Issue 25, 2024

Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications

Abstract

Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.

Graphical abstract: Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
20 abr 2024
Accepted
27 mai 2024
First published
05 jun 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 17946-17988

Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications

A. L. Gama Cavalcante, D. N. Dari, F. Izaias da Silva Aires, E. Carlos de Castro, K. Moreira dos Santos and J. C. Sousa dos Santos, RSC Adv., 2024, 14, 17946 DOI: 10.1039/D4RA02939A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements