular–ionic halide complexes of Bi(III) and Sb(III) focusing on the correlations

between their crystal structures and ferroelectric properties as well as on an explanation of the molecular

mechanism of the paraelectric–ferroelectric phase transition. This review summarizes the current state of

the art in the field of ferroelectricity among organic–inorganic hybrids based on Bi(III) and Sb(III) halides,

which has become one of the key exploration areas of modern materials chemistry.

1. Introduction

Materials whose physical properties can be controlled by exter-
nal stimuli have attracted considerable interest due to their
potential applications in substrate-film interfaces,1–3 high-
strain states, electrocaloric circuits,4,5 nanotubes and nano-
wires,6 ferroelectric random access memories (FeRAMs),7

dynamic random access memory (DRAM) capacitors,8–10 elec-
tron emitters,2,8 solar cell components,11 and weak-magnetic
field sensors.12–16 Ferroelectrics are of importance in the

design of thermo-sensitive multifunctional switching materials
because they are often accompanied by multiple switchable
physical properties, e.g. piezoelectricity, pyroelectricity, dielec-
tric constant and second harmonic generation (SHG).
Ferroelectrics are polar substances in the solid state (crystal-
line or polymeric) or liquid-crystalline state (liquid crystals), in
which a spontaneous polarization (Ps) is generated and it is
reversible in an external electric field (E). The relationship
between an electric shift (D) or polarization (P) and the electric
field intensity leads to a hysteresis loop (D–E loop) between the
opposite polarities. Such an electrical bistability can be used
in non-volatile memory parts. It refers in particular to the fer-
roelectric computer memory type, FeRAM, which is crucial for
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the application of novel materials. In principle all ferroelec-
trics have a Curie temperature, Tc, connected with the phase
changes from the ferroelectric to paraelectric phase but some
of them decompose before achieving Tc. When the tempera-
ture approaches Tc, the dielectric constant fulfilling the Curie–
Weiss law undergoes an abnormal increase; this is a quantity,
which can be used in capacitors. Pyroelectricity is another
important quantity. The change of the Ps with temperature,
when the crystal is being heated or cooled down, generates
electric current. The pyroelectric effect is particularly enhanced
just below the Tc temperature and is used in temperature
sensors and in detecting infrared radiation. With regard to fer-
roelectrics, they comprise, for instance, coupled electrical and
mechanical phenomena. The stress generates electric polariz-
ation charge known as the piezoelectric effect, and the electric
field generates stress (electrostatics). Large piezoelectric and
electrostriction effects are used in various types of devices, e.g.
piezoelectric elements and microsensors. In addition, polar
structures are the source of second order optical nonlinearity,
which affects SHG and the linear electro-optical effect (Pockels
Effect).

A considerable effort has been made so far to understand
the switchable molecular dynamics of polar organic cations

confined in various polymeric coordination hosts. However, due
to the lack of in-depth knowledge on the relationship between
the phase transition (PT) and crystal structure, a rational design
of molecular ferroelectrics still represents a great challenge,
especially of hybrid molecular–ionic ferroelectrics based on
polar organic cations embedded in inorganic networks. The
general symmetry consideration of almost all physical phenom-
ena is a very effective way for obtaining their description.
Ferroelectricity is no exception. From this point of view, there
are 230 space groups and 32 point groups, which describe both
the macro- and microscopic symmetries of crystal structures.
Among the 32 point groups, 11 belong to the centrosymmetric
classes, while the remaining 21 are noncentrosymmetric.17 One
should note, that the lack of spatial-inversion symmetry
observed in the noncentrosymmetric group of crystals is most
sought for in applications. It is important for the ferroelectric
phase to adopt one of the 10 polar point groups, from which 68
polar space groups are formed (see Table 1).

The most important functionalities that make ferroelectrics
so useful are the high values of the real part of complex dielec-
tric permittivity, ε*, spontaneous polarization, Ps, good
mechanical and thermal resistance and small dielectric
losses.18,19 This set of traits determines the transition from the
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Table 1 68 ferroelectric space groups belonging to the 10 polar point groups17

Crystal system
Polar point
group Space group

Triclinic 1 P1
Monoclinic 2 m P2, P21, C2 Pm, Pc, Cm, Cc
Orthorhombic mm2 Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2, Cmm2, Cmc21,

Ccc2, Amm2, Abm2, Ama2, Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2
Tetragonal 4 4mm P4, P41, P42, P43, I4, I41 P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc,

I4mm, I4cm, I41md, I41cd
Trigonal 3 3m P3, P31, P32, R3, P3m1, P31m, P31c, P3c1, R3m, R3c
Hexagonal 6 6mm P6, P61, P65, P62, P64, P63 P6mm, P6cc, P63cm, P63mc
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paraelectric phase (which is usually high-temperature, high
symmetry state) to the ferroelectric one (low-temperature, low-
symmetry state) in the close vicinity of the Curie temperature
(Tc). The paraelectric–ferroelectric PT is related to the sym-
metry change (e.g. some symmetry elements of the paraelectric
phase are lost, when the ferroelectric phase is reached), and
leads to the structurally modified (ordered) ferroelectric phase.
This structural transformation (described often as symmetry-
breaking), is reflected in the macroscopic properties of the
material, e.g. the appearance of Ps in the ferroelectric phases.

One of the classes of molecular–ionic materials are
organic–inorganic hybrid ferroelectrics which are currently of
particular interest, due to the designable and modifiable
characteristics of their organic and inorganic components, for
exploring ferroelectric-based multifunctional materials such as
multiferroics, semiconductors and photovoltaic materials.20–23

Of note, the symmetry, size, and value of the dipole moment
and finally, the reorientations of the organic cations play an
important role in triggering the structural PT. Therefore,
control of the ‘order–disorder’ motion of the organic counter-
ions in a molecular crystal is a key issue for the design of
hybrid molecular–ionic ferroelectrics.

Haloantimonates(III) and halobismuthates(III), which are
the subject of the present review, defined by the general
formula RaMbX3b+a, (where R – organic cations, M = Sb(III) or
Bi(III) and X = Cl, Br, I) create one of the well-recognizable
groups of ferroic compounds, essential mainly from an appli-
cation point of view as they combine many desirable features,
e.g. facile synthesis and processing, and cost-effectiveness with
promising electrical and optical properties.24–29 A character-
istic feature of the compounds under consideration is that
they possess the lone electron pair (5s2 (Sb) and 6s2 (Bi)).
However, its presence, which has a moderate impact on the
structural properties of these salts, seems to have a tremen-
dous effect on the physical properties of crystals. The lone elec-
tron pair deforms very easily a spherical symmetry of the
orbital, on which they are located. This leads to an increase in
the length of the M–X bonds, and thus to a considerable defor-
mation of the MX6 octahedra.

The polyanionic structure of the lattice is determined by the
size of the organic cation, its symmetry and ability to create
hydrogen bonds of the N–H⋯X type; the size of the halogen
atom, which jointly creates the lattice is also of crucial impor-
tance. The alkylammonium cations belong to a wide variety of
organic cations, which crystallize with various anionic sub-
layers. They are characterized by the different chain lengths,
from methyl- to butyl-ammonium, and they may form five- or
six-membered rings in the aromatic cations (e.g. imidazolium,
pyridinium and its substituted derivatives) as well as saturated
heterocyclic amines (e.g. pyrrolidine) (Fig. 1).

An analysis of these compounds has revealed a richness of
the cationic unit movements. The motions depend on three
basic factors such as: (i) the symmetry of the cation; (ii) the value
of the dipole moments of the cation; (iii) the structure of the
anionic network surrounding the cation. The reorientation ability
of the dipolar units occupying vacancies inside the anionic sub-
layers is determined mainly by the symmetry and size of these
spatial vacancies (a reorientational disorder), while the dynamic
properties of the anionic networks are limited primarily by the
formation of polymeric structures. In the organic part, the
dynamic properties change significantly when the temperature is
being lowered since the cation mobility decreases. This process is
accompanied by a significant distortion of the anionic lattice. It
must be mentioned that one of the most significant features of
this lattice is its flexibility and, at the same time, its facility of
adaptability of symmetric cations, which is related to the effect of
the electron lone pair on the Sb(III) and Bi(III) atoms. The pres-
ence of hydrogen bonds of the N–H⋯X-type in the crystal struc-
ture is significant for the lattice formation. The strength of these
bonds increases proportionally to the size of atom radius of the
corresponding halogen. A rearrangement of these bonds takes
place during the PT, which significantly affects the dynamic pro-
perties as well as the ordering of the cations.

In the present paper, we would like to focus on the ferro-
electric structures among halogenoantimonates(III) and halo-
genobismuthates(III), which can be found in the literature and
on the correlation between their crystal structures and polar
properties. For this reason, the structural analysis of the com-
pounds with the organic cations, a description of the cationic
dynamics and the deformation of the inorganic layers have
been undertaken. Moreover, macroscopic dielectric properties
are discussed in detail.

2. Structural diversity of the anionic
networks of haloantimonates(III) and
halobismuthates(III)

Haloantimonates(III) and halobismuthates(III) are characterized
by a significant diversity of the anionic networks (from zero-,
through one-, two-, and three-dimensional architectures).30–44

Taking into account the molar ratio of the amine (R) and
metal (M) (Sb(III)/Bi(III)) the following four basic stoichi-
ometries are observed.
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2.1. RMX4 (R : M = 1 : 1)

The anionic sublattices observed in this group may be
divided into two types: (i) polyanionic chains; (ii) isolated
units.

As for type (i) three different types of polyanionic chain
arrangements are observed:

• chains of the edge-sharing octahedra (with two terminal
and four bridging halogen atoms) (Fig. 2(a))45–54

• the [MX6]
3− octahedra linked as follows: three non-equi-

valent M atoms possess three bridging and three terminal con-
tacts, whereas the remaining one possesses only one terminal
and five bridging contacts (Fig. 2(b));55

• chains of the corner-sharing square pyramids (Fig. 2(c));56

With regard to the separated units (ii) four different assem-
blies may be recognized.

Four octahedra linked with each other in two different
ways:

• one type of central atom with three bridging and three
terminal halogens (Fig. 2(d))57

• two central atoms surrounded by three terminal and
three bridging halogens and two others coordinated by two
terminal and four bridging halogens (Fig. 2(e));58–60

• face-sharing octahedra (Fig. 2(f ));61,62

• edge-sharing two square pyramids (Fig. 2(g));63–70

2.2. R3M2X9 (R : M = 1.5 : 1)

•. infinite, one-dimensional (1D) zig-zag double chains
(pleated ribbon structures) (Fig. 3(a));71–76

•. two-dimensional (2D) layers (honey-comb like corrugated
sheets) (Fig. 3(b));72,77–89

•. discrete bioctahedra (0D) (Fig. 3(c));45,90–94

•. four octahedral units (0D) ([M4X18]
6−) (Fig. 3(d)).95–99

2.3. R2MX5 (R : M = 2 : 1)

• one-dimensional (1D) chains (cis- or trans-type) (Fig. 4(a) and
(b) respectively)100–109

• isolated [M2X10]
4− units (two edge-sharing octahedra)

(Fig. 4(c));49,110,111

Fig. 1 Molecular structure of the organic cations creating ferroelectric compounds among halobismuthates(III) and haloantimonates(III).

Review Inorganic Chemistry Frontiers
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• tetrameric polyanion with corner-sharing octahedra
(Fig. 4(d)).55,112

2.4. R5M2X11 (R : M = 2.5 : 1)

• Corner-sharing octahedra (0D) ([M2X11]
5−) (Fig. 5(a)).113–123

2.5. R3MX6 (R : M = 3 : 1)

• Isolated [MX6]
3− octahedra (Fig. 5(b)).124–133,134,135

2.6. Different modifications of the anionic substructures

The richness of the anionic structures among halobismuthates
(III) and haloantimonates(III) is related also to the more exotic
type of stoichiometry34,136 (see Fig. 6), e.g. RM2X7,

137,138

RM3X10,
139–141 R3M5X18,

99,142,143 R4M6X22,
142–144 R4M8X28

138,139

or R6M8X30.
145

3. Ferroelectricity among
haloantimonates(III) and
halobismuthates(III)

The ferroelectricity among halobismuthates(III) and haloanti-
monates(III) is limited only to four different types of chemical

Fig. 2 Structures of anionic lattices with [MX4]
− stoichiometry: (a) infinite chain with edge-sharing octahedra; (b) infinite tape of differently joined

octahedra; (c) infinite chain of square pyramids; (d) four octahedra possessing three bridging and three terminal halogens; (e) two octahedra with
three terminal and three bridging halogens and two others with two terminal and four bridging halogens; (f ) three face-sharing octahedra; (g) two
edge-sharing pyramids.

Fig. 3 Anionic structure of the [M2X9]
3− composition; (a) one-dimen-

sional double chain; (b) two-dimensional corrugated sheet; (c) two
face-sharing octahedra; (d) four edge and corner-sharing octahedra. Fig. 4 Anionic structure of the [MX5]

2− composition; (a and b) the poly-
anionic chains with corner-sharing octahedra ((a) cis- (b) trans-configur-
ation); (c) two edge-sharing octahedra; (d) a squaric structure containing
four corner-sharing octahedra.

Inorganic Chemistry Frontiers Review

This journal is © the Partner Organisations 2020 Inorg. Chem. Front., 2020, 7, 2107–2128 | 2111

Pu
bl

is
he

d 
on

 0
7 

ab
ri

l 2
02

0.
 D

ow
nl

oa
de

d 
on

 0
3/

09
/2

02
4 

02
:2

5:
53

. 
View Article Online

https://doi.org/10.1039/d0qi00265h


compositions: RMX4, R3M2X9, R2MX5 and R5M2X11. Below, the
analysis of the physical properties is presented and a corre-
lation between the crystal structure and the origin of their
polarity (ferroelectricity) is discussed. In our review we focus
on pure organic–inorganic hybrids based on Bi(III) and Sb(III)
(mixed anionic networks were not analyzed); however, due to
the discovery of the first ferroelectric among halobismuthates

(III) characterized by the mixed organic networks (R′R2″MX6) a
single exception has been made.

3.1. RMX4 type compounds

Ferroelectricity in the RMX4 type compounds is a unique
feature. Based on the literature, only two examples of ferroelec-
trics, characterized by the 1D polymeric anionic structure, are
known: (4-aminopyridinium)[SbCl4]

51–53 ((4-NH2C5H4NH)
[SbCl4], 4-APCA) and (trimethylamino-N-methyl stilbazolium)
[Bi2Cl8]

54 ((C17H24N2)[Bi2Cl8], (TAMS)[Bi2Cl8]). The detailed
X-ray structure analysis indicates that in both compounds, the
ferroelectricity is related mainly to a strong deformation of the
[MX4]�1 type of substructure (see Fig. 2(a) and Table 2).

The crystal structure of 4-APCA is built up of the polyanio-
nic chains of [SbCl4

−]∞ forming a tunnel-like structure and
disordered 4-aminopyridinium cations connected via weak
hydrogen bonds. Phase situation is complex and characterized
by rich polymorphism in the solid state (see Scheme 1). The ac
calorimetry studies have shown that the high temperature PT
at 304 K is of the ‘order – disorder’ type and leads to a incom-

Fig. 6 Atypical anionic structures among haloantimonates(III) and halobismuthates(III). ((a and b) labels correspond to the different organization of
the inorganic structures) RM2X7 polyanionic 1D chains; R4M6X22 0D units; RM3X10 infinite (1D) polyoctahedral chains; R4M8X28, R3M5X18, R6M8X30 iso-
lated (0D) units.137–145

Fig. 5 (a) Structure of the isolated [M2X11]
5− anions; (b) isolated [MX6]

3−

octahedra.

Table 2 Phase diagram of RMX4 stoichiometry

Ref.

51–53

54

1st-first order PT, 2nd-second order PT ferroelectric phase paraelectric phase
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mensurate modulated phase (II). At 270.5 K (II → III) a ‘lock-
in’ transition to a commensurate modulated phase is
observed, which, in turn, becomes a ferroelectric one. The
anomaly at 248 K leads to the next polar, but modulated
incommensurate phase, while below 240 K the crystal becomes
nonpolar again. The ferroelectric transformation at 270.5 K is
characterized by a ‘displacive’ type of mechanism related to
the displacement of the organic cations in relation to the
anionic chains. Dielectric dispersion measurements carried
out in the radio-frequency region around Tc (270.5 K) revealed
a critical slowing-down assigned mainly to the domain-like
wall motion of the incommensurate phase (Fig. 7(a)). The
relaxation process was found to be nearly monodispersive,
which is rare among incommensurate ferroelectrics.146 The
polar properties of 4-APCA were confirmed by the switchable
Ps of about 0.35 μC cm−2 at 265 K. One should note that
among halogenobismuthates(III) and halogenoantimonates(III),
4-APCA was the first example of a ferroelectric compound
characterized by the molecular mechanism of a ‘displacive’-
type assigned to the ferroelectric PT.

With regard to (TAMS)[Bi2Cl8], it belongs to room tempera-
ture (RT) ferroelectrics, but the Curie temperature was not
achieved on heating due to the earlier decomposition of the
compound. (TAMS)[Bi2Cl8] crystallizes in an acentric ortho-
rhombic space group (Pna21) and consists of a framework of
infinitive [Bi2Cl8]2�1 inorganic chains, separated by [TAMS]2+

cations. The non-centrosymmetric crystal structure and polar
alignment of the organic species contribute to the Ps value,
which is of the order of 0.08 μC cm−2 at 453 K.

The dielectric measurements confirm the lack of PT in a
wide temperature range and indicate the existence of the

dielectric relation process (Fig. 7(b)). The expected effect of the
slowing down of the macroscopic relaxation time, related to
the dynamics of the ferroelectric domains, is not observed
when approaching the para-ferroelectric transition, which
might be connected to the huge contribution of the electric
conductivity to the dielectric response. It should be noted that
the estimated relaxation time for the relaxation process in
(TAMS)[Bi2Cl8] becomes shorter on heating, which is a quite
opposite effect in comparison with that observed in the other
ferroelectrics. This is characteristic of the systems with dipolar
group reorientations without any long-range dipole–dipole
interactions. The activation energy of the relaxation process
calculated from the Arrhenius relationship, Ea, equals to
280 kJ mol−1 and may be a result of some dipole cooperative
motions or steric hindrance originating from the huge organic
molecule as for the single dipole motion.54

3.2. R3M2X9 type compounds

Within the chemical stoichiometry R3M2X9 the ferroelectricity
is limited to two types of anionic sublayers among four poss-
ible ones (Fig. 3); 2D (two-dimensional layers) (Fig. 3(b)) and
0D-discrete bioctahedral units (Fig. 3(c)). The 2D structure is
usually characteristic of the chloride and bromide ferroelec-
trics containing only small alkylammonium moieties (methyl-,
dimethyl and trimethyl-ammonium) or non-substituted rings
(e.g. pyrrolidinium cation) (Table 3). The bulky organic cations
due to the steric effects cannot occupy small vacancies within
the layers. On the other hand all known iodide ferroelectrics
possess the 0D anionic network (Table 4) thus the restriction
with respect to the size and symmetry of the organic moieties
is not so obvious.

Scheme 1 Phase diagram of 4-APCA.51–53

Fig. 7 Temperature dependence of the real part of the complex dielectric permittivity for: (a) 4-APCA;51 (b) (TAMS)[Bi2Cl8].
54
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The characteristic feature of the paraelectric phase in 2D
R3M2X9 ferroelectrics is the presence of two crystallographi-
cally independent alkylammonium cations in the crystal struc-
ture (N(1) and N(2)). The cation N(1) is located in voids inside
the polyanionic layers, whereas the N(2) one between the layers
(Fig. 8). All cations are connected to the anionic sublattice by
N–H⋯X hydrogen bonds. Both types of cations are highly dis-
ordered in the paraelectric phase.

The disorder of N(1) is usually described by a two-site
model with an occupancy factor of the N(1) atom, equal to 0.5.

The other cation N(2) is also split between two positions, N(21)
and N(22), however, with different occupancy factors, which
change with temperature. Since the N(2) cation is in the
general position of the crystal structure, this change does not
lead to any changes in the lattice symmetry in contrast to the
N(1) cation dynamics. The paraelectric–ferroelectric transitions
lead to the distortion of the anionic network, which results in
the loss of the symmetry center. Thus the N(1) cations now
occupy a single position in a ferroelectric domain and their
long-range order is responsible for an appearance of Ps. In the

Table 3 Phase diagram of R3M2X9 with a 2D anionic architecture

Ref.

82, 84 and 85

81

86 and 87

83 and 88

72, 78, 79, 83 and 89

80

1st-first order PT, 2nd-second order PT ferroelectric phase paraelectric phase

Table 4 Phase diagram of R3M2X9 with a 0D anionic architecture

Ref.

147 and 148

149 and 150

149

151

152

153

1st-first order PT, 2nd-second order PT ferroelectric phase paraelectric phase
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case of the 2D ferroelectrics the polar direction is maintained
within the corrugated layer structure. This means that the
layers enhanced the polarizability of the system, which is
coupled with the dynamics of the N(1) type cations.

An enhanced value of the electric permittivity close to Tc is
observed for the 2D ferroelectrics, because easily polarizable
anionic layers favor the long-range order of the dipole–dipole
interactions (Fig. 9).

In spite of the structural similarities of the 2D type ferro-
electrics their dielectric responses, character of PTs and phase
situations are quite diverse. The dielectric response of the
majority of the 2D analogs shows a critical slowing down of
the macroscopic relaxation time, which indicates an ‘order–
disorder’ mechanism of ferroelectric transition (Fig. 9(a)). In
turn in the case of MABB the dielectric response (ε(T )) is
characteristic of ‘improper’ ferroelectrics (1st – order PT)

Fig. 8 Comparison of the crystal structures of DMACA in the paraelectric and ferroelectric phases (ref.88).

Fig. 9 Temperature dependence of the real part of the dielectric permittivity (ε’) for (a) ((CH3)2NH2)3[Sb2Cl9] (DMACA)131 (b) (CH3NH3)3[Bi2Br9]
(MABB);84,85 (c) ((CH3)3NH)3[Sb2Cl9] (TMACA);131 around Tc.
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(Fig. 9(b)), while for the TMACA the dielectric results indicate
the existence of a narrow-range intermediate metastable phase
(incommensurate) between the ferroelectric and paraelectric
phases (Fig. 9(c)).

The only parameter that correlates well with the tempera-
ture scope of the ferroelectric phases is the cation size (Tables
3 and 4). It is clearly seen that an increase of the cations size
leads to the shift of the Curie point towards high tempera-
tures. The large cations usually have less freedom of move-
ment in the anion layer (N(1)-type) gaps, which is why they are
easier to freeze at higher temperatures in cooling cycles in
comparison with the ferroelectrics with the small cations.

Haloantimonates(III) and halobismuthates(III), characterized
by the 2D anionic structure, usually possess a smaller value of
Ps in contrast to that for the 0D analogs, in spite of the fact
that the organic cations of the presented crystals have a larger
value of dipole moments, μ. Nevertheless it should be noted
that in the formamidinium analogs the cations possess a quite
small value of μ = 0.23 D and the dielectric anomalies are
rather intermediate. It seems that the relationship between
structural parameters of the crystals and the macroscopic pro-

perties (Ps and εmax) is rather complex and its recognition
requires further studies on R3M2X9-type compounds. It is
interesting that most 0D ferroelectrics possess polar properties
above room temperature, except for (NH2CHNH2)3[Bi2I9]

151

and (NH2CHNH2)3[Sb2I9].
152 The paraelectric phase exhibits

usually high symmetry (trigonal or hexagonal), which proves a
high dynamic disorder of the cationic networks. Generally, the
mechanism of ferroelectric phase transitions for the 0D com-
pounds is quite complex because the ‘order–disorder’ and ‘dis-
placive’ contributions are possible.

3.3. R2MX5 type compounds

A Cambridge Structural Database survey (version 5.40 March
2019) permits us to predict the probability of the appearance
of acentric/ferroelectric compounds within R2MX5-type stoi-
chiometry. 192 entries, adopting either polymeric (1D) or iso-
lated (0D) anionic substructures, have been found.

The results presented in Tables 5 and 6 confirm that the
ferroelectricity in the R2MX5-type compounds is adopted in
the 1D anionic network. The ferroelectricity does not depend
on the symmetry and size of the organic cations (heteroaro-

Table 5 Phase diagram of R2MX5 or RMX5 stoichiometry

Ref.

107

154

155

156

100

157

102

158

159

160

1st-first order PT, 2nd-second order PT ferroelectric phase paraelectric phase
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matic, heterocyclic aliphatic) but is strongly affected by the
dipole moment values.

A characteristic feature of this subclass is the construction
of the anionic lattice, which is created by 1D infinite chains of
different configurations (cis- or trans-mode), however, the cis-
conformation (and its modifications) is very common in the
analyzed subgroup. Generally, one can state that the distortion
of the anionic chains through the PT is a driving force, which
contributes mainly to the Ps value. This effect is coupled with
the dynamics of the polar organic cations, which are usually
disordered in the paraelectric phase to varying degrees.
Distortion of the anionic substructure is treated as a ‘displa-
cive’ contribution to the molecular mechanism of the ferro-
electric transition, whereas a change in the dynamics of the
organic moieties is an ‘order–disorder’ contribution (Fig. 10).

The molecular mechanism of the paraelectric-ferroelectric
transformation varies from ‘displacive’ through mixed up to
purely ‘order–disorder’, however, which of these mechanisms
is dominant depends strongly on the subtle differences in the
development of the polyanionic chains. In the case of the ‘dis-
placive’ R2MX5 subclass we should take into account the ns2

electron lone pair effect (5s2-Sb and 6s2-Bi), which seems to
play a key role in the distortion of the MX6 octahedron. The
derivatives, characterized by trans-connected octahedra con-
taining bulky organic methylviologen MV+ amine: (MV)
[BiBr5],

157 (MV)[BiI3Cl2], are an example of such a distorted
structure.107 The MV2+ cations have stabilized unprecedented
regular [BiBr5

2−]∞ chains of trans-connected octahedra.
Through PT, the trans Bi–Br bonds differentiate markedly

and the result is the chain polarity. Moreover, the electronic
lone pair is stereochemically activated below 243 K leading to
an acentric polar phase. The mixed-halide analog, (MV)
[BiI3Cl2], reaches one of the highest room-temperature Ps
values (>15 μC cm−2 at 298 K) in the field of organic–inorganic
hybrid ferroelectrics. It should be added that trans-connected
isomers are much rarer than cis-connected ones. It is difficult
to indicate a different correlation between the crystal structure
and dynamics and the scope of polar phases in this group of
compounds.

Compared to R3M2X9 connections, the organic cations in
R2MX5 show less freedom of movement in the paraelectric
phases (usually a two-site model) thus the compounds adopt

Table 6 The results of CSD analysis

Anionic substructure All compounds Piezoelectric Ferroelectric

Isolated pyramids [MX5]
2− 35 8 0

Isolated bioctahedra [M4X10]
4− 81 2 0

Isolated tetrameric forms [M4X20]
8− 4 1 0

Infinite chains [MX5]∞ 72 30 9
Summary 192 41 9

Fig. 10 Comparison of the crystal structures of (NH2(CH2)3NHCH3)[BiCl5]
155 in the paraelectric and ferroelectric phases.
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lower symmetry (mainly orthorhombic). Thus most of the para-
electric-ferroelectric transitions in the R2MX5-subclass is
described by the mmmFmm2 Aizu relationship (non ferroelastic
transitions), in turn methylviologen analogs characterized by
trans-connected-modes of the anionic chains exhibit also non-
ferroelastic transition between monoclinic phases described
by 2/mFm or 2/mF2 species (Fig. 11).

As it is presented (Table 5) for the hybrids based on very
similar organic cations (N-methyl-1,3-diaminopropane) and (N,
N-dimethyl-1,3-diaminopropane) the differences in the Tc
values (existence of polar phases) reach about 230 K (376 and
143 K, respectively), however, the values of Ps are comparable
(2.38 and 1.36 μC cm−2, respectively). In turn, the organic–in-
organic compounds based on the ethylammonium cation indi-

cate similar values of Tc (190 and 160 K), while Ps differs
almost by three orders 1.4 and 5 × 10−3 μC cm−2. In con-
clusion, within R2MX5-type ferroelectrics the amount of the
deformation of the anionic chains is crucial, when it comes to
the value of Ps and a character of the dielectric response close
to Tc (Fig. 12).

3.4. R5M2X11 type compounds

Complexes of R5M2X11 stoichiometry are unique in crystalo-
chemistry of haloantimonates(III) and halobismuthates(III).
Currently, scientific literature gives only seven examples of the
compounds marked by this type of chemical composition and
all of them exhibit ferroelectric properties (see Table 7). A
typical trait of the compounds in question is the presence of

Fig. 11 Comparison of the crystal structures of (C12H14N2)[BiBr5]
157 in the paraelectric and ferroelectric phases.

Fig. 12 Temperature dependence of the real part of the complex dielectric permittivity for: (a) (C3H5N2)2[SbCl5];
158 (b) (C12H14N2)[BiBr5].

157
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discrete bioctahedral units, [M2X11]
5− in their crystal structure,

in which two octahedra are connected with each other by one
bridging halogen atom (see Fig. 13).

A cationic subnetwork consists in turn of four kinds of
nonequivalent types of organic species marked by varied
dynamic disorder. Phase situation for all R5M2X11-ferroelec-
trics is presented in Table 7.

A detailed analysis of the phase diagrams and structural
data shows that the size of the organic cation and its shape

and symmetry, have a significant influence on PTs’ sequence,
on the symmetry of each phase, on the polar properties of
compounds as well as on the temperature range of the exist-
ence of the polar (ferroelectric) phases. Thus, this group may
be divided into two subgroups: the first one created by the
hybrids based on the aliphatic cations, e.g.:
(CH3NH3)5[Bi2Br11],

116–118 (CH3NH3)5[Bi2Cl11]
119–122 and

(NH2CHNH2)5[Sb2Br11]
163 (abbreviated as aliphatic analogs)

and the second one formed by aromatic counterions:

Table 7 Phase diagram of R5M2X11

Ref.

116–118

119–122

163

113

114

123

115

1st-first order PT, 2nd-second order PT ferroelectric phase paraelectric phase

Fig. 13 Independent parts of the unit cell of [C3N2H5]5[Bi2Br11] in the paraelectric and ferroelectric phases (M = Bi(III)/Sb(III), X = Cl, Br, I).113,114
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(C3H5N2)5[Bi2Cl11],
113 (C3H5N2)5[Bi2Br11],

114 (C3H5N2)5[Sb2Br11]
123

(R = imidazolium) and (C5H5NH2)5[Bi2Br11]
115 (R = pyridinium)

denoted as an aromatic subgroup.
Consequently, an analysis of phase symmetry indicates that

the symmetry of the paraelectric phases of the aliphatic
analogs is higher (orthorhombic symmetry) than that of the
three remaining salts containing aromatic organic cations
(monoclinic). The temperature range of the existence of ferro-
electric phases in the aliphatic compounds stays within room
temperature (except of the formamidinium analog), while in
the aromatic compounds it is shifted by almost 150–180 K
towards the low temperatures. Despite obvious structural
differences between these two subgroups (aliphatic/aromatic),
the following elements are common for the compounds of the
R5M2X11 type:

• PTs are continuous in nature;
• PTs are classified as an ‘order–disorder’ type;
• Close to Tc, a critical slowing down of the macroscopic

relaxation time is observed;
• Molecular mechanism of the ferroelectric PT is domi-

nated by the dynamics of the organic cations.
In the paraelectric phase, two out of five cations, being in a

general position, are ordered, while the remaining three,
(located at special positions) reveal an orientational disorder
(two-site model, 180° reorientation). In the ferroelectric phase,
all cations are ordered, however, the key input to Ps is given
only by three out of five organic cations.

Another element that distinguishes the analyzed materials
is the long-range dipole–dipole interaction. It determines both
the values of Ps and the electric permittivity close to Tc.
Methylammonium ferroelectrics mark themselves out by the
higher values of Ps in the range of 2 – 3 μC cm−2 and εmax 1 – 2
×104, than those for the aromatic analogs. The value of Ps for
the latter compounds is by almost one order, and for ε′ almost
by 1.5 order, lower than that for the former ones. This means
that the long-range dipole–dipole interactions in the aliphatic
ferroelectrics are much stronger than those in the aromatic

ones. This in turn has an impact on the values of the PT temp-
eratures. The stronger the dipole–dipole interaction the higher
the values of Tc (Fig. 14).

The other property, which deserves to be compared, is the
dynamic property of ferroelectrics, analyzed using the dielec-
tric relaxation data. All R5M2X11 ferroelectrics indicate the criti-
cal slowing down of the macroscopic relaxation time around
Tc, a phenomenon typical only of the ferroelectrics with an
‘order–disorder’ mechanism of PT. What matters for these
crystals is a difference in the values of the macroscopic dielec-
tric relaxation time. The dielectric dispersion in a case of the
aromatic analogs is limited to the kilohertz frequencies (102–
104 Hz), while in the aliphatic ones it is shifted to the micro-
wave range (10–8–10–10 Hz). One of the reasons for such a
difference may be the size of the inertia moments of the
organic dipoles as well as the way, in which the cations are
bound through the hydrogen bound networks. The imidazo-
lium cations have much higher inertia moments than methyl-
ammonium and formamidinium.

The most mysterious phenomenon in the R5M2X11 ferro-
electric group is the molecular mechanism of PT. In this
regard, two possible contributions must be taken into account:

(i) ‘order–disorder’
(ii) ‘displacive’
The first contribution (i) is related to the dynamics of the

organic cations, i.e. orientational disorder. The typical feature
of the ferroelectrics with a continuous PT is the critical
slowing down of the macroscopic relaxation time and a signifi-
cant entropy effect (ΔS > R ln 2) indicating the mechanism of
type (i).

The other contribution, of the ‘displacive’ type (ii), is not
proved by experimental methods; however, based on the struc-
tural data, there are reasons to believe that the distortion of
the discrete bioctahedral units is likely to appear and, there-
fore, should be taken into account. This effect is well visible
among the aliphatic ferroelectrics but it is marginal in aro-
matic ones. The distortion of the bioctahedra units causes a

Fig. 14 Temperature dependence of the real part of the dielectric permittivity (ε’) for (a) (CH3NH3)5[Bi2Br11]
116–118 (MAPBB); (b) (C3H5N2)5[Bi2Br11];

114

(c) (C5H5NH)5[Bi2Br11]
115 around Tc.
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change in the negative charge distribution in the crystal struc-
tures, related to the halogen atoms; this subsequently leads to
a change of the Ps values. There is one more factor necessary
to analyze, namely, the electron lone pair effect. This effect
should be attributed to the presence of the 6s2 electrons of Bi
(III) atom, which is less polarizable than 5s2 electrons of Sb(III)
atoms. All that leads to the conclusion that the anionic sublat-
tice plays an important role in the generation of ferroelectricity
in the R5M2X11-type hybrids. Flexibility of the bioctahedral
units (corner-sharing octahedra) may be a decisive parameter
in the origin of spontaneous polarization.

3.5. R3MX6 type compounds and their modification (e.g. R′
R″2 MX6)

Recently a first halobismuthate(III) compound characterized by
mixed organic networks has been reported by Wang et al.161

The cationic substructure consists of two different molecules:
one methylammonium (R′) and two benzylammonium (R″)
ones as well as by an isolated octahedral unit [BiBr6]

3−.
[(CH3)2NH2][C6H5CH2NH2]2BiBr6 appears to be a RT multiaxial
ferroelectric with Ps = 1.0 µC cm−2. The symmetry-breaking
paraelectric–ferroelectric transformation is regarded in the Aizu
notation as 3̄mFm at 386 K. The molecular mechanism of the
ferroelectric PT is assigned to the change in dynamics of the
organic cations thus the transition is classified as an ‘order–dis-
order’ type. The discovery of a new type of connection of halo-
bismuthates(III) with a mixed anionic substructure creates a new
path to design molecular multiaxial ferroelectrics.

Although R3MX6-type compounds seem to be the ‘poorest’
with regard to their ferroelectricity, an interesting phenom-
enon, related to the imidazolium based hybrid, has been
detected. The most spectacular result was the preparation of a
new crystalline ferroelectric material ((C3H5N2)5[Sb2Br11])
using an in situ solid-state chemical reaction, where the start-
ing substrate was (C3H5N2)3[SbBr6]·H2O.

162

4. Conclusions

In this review we present the attempts to find a correlation
between crystal structures and polar/ferroelectric properties of
haloantimonates(III) and halobismuthates(III). The materials
under consideration are characterized by a rich diversity of the
anionic sublattice (more than 40 types), nevertheless, the ferro-
electric properties are limited only to four specific compo-
sitions: RMX4, R3M2X9, R2MX5, R5M2X11. Of importance is that
within the mentioned stoichiometry, the anionic network
dimensions are also changed. One should note that so far
already 31 ferroelectrics have been synthesized and fully
characterized from the above mentioned family, which put
them on one line with a well-known family of perovskite-type
ferroelectric crystals (ABX3, A2BX4).

164–167

The RMX4-type ferroelectrics (2 examples) indicate a 1D
anionic structure, while the PTs are classified as a ‘displacive’
one. In the case of R3M2X9 hybrids the ferroelectric ordering is
observed only in the 0D (face-sharing bioctahedral species)

and 2D inorganic lattice (corrugated layer structure and small
organic cations). The molecular mechanism of the paraelec-
tric–ferroelectric PTs for the 2D ferroelectrics is of the ‘order–
disorder’ type. In turn for the 0D compounds the mechanism
is quite complex because the ‘order–disorder’ and ‘displacive’
contributions are possible. Moreover, in the case of the
R3M2X9 complexes of the 2D-type the ferroelastic structure in
both paraelectric and ferroelectric phases is observed (possible
biferroics), however, the coupling between the corresponding
order parameters, polarization and deformation, is very weak.

With regard to R2MX5 complexes, the ferroelectricity is con-
ditioned by the presence of the 1D anionic structures with
different modifications and the majority of PTs is of the ‘dis-
placive’-type with a minor ‘order–disorder’ contribution.

The R5M2X11 hybrids are the most attractive from the view-
point of polar properties. In this subclass, the inorganic part is
created by the discrete anionic structures of the corner-sharing
octahedra (0D-type). All of the R5M2X11 crystals reveal ferroelec-
tric properties. The molecular mechanism of the paraelectric–
ferroelectric PT is not well recognized yet, however, the ‘order–
disorder’ contribution, related to the dynamics of the organic
cations, seems to play a key role. On the other hand the strong
distortion of the anionic units as a result of the electron lone-
pair effect (5s2 (Sb) and 6s2 (Bi)) influences additionally the
total polarization of the material. Of great importance is that ali-
phatic analogs, e.g. (CH3NH3)5[Bi2Cl11], (CH3NH3)5[Bi2Br11] and
(NH2CHNH2)5[Sb2Br11] indicate dielectric properties similar to
the well-known TGS (triglicyne sulphate) family and thus make
them the most promising materials for applications.

It appears that not all stoichiometries have been analysed
in terms of possible ferroelectric properties and R′R″BiBr6 is
the best example. It should be also added that the complexes
of iodobismuthates(III), both with the organic cations (e.g.
methylammonium) and with the monovalent metals (mixed
cationic sublattice), are the most advantageous in the case of
absorbing materials in solar cells. We anticipate that the
broadening group of molecular–ionic ferroelectrics will help to
develop rational structure–property relationships, leading to
materials with precisely tunable characteristics.
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