Issue 38, 2024

Surface engineered metal–organic framework-based electrochemical biosensors for enzyme-mimic ultrasensitive detection of glucose: recent advancements and future perspectives

Abstract

Metal–Organic Frameworks (MOFs) have garnered significant attention in the development of electrochemical glucose sensors due to their unique and advantageous properties. The highly tunable pore channels of MOFs facilitate optimal diffusion of glucose molecules, while their large specific surface area provides abundant active sites for electrochemical reactions. Furthermore, the well-dispersed metallic active sites within MOFs enhance electrocatalytic activity, thereby improving the sensitivity and selectivity of glucose detection. These features make MOF-based nanoarchitectures promising candidates for the development of efficient and sensitive glucose sensors, which are crucial for diabetes management and monitoring. The integration of enzymatic biosensors with nanotechnology continues to drive advancements in glucose monitoring, offering the potential for more accurate, convenient, and user-friendly tools for diabetes management. Current research explores non-invasive glucose monitoring methods, such as using sweat, saliva, or interstitial fluid instead of blood, aiming to reduce the discomfort and inconvenience associated with frequent blood sampling. A review of the advancements and applications of MOF-based enzyme-mimic electrochemical sensors for glucose monitoring can provide valuable insights for young researchers, inspiring future research in biomedical device fabrication. Such reviews not only offer a comprehensive understanding of the current state of the art but also highlight existing challenges and future opportunities in the field of enzyme-less glucose sensing, particularly in the surface modification techniques of highly porous MOFs. This fosters innovation and new research directions. By understanding the advantages, challenges, and opportunities, researchers can contribute to the development of more effective and innovative enzyme-mimic glucose sensing transducers, which are essential for advancing biomedical devices.

Graphical abstract: Surface engineered metal–organic framework-based electrochemical biosensors for enzyme-mimic ultrasensitive detection of glucose: recent advancements and future perspectives

Article information

Article type
Critical Review
Submitted
29 jul 2024
Accepted
25 ago 2024
First published
26 ago 2024

Anal. Methods, 2024,16, 6474-6486

Surface engineered metal–organic framework-based electrochemical biosensors for enzyme-mimic ultrasensitive detection of glucose: recent advancements and future perspectives

M. Arivazhagan, R. Pavadai, N. Murugan and J. Jakmunee, Anal. Methods, 2024, 16, 6474 DOI: 10.1039/D4AY01429D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements