A critical review on emerging photocatalysts for syngas generation via CO2 reduction under aqueous media: a sustainable paradigm
Abstract
In a holistic view, global energy generally depends on burning fossil fuels that intensifies the worldwide energy crisis and the levels of CO2 in the atmosphere. Undesirable CO2 levels in the atmosphere are a major concern for alleviating global warming in particular. Impeding CO2 emission in the atmosphere is quite important for sustainable development. Utilizing solar energy for photocatalytically driven CO2 reduction to value-added products or chemical feedstocks can lead to CO2 consumption in a more renewable way and reduce pollution levels. Photocatalytic CO2 reduction in water (H2O) to produce synthesis gas (syngas, CO + H2) is considered a highly advantageous and pivotal intermediate for the upgradation of valuable hydrocarbon fuels via the Fischer–Tropsch reaction. This timely mini-review aims to expatiate on the recent advances in syngas production via photocatalytic CO2 reduction under aqueous media following up on the compendious background of syngas production. Furthermore, we make firm efforts to spotlight various photocatalytic systems, and their structure–activity relationships for syngas production. However, in addition, emphasis has been given to rationalize the stream proportion of the syngas mixture i.e. CO/H2 or H2/CO. This could promptly be assessed via various requisite parameters such as initial feed concentration (CO2/H2O) and the cooperative effect of active metallic sites, liners and sensitizers. Lastly, future aspects summarizing the conceptual idea/concern for tuneable syngas production via the photoreduction of CO2 are presented.
- This article is part of the themed collections: Hybrid Pores for CO2 Technologies and Recent Review Articles