Energy harnessing and storage from surface switching with a ferroelectric electrolyte†
Abstract
In the quest for innovative energy solutions suitable for mobile, stationary and digital applications, ferroelectric topological insulators (FETIs)1 emerge as promising candidates. These materials combine topologically protected states with spontaneous and switchable polarization. This study reveals emergent phenomena in FETI-electrolytes through experiments and simulations, specifically in the A3–2xBaxClO family (where A = Li, Na or K, and x = 0 or 0.005). Here, it is shown that surface oscillations of the potential (V), temperature, and mass may synchronize with the bulk's oscillations, and be harnessed and stored in the form of electrical energy either in a sole FETI or in a battery-type cell presenting a panoply of applications from wireless batteries to transistors, memories, sensors, and selective catalysts.
- This article is part of the themed collection: 2024 Pioneering Investigators