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Health prognostics for lithium-ion batteries:
mechanisms, methods, and prospects

Yunhong Che, a Xiaosong Hu, *b Xianke Lin, c Jia Guo a and
Remus Teodorescua

Lithium-ion battery aging mechanism analysis and health prognostics are of great significance for a

smart battery management system to ensure safe and optimal use of the battery system. This paper

provides a comprehensive review of aging mechanisms and the state-of-the-art health prognostic

methods and summarizes the main challenges and research prospects for battery health prognostics.

First, the complex relationships among aging mechanisms, aging modes, influencing factors, and aging

types are reviewed and summarized. Then, the battery health prognostic methods are divided according

to different time scales and objectives, which include the short-term state of health estimation,

long-term end-of-life prediction, and degradation trajectory prediction, followed by a detailed review of

each prognostic task and method. For consistency, we first provide a clear and concise description of

each method, showing the similarities and peculiarities of these methods, and then review several

representative works. After that, comparative evaluations are conducted. The main advantages and

disadvantages of each prognostic task and prognostic method are analyzed in detail. Next, key

challenges are presented by considering the specific characteristics of each prognostic task. Moreover,

for each challenge, potential solutions are presented and discussed. These proposed potential solutions

to the main challenges are beneficial and can be considered by researchers in their further studies.

Finally, the future trends of battery health prognostics are discussed, and several new ideas for battery

health prognostics are proposed.

1. Introduction

Transportation electrification plays a significant role in redu-
cing exhaust emissions, alleviating the excessive dependence
on fossil fuels, and solving the current energy shortage and
environmental pollution problems to a certain extent.1,2

Lithium-ion batteries, as one of the main energy storage
devices, have been a limiting factor in the development of
electric vehicles, electric ships, electric aircraft, etc.3,4 In addition,
lithium-ion batteries are widely used in other fields, such as
satellites, laptops, and smart grids.5–7 However, the internal
electrochemical mechanism of lithium-ion batteries is very
complex due to their dynamic, time-varying, and nonlinear
characteristics.8,9 Besides the main reactions, aging-related side
reactions occur at the same time. The capacity of lithium-ion
batteries will gradually degrade, and the internal resistance
will increase with storage and usage, which can be regarded as

calendar aging and cyclic aging, respectively.10,11 The limited
service life of batteries is one of the key factors restricting the
commercial popularization of lithium-ion batteries in the above
applications.12 However, the optimal use of batteries can help
delay failures or end of life (EoL).13 Therefore, battery manage-
ment systems (BMSs) are designed for more accurate and robust
state estimation and lifetime prediction, as well as optimizing
strategies that extend the service time.14,15

Several policies have been established all over the world to
promote the health management of batteries. The newest
Advanced Clean Cars II Regulations proposed by the California
air resources board have pointed out that sharing battery health
information to drivers is essential, requiring a standardized
state of health (SoH) indicator to be displayed on the dashboard
in 2026 and thereafter.16 The advanced development of battery
gigafactories and electric vehicle industries in Europe also
promotes the establishment of related policies.17,18 For example,
a new EU regulatory framework for batteries declares that
safety and EoL management should be included.19 For health
management-based policies, some research programs have
been established to promote the development of battery health
prognostics. For example, the ‘‘battery health’’ in Apple devices
is an implementation of health estimation algorithms in

a Department of Energy, Aalborg University, 9220, Aalborg, Denmark
b College of Mechanical and Vehicle Engineering, Chongqing University, 400044,

Chongqing, China. E-mail: xiaosonghu@ieee.org
c Department of Automotive and Mechatronics Engineering, Ontario Tech University,

L1G 0C5, Oshawa, Canada

Received 16th September 2022,
Accepted 19th December 2022

DOI: 10.1039/d2ee03019e

rsc.li/ees

Energy &
Environmental
Science

REVIEW

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
ja

ne
ir

o 
20

23
. D

ow
nl

oa
de

d 
on

 1
4/

02
/2

02
6 

06
:3

8:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-7350-0001
https://orcid.org/0000-0002-2769-4183
https://orcid.org/0000-0001-5695-248X
https://orcid.org/0000-0002-3882-9266
http://crossmark.crossref.org/dialog/?doi=10.1039/d2ee03019e&domain=pdf&date_stamp=2023-01-09
https://rsc.li/ees
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ee03019e
https://pubs.rsc.org/en/journals/journal/EE
https://pubs.rsc.org/en/journals/journal/EE?issueid=EE016002


This journal is © The Royal Society of Chemistry 2023 Energy Environ. Sci., 2023, 16, 338–371 |  339

portable devices. EU government has supported a big research
program called ‘‘Battery 2030’’ with EUR 40.5 million, where
battery health management and prognostic algorithms are
important components.20 In addition, battery reuse and recy-
cling policies pronounced by governments from Europe and
China also indicate the importance of battery health
prognostics,19,21 which promotes the research on this topic
where health evaluations are significant steps to point out the
health status of batteries.22,23

Aging and damage of lithium-ion batteries can lead to
battery system failure, even property damage and personal
injury.24,25 Batteries undergo degradation because complex
and coupled side reactions occur along with the main electro-
chemical reactions during charging and discharging.26 These
side reactions cause the degradation phenomenon. Under-
standing the main degradation mechanisms and the associated
influencing factors can guide the optimal use of the battery,
which helps delay the EoL. Different external environments and
use conditions have different effects on these side reactions.27

However, lithium-ion batteries are still regarded as a ‘‘black
box’’ whose internal aging states are difficult to measure
directly by sensors. Therefore, the internal states need to be
estimated using manually designed algorithms based on the
measured parameters. Prognostics and health management
(PHM) algorithms have been designed for BMSs to ensure the
safe and reliable operation of batteries,28,29 which requires
timely fault diagnostics and health prognostics. Fault diagnosis
is one significant function of PHM to identify and prevent/
mitigate potential failures. For example, early warning of inter-
nal short circuit faults in batteries is crucial for timely main-
tenance to prevent safety issues. For example, a thermal
runaway caused by an internal short circuit could cause serious
personal and property damage.30 Battery health prognostics are
mainly needed for SoH estimation and lifetime (or remaining
useful life (RUL)) prediction. To make it clear, the definition of
battery SoH is the ratio of current capacity to nominal
capacity.31 Battery lifetime or RUL is defined as the remaining
available operating cycles before reaching the EoL, which
typically refers to the cycle when the current capacity reaches
80% or 70% of the nominal capacity.32,33 Accurate and reliable
battery SoH estimation and RUL prediction are of great signi-
ficance and have attracted increasing research and industrial
interest in recent years. Studying the degradation characteristics

of lithium-ion batteries, extracting key aging factors, and devel-
oping non-destructive and real-time prognostics of SoH and the
remaining lifetime of lithium-ion batteries can effectively help
evaluate the health status of the batteries and establish a timely
maintenance strategy to ensure safe operation.34 Health prognos-
tics also support many other health management strategies in
BMSs. Health information provided by the prognostics is one of
the most important inputs for battery fault diagnosis in the early
stages. Aging and lifetime prediction models are important for the
optimal design of charging protocols and the energy management
strategies of vehicle-to-grid interactions.35–37 Health prognostics
also benefit the optimal second life utilization, where the health
status is provided as a key indicator for the remaining service
lifetime evaluation, sorting, and regrouping.38,39

Due to the rapid development of electrified transportation
and smart grid etc., research on battery PHM has also exploded.
A statistical analysis of research on battery health estimation
and lifetime prediction based on data collected from the Web
of Science database is shown in Fig. 1, where the number of
publications in the past ten years (2012–2021) is shown in
Fig. 1(a), and the percentages in publications of different
regions are shown in Fig. 1(b). It shows that the research
interest in battery PHM has increased rapidly in the past few
years, with a steady increase in publications of battery health
estimation and lifetime prediction. Among several different
main regions where the electric vehicle industries developed
rapidly, the percentage of publications in this field also occu-
pies a large amount. China, USA, and Europe have 75% of the
publications in battery health estimation and 72% in battery
lifetime prediction, and are the most three regions that publish
research in this field. UK produced 5% of the whole publica-
tion. Therefore, battery health prognostic is one of the main
trends in efficient and smart battery health management.40

It is important to review the main degradation mechanisms
and the state-of-the-art methods of prognostics in this field
since there are many different types of strategies and
algorithms proposed for battery SoH estimation and lifetime
prediction. A detailed review helps researchers understand the
state-of-the-art methods and in the selection of appropriate
methods.

The battery health prognostic methods proposed in publica-
tions generally include model-based, data-driven, and hybrid
methods. Each of them in battery lifetime prognostics is

Fig. 1 Statistics of research on battery health estimation and lifetime prediction for the last ten years from the Web of Science database. (a) The
publication number variations; (b) the main publication regions and the counting percentages.

Review Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
ja

ne
ir

o 
20

23
. D

ow
nl

oa
de

d 
on

 1
4/

02
/2

02
6 

06
:3

8:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ee03019e


340 |  Energy Environ. Sci., 2023, 16, 338–371 This journal is © The Royal Society of Chemistry 2023

introduced and evaluated in ref. 41. According to the prediction
results, health prognostics can also be divided into prob-
abilistic and non-probabilistic.47 The uncertainty expressions
are given in the probabilistic method to illustrate the
reliability of the predictions.48 Some review papers on this
topic in recent years are listed in Table 1, where the main
contents, advantages, and deficiencies are summarized.
It can be seen from the table that the published reviews
generally concentrate on either aging mechanisms or prog-
nostic methods. The different battery health prognostic objec-
tives under different applications are not described before
introducing the specific prediction methods. However, the
objectives are important and need to be decided since differ-
ent methods may suit different practical needs. For example,
EoL prediction and future degradation prediction in battery
lifetime prediction are two different objectives, which require
different methods. However, the existing review paper failed
to distinguish them clearly. Besides, comprehensive evalua-
tions based on multi-dimensional indices are also important
to help researchers select the proper method. Finally, sugges-
tions to address current challenges should be provided and

discussed, and future trends need to be updated based on the
state of art.

Therefore, this paper provides an overview of the main aging
mechanisms, state-of-the-art techniques in battery health prog-
nostics, comparative evaluations of different objectives and the
corresponding methods, as well as main research challenges,
potential solutions, and research prospects. The main contri-
butions are summarized in the following four aspects. (1) Main
aging mechanisms of lithium-ion batteries are briefly intro-
duced, and the external influencing factors for aging are
summarized. The correlation among aging mechanisms, aging
modes, external factors, and aging types is illustrated. A sum-
mary of available public data sets for research of battery health
prognostics is provided. (2) Objective-based method classifica-
tion is proposed, followed by a detailed description of the state-
of-the-art methods. A unified framework is adopted for the
illustration of each method for a clearer and more comprehen-
sive description and clear presentation of the differences
among different methods. (3) Comprehensive evaluations
of different prognostic tasks and methods are conducted,
where different evaluations are considered, including accuracy,

Table 1 Summary of some existing review papers on battery health prognostics

Publication Main content Highlights Drawbacks

Ref. 7 ’ Main aging mechanisms and external
affecting factors

’ Comprehensive review of battery aging
mechanisms

’ Lack of battery health prognostic
methods

’ Aging diagnosis methods. ’ Main physics-based methods for aging
diagnosis

’ No evaluations of different
methods

Ref. 25 ’ Introduction of main aging mechanisms
and aging origins

’ Both calendar and cyclic aging under dif-
ferent mechanisms

’ Data-driven methods are little

’ Review of aging estimation methods ’ Comprehensive review of different model-
based methods

’ Lack of comparisons among dif-
ferent methods

Ref. 29 ’ Summary of main health prognostic
methods

’ Both prognostic and management meth-
ods are included

’ Battery SoH estimation and lifetime
prognostic are not separated

’ Introduction of battery health manage-
ment strategies

’ PHM on real engineered influence is
discussed

’ Lack of evaluations

Ref. 33 ’ Main ML-based methods for battery SoH
estimation and lifetime prediction

’ Quantity comparisons for each kind of ML
methods

’ Comparisons for SoH and lifetime
are mixed up

’ Collection of main research results for
each type of method

’ Comprehensive introduction of each ML
method in battery health prognostics

’ Other types of methods and aging
mechanisms are missing

Ref. 41 ’ Methods for battery lifetime prediction
and comparisons

’ Critical comparisons and plentiful
prospects

’ Current methods with data-driven
method are lacking

’ Key challenges and main research trends ’ Detailed introduction for all kinds of
methods

’ Aging mechanisms are simply
included

Ref. 42 ’ Data-driven SoH estimation and lifetime
prediction methods

’ Comprehensive overview of the main data-
driven methods

’ Other types of methods are not
included

’ Aging mechanisms and influencing
factors

’ Evaluation of different data-driven
methods

’ Lack of EoL point prediction
methods

Ref. 43 ’ Deep learning methods in battery PHM
algorithms

’ Summary of datasets for research of battery
management

’ Only focus on deep learning
methods

’ Evaluation of different deep learning
algorithms

’ Comprehensive overview of deep learning-
based prediction

’ Aging mechanisms are missing

Ref. 44 ’ Overview of SoH estimation and lifetime
prediction methods

’ Comprehensive review of SoH estimation
methods

’ Little cover of lifetime prediction
methods

’ Challenges with possible solutions and
recommendations

’ Both internal and external challenges are
summarized

’ Classification method is not
comprehensive

Ref. 45 ’ Introduction of popular battery data sets ’ Summary of battery aging data set
acquisition

’ Lack of comprehensive
comparisons

’ Review of key methods for battery states
estimation and lifetime prediction

’ Comprehensive review of battery states
estimation and lifetime prediction

’ Lack of aging mechanisms
introduction

Ref. 46 ’ Introduction of ML-based lifetime pre-
diction methods

’ Containing main ML-based methods for
lifetime prediction

’ Data-driven methods are not fully
contained

’ Comparisons among different ML
methods

’ Comparison of method recommendations ’ Lack of other prediction methods
and aging mechanisms
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computational burden, data requirement, model generalization
and robustness, implementation complexity, and publication
trend. (4) The main challenges for battery health prognostics
using each type of method in each prognostic task are sum-
marized and discussed with potential solution suggestions. The
research prospect of more accurate and reliable battery health
prognostic methods in this field is presented, which helps
researchers to focus on the main research problems and
bottlenecks.

The overall content of this review article is shown in Fig. 2.
It starts from the introduction and analysis of the main aging
mechanisms and influencing factors to the detailed discussion
of different time-scale prognostic tasks. The key research
challenges follow the discussion of the state-of-the-art methods,
some potential solutions are proposed, and the research pro-
spects are presented at the end. The remainder of this review
paper is arranged as follows. The main aging mechanisms and
influencing factors are analyzed in Section 2. Then, popular
battery aging datasets and methods for battery lifetime predic-
tion are classified and reviewed in Section 3, followed by a
comprehensive comparison of different methods in Section 4.
Then, the key challenges with suggested solutions and future
research prospects are provided in Section 5. Finally, a brief
conclusion is presented in Section 6.

2. Aging mechanisms and influencing
factor analysis

Lithium-ion batteries undergo inevitable aging during operation.
Some cell manufacturing characteristics or external conditions
can have an impact on the aging patterns. Typically, commercial
lithium-ion batteries include coin cells, cylindrical, ellipsoidal,
prismatic, and pouch cell types. Different battery packages create
different internal mechanical stresses. In addition, battery aging
is also affected by external factors such as ambient temperature,

charge and discharge current magnitude, depth of discharge
(DoD), and ambient humidity. What’s more, the diversity of
positive electrodes and negative electrodes, as well as internal
component materials, also has huge impacts on the aging
patterns. It is important to understand the common aging
mechanisms and main influencing factors, which can help in
the appropriate selection of prognostic methods and in devel-
oping more suitable and accurate models for battery health
prognostics. In this section, key aging mechanisms on both
cathodes and anodes are introduced in Section 2.1. The main
influencing factors on the calendar and cyclic aging rates are
then summarized in Section 2.2.

2.1. Aging mechanisms

Some mechanistic models can model the aging process of
lithium-ion batteries. The Pseudo-two-Dimensional (P2D),
molecular dynamics (MD), and SEI growth models enable the
simulation of the battery aging process. In these models, the
internal side reactions of the battery based on detailed battery
manufacturing parameters and operating condition parameters
can be modeled. Besides, the equivalent circuit model (ECM)
does not model the internal side reactions. However, it can
be enhanced and used to predict aging by fitting the model
parameters to aging data.49

To model the aging mechanism, an electrochemical model
usually serves as the basis. The P2D model, which was built on
the porous electrode theory and concentrated solution theory,
is most popular for high-fidelity modeling of batteries.50 The
governing equations of the P2D model are listed in Table 2.
However, the full analytical solution of the governing P2D
model is unavailable. One way is to use numerical methods
such as Finite-Element Method (FEM), finite-difference
method, finite-volume method, etc.51 Another way is the sim-
plification of the government equations, such as using math-
ematical approximation or physics simplification.52 Single
particle models (SPMs), which use two spherical particles to
represent the negative and positive electrodes and neglect the
electrolyte concentration and potentials, keep the most impor-
tant physics while significantly reducing the computational
complexity which makes them popular for online real-time
algorithms in battery health prognostics.53 In addition, the
MD simulation is also one popular tool for the mechanistic
analysis of chemical reactions inside the batteries. Several
methods, including classical, ab initio, and machine learning-
based MD, can be used.54 The classical potential energy func-
tions are used to describe the atomic interactions in classic
MD. The ab initio method is used by the ab initio MD to
calculate the interaction forces, while the machine learning
(ML) method is integrated into the MD for fast calculation and
better transferability with high accuracy.54,55 Besides the mod-
eling method, advanced sensors are also important for com-
plete information acquisition inside batteries. These sensors
can be implemented inside the batteries during design and
manufacturing.56 For example, the internal temperature affects
the aging mechanisms. This important information can be

Fig. 2 Overall framework of the review for battery health prognostics.
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measured by the advanced sensors, which are very useful for
the prognostics of battery health.57

2.1.1. Aging modes. Lithium-ion batteries are mainly
composed of a graphite anode, a metal oxide cathode, electro-
lyte, and a separator.59,60 In addition to the main electroche-
mical reaction, a variety of side reactions occur during use,
resulting in a battery capacity decrease and an increase in
internal resistance.61,62 These side reactions usually do not
occur independently but have complex coupling mechanisms,
which further complicates the study of battery aging mechan-
isms. The internal aging modes of lithium-ion batteries can be
generally divided into loss of lithium inventory (LLI) and loss of
active material (LAM), and increase of internal resistance (IR).62

LAM is mainly caused by active particle loss due to current
collector corrosion or binder decomposition, transition metal
dissolution, and electrode particle cracking. LLI is mainly
caused by the rupture and reformation of solid electrolyte
interphase (SEI) films, electrolyte decomposition, and lithium
plating.7 Besides, the formation of the SEI film and cracks
in particles will lead to an increase in IR. A summary of the
side reactions related to battery aging is shown in Fig. 3.41 The
above primary degradation modes have different influences
on the capacity decrease and internal resistance increase. In
addition, different external conditions such as temperature
and current rates have different effects on battery calendar
and cyclic aging. Aging occurs in each part of the battery,

Fig. 3 Main aging mechanisms for lithium-ion batteries, adapted from ref. 41 with permission.

Table 2 Governing equations and boundary conditions of the P2D model51,58
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and the external influencing factors will be introduced in
detail below.

2.1.2. Main aging mechanisms on anodes. In the past
three decades, a lot of research work has been done to obtain
better anodes for rechargeable lithium batteries. Typically,
battery anodes (negative electrodes) can be made of graphite,
carbon, titanate, lithium metal, silicone, or some composite
materials.63,64 Among them, graphite-based anodes, such as
graphite anodes and graphite–silicon composite anodes, are
used in commercial batteries. With the advantages of high
electronic/ionic conductivity, low cost, abundant raw materials,
and acceptable thermal and mechanical properties, carbon
materials have taken the major share of the market for negative
electrode materials, especially for graphite with stable
performance.65 Besides, silicon has been investigated as a
promising alternative to conventional graphite due to its high
theoretical gravimetric capacity (4200 mA h g�1 for Li22Si5 at
415 1C and 3579 mA h g�1 for Li15Si4 at room-temperature),
which is much higher than the theoretical gravimetric capa-
city of graphite (B330 mA h g�1).66,67 However, the volume
expansion of silicon when fully intercalated with lithium is
as high as 400%, much higher than the 11% volume expansion
of graphite.68 Electrochemical and mechanical instability
due to volume expansion and contraction hinder the applica-
tion of silicon electrodes. Then, combining the advantages
of high theoretical capacity of silicon and high stability of
graphite, a graphite–silicon composite anode was prepared
by doping a certain amount of silicon (silicon ratio 3–20%)
into graphite.69,70 The graphite–silicon composite anodes
currently on the market are C/Si and C/SiO2, with capacities
of 420 and 450 mA h g�1, respectively, and the market for
graphite–silicon composite anodes with a higher-capacity is not
mature yet.71

In short, the negative electrodes in the market are mainly
graphite and graphite–silicon composite electrodes (C/Si and
C/SiO2). Graphite–silicon composite electrodes show more
volume expansion than pure graphite. Besides, they all suffer
from some common aging modes, such as SEI film formation,
transition metal deposition, and graphite exfoliation.

The main aging mechanism for graphite-based electrodes is
the continuous formation of the SEI film on the electrolyte/
electrode interface over time. Many types of chemical com-
pounds have been found in the SEI, including lithium fluoride
(LiF), lithium carbonate (Li2CO3), lithium oxide (Li2O), lithium
methyl carbonate (LiOCO2CH3), lithium ethylene decarbonate
((LiOCO2CH2)2), etc.72,73 It is widely accepted that the reduction
of a solvent molecule (for example, [EC]-) is a one-electron
reaction occurring at the surface of graphite. First, the solvent
molecule is reduced to form an intermediate radical anion
(C3H4O3). Then, this radical anion undergoes further decom-
position according to eqn. (8), forming the solid lithium
ethylene decarbonate ((CH2OCO2Li)2).74,75 Therefore the
reaction between C3H4O3 and electrons is widely used for SEI
modeling.

2C3H4O3(l) + 2e� + 2Li+ # (CH2OCO2Li)2(s) + C2H4(g) (8)

The SEI film is naturally formed during the first charge after
manufacturing, whose function is to protect the negative
electrode from possible corrosion in the process of electrolyte
reduction.76 However, the SEI film is not perfectly stable, which
ruptures and reforms during cycling, resulting in continuous
Li-ion loss and electrolyte decomposition.77 MD simulation is a
great tool for understanding chemical reactions inside the
battery and the SEI formation mechanism.78,79 Two reasons
lead to SEI rupture. On the one hand, the solvent diffuses
through the SEI and interacts with Li in the graphite, which can
exfoliate the graphite, generate gas, and expands and ruptures
the SEI film. On the other hand, the volume of graphite
increases in the lithiation process, which causes SEI to
rupture.80 Therefore, SEI film is continuously reformed and
thickened, which causes the Li-ions to be continuously
consumed.

The growth rate of the SEI layer can be modeled by a linear
relationship with side reaction current density, which is
expressed as follows:74

@d
@t
¼ iseiM

rNF
(9)

where M is the molecular weight, r is the density of the SEI
layer, and N is the electrons participating in the reaction. The
side reaction current density isei and overpotential Zsei of the
SEI side reaction can be expressed as follows with parameter
transfer coefficient a, specific resistance rsei, and SEI layer
thickness d,74

isei ¼ i0;sei exp
anF
RT

Zsei

� �
(10)

Zsei = Vneg + Zneg � Vsei + rseidI (11)

Metal (Li and transition metal) precipitation on the anode
surface is another common side reaction that accelerates
battery aging. Usually, lithium plating occurs under either
high-rate charging, overcharging, or low-temperature
conditions.81 The precipitated lithium metal can react with
electrolyte, producing Li compounds that cover the anode
surface, resulting in a considerable loss of Li inventory and
an increased interface resistance, eventually leading to capacity
degradation.82,83 The mathematic modeling of lithium plating
is similar to the reaction of SEI side reaction since it also builds
up a layer and clogs the anode pores.74 In addition, the plated
Li can evolve into Li dendrites, which can penetrate the
separator, causing an internal short-circuit and resulting in a
possible safety problem.84 Moreover, the dissolution of transi-
tion metal from the cathode diffuses with the Li-ions, and
deposits on the graphite surface or gets inserted into the
graphite layer, which accelerates the exfoliation of graphite.

Besides, the decay of active materials (including mechanical
damage of graphite particles and changes in the layer structure)
is also an important factor in battery aging.85 The mechanical
stress for lithium insertion and delithiation may cause mechan-
ical failure, which can expand the graphite layer space and
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destroy the layer structure, resulting in accelerated graphite
exfoliation.86 These phenomena would cause LAM and cause
the SEI film to rupture, which leads to irreversible capacity loss.

2.1.3. Main aging mechanisms on cathodes. There is a
wide range of cathode materials on the market, such as LiCoO2,
which is widely used in portable electronic devices due to
its high safety and stability, and NMC battery chemistries
(LiNi1�x�yCoxMyO2, M = Co, Mn, and Al) and LiFePO4 for
electric vehicles due to their high energy density and high
operation voltage.68 In particular, for the NMC cathode, the
voltage plateau is as high as B3.7 V and the theoretical capacity
is B275 mA h g�1, which is much higher than 3.4 V and 170 mA
h g�1 of LiFePO4.87 For the NCM cathode, with the increase of
nickel content, the cathode capacity increases significantly, but
the problems of lithium/nickel mixing and rock salt phase
formation are also aggravated, which greatly reduces the stabi-
lity of lithium-ion batteries.

In general, these positive electrodes are subject to some
common aging-related reactions mainly including mainly
including transition metal dissolution, phase transition, and
crack formation.88 Transition metals are prone to react with
species (such as HF) from electrolyte decomposition, and then
dissolve, diffuse and deposit on the anode surface, as discussed
above.89 Like the anode, the cathode also forms a passivation
surface film during the first few cycles, which is commonly
referred to as the catholyte electrolyte interface (CEI) film. The
CEI film generally consists of lithium alkyl carbonates, lithium
alkoxides, Li2CO3, etc.,90 These compounds are mainly produced
from the side reactions between the cathode and the electrolyte.
Note that the CEI film is generally thinner than the SEI film and
does not cover the entire cathode surface. But it grows over cycling,
which is the main reason for LLI and IR on the cathode.91

Cation mixing and lithium vacancies are the two most
common structural failures in cathode materials. Cation mix-
ing usually occurs at metal oxide cathodes due to the similar
radius between some transition metal ions (Ni2+, Mn3+, Fe2+)
and Li-ions.7 It leads to the distortion of the cathode structure,
resulting in a reduced battery capacity. Besides, the inserted
Li-ions in transition metal sites expand the interlayer spacing of
the cathode, which hinders the transfer of electrons and
increases the polarization of the battery.88 In addition, the
cathode material may undergo irreversible phase transitions along
with the battery aging process. Some phase transitions generate
large mechanical stress, leading to crack formation as well as
irreversible capacity degradation.92 Besides, the cathode cracks are
also caused by the mechanical stress from the repeated processes
of Li-ion intercalation and deintercalation.93

2.1.4. Other parts. Besides LAM and LLI, aging also occurs
on some other inactive parts, such as separators, current
collectors, binders, and conductive agents.7 The separator acts
as a transport channel for Li-ions, and a change in its porosity
will have a huge impact on the passing rate of Li-ions, thereby
affecting the available capacity of the battery.81 During battery
operation, the binder and current collector are easily corroded,
which damages the contact between the active materials and
the current collector, resulting in an increased IR.94

2.2. Influencing factors on battery aging

There are generally two types of aging, including calendar aging
and cyclic aging.95 Battery calendar aging refers to the pheno-
menon that the available capacity decreases with time during
battery storage. Cyclic aging refers to the irreversible capacity
loss caused by repeated charge–discharge cycles. Different
external conditions have different effects on the aging rate.
Therefore, it is of great importance to fully understand the
impact of various external factors on the battery aging rate,
which helps build an accurate prognostic model for BMSs to
extend the battery service life. The main factors leading to
battery calendar aging and cyclic aging, the aging mechanisms
accelerated by external factors, and the aging modes caused
by the aging mechanisms are summarized and illustrated in
Fig. 4.

2.2.1. Factors affecting calendar aging. Battery self-
discharge would inevitably occur during storage, which is the
main cause of battery calendar aging. The main factors that
lead to battery self-discharge include electrode passivation,
electrode/electrolyte reaction, internal or external electron leak-
age, electrolyte leakage, partial dissolution, mechanical decom-
position of active materials, etc.96 Some of the self-discharge
caused by these factors can be recovered by charging. However,
other parts are associated with LLI, which is caused by the
growth of the SEI/CEI film at the electrode/electrolyte interface,
resulting in an irreversible capacity loss.97 It is the main
degradation phenomenon during the battery’s calendar aging
process. The main factors affecting the calendar aging of
lithium-ion batteries are storage temperature and state of
charge (SoC).98 In general, the higher the temperature and
the higher the SoC, the faster the calendar aging rate of
lithium-ion batteries, and the impact of temperature is more
significant than the impact of SoC. The higher the temperature,
the more likely the occurrence of side reactions such as
electrolyte decomposition and transition metal dissolution,
thereby accelerating LLI and LAM.99 Besides, high SoC means
that there is a larger overpotential at the electrode/electrolyte
interface, which will promote the occurrence of electrochemical
reactions.100

2.2.2. Factors affecting cyclic aging. Batteries undergo
cyclic aging during charging and discharging. Factors that
affect the battery cyclic aging rate mainly include current
modes, environmental temperature, DoD, and mean SoC. The
factors mentioned in calendar aging are also included in cyclic
aging because they also come into play despite the fact that the
battery is used or not. The current modes consist of current
rates and current waveform. For the current rate, a larger
current rate will facilitate the deposition of Li-ions on
the anode surface, thereby accelerating the aging of the
battery.101 For the current waveform, the battery lifetime can
be extended by operating a dynamic pulse current, which is due
to the construction of a stable SEI film.102 Furthermore, multi-
step constant current cycling is also gradually being applied.103

Ambient temperature is another external factor that has a
significant impact on the battery cyclic aging rate. The aging
rate increases with the increase of the ambient temperature

Energy & Environmental Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
ja

ne
ir

o 
20

23
. D

ow
nl

oa
de

d 
on

 1
4/

02
/2

02
6 

06
:3

8:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ee03019e


This journal is © The Royal Society of Chemistry 2023 Energy Environ. Sci., 2023, 16, 338–371 |  345

above 25 1C, where the growth of the SEI film and the
degradation of the cathode material are the main aging
mechanisms in this temperature range.104,105 Researchers have
also found that when the ambient temperature is less than
25 1C, the aging rate of the battery will increase with the
decrease of temperature.106 The LLI caused by lithium plating
on the anode becomes the main aging mechanism when
the environmental temperature is below 25 1C for the pouch
cells.107 The lithium plating reaction becomes more severe
since the low temperature hinders the intercalation kinetics
of Li-ions.108,109 In addition, DoD and average SoC are also
important external factors that affect the cyclic aging rate of Li-
ion batteries. The battery aging rate increases continuously
with the increase of DoD.36 Under the same DoD, a higher SoC
interval (or mean SoC) will lead to a higher battery aging rate.110

Main side reactions which are accelerated by the DoD and
mean SoC include anode degradation and SEI development.
However, different electrode materials have different responses
to the above-mentioned external factors. Therefore, when
studying the influence of external factors on the aging rate of
Li-ion batteries, electrode materials should be considered.
When developing the battery health prognostic method, it is
recommended to consider these aging factors to make the
model have better accuracy and generalization.

3. Battery health prognostics

In this section, a summary of the available data sets for
research of battery health prognostics is first given in Section
3.1. Then the classification method for battery health prognos-
tics will be provided and discussed in Section 3.2. After that,

each type of method will be introduced, and their applications
will be briefly summarized. The SoH estimation, EoL point
prediction, and degradation trajectory prediction are reviewed
in Sections 3.3, 3.4, and 3.5, respectively.

3.1. Acquisition of battery aging data sets

Battery aging data are very important for battery health prog-
nostics research. However, it is time and labor-consuming to
obtain a large amount of data. Besides, the data quality is also
affected by the operation and equipment. Therefore, some
popular and recent datasets are summarized in this section.
It is very helpful to make the data and code open access so that
researchers can easily follow the research and develop their
own studies based on the shared data and code. A common way
to share the data and code related to the work is to provide the
access link in the supplementary information of the published
paper,111–114 which makes it easy to find for the readers.
To share the data, a public data-sharing platform can be
chosen, such as Zenodo,111,113,114 Mendeley,115 and OSF,116 or
the personal website is also popular to share the data from the
research group.35,117–119 For code sharing, it is convenient for
readers to access when it is shared together with the related
datasets,35,118,119 or a public code sharing platform can be
chosen, such as Github.111,115 The detailed information of each
data set is summarized in Table 2, where the battery chemistry
and type, the aging cycling profiles, the degradation trends, and
the publication year are included. Here the degradation trends
mean the overall shape of the degradation curve, which
includes sub-linear, linear, and super-linear.120

Most public data are obtained from the aging experiment of
the cylindric batteries, which are easy to experiment with due to

Fig. 4 Influencing factors on aging side reactions and the corresponding aging types.
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their good stability and generally low nominal capacity. Only
one data set from CALCE contains prismatic batteries, which
were collected in 2014. However, due to their wide usage in EVs,
more aging experiment on the prismatic cells are valuable for
researchers developing and proving their advanced algorithms.
Various types of battery cathode chemistries are included in these
public data sets. For the profiles used for aging, most data sets
used CC-CV charging and CC discharging procedures. Two data
sets from MIT and Stanford were aged under multi-step fast
charging followed by CC discharging. One data set from Oxford
University and another from Stanford University contain dynamic
discharging profiles, which are more relevant to practical applica-
tions. Two data sets from Cambridge University conducted aging
on the coin batteries with EIS test. Most of the batteries show
super-linear shapes and some of them are nearly linear and sub-
linear. Overall, various scenarios and combinations of different
batteries, aging profiles, and degradation curve shapes are
included in these public data sets listed in Table 3. It is recom-
mended that researchers choose several different data sets for their
study of prognostic approaches, which enhances the validation.

3.2. Classification of methods for battery health prognostics

There are many types of methods for battery health prognostics,
which are commonly divided into model-based, data-driven, and
hybrid methods.41 This is a general classification for battery
health prognostics despite different objectives. Unlike the classi-
fication above, for the first time, the prognostic objectives are
used to divide the prognostic tasks into SoH estimation, EoL point
prediction, and degradation trajectory prediction, respectively.
Objective-based classification is used because different applica-
tions require different prediction objectives.

The different objectives of the three tasks presented on the
capacity degradation curve is illustrated in Fig. 5. At the current
kth cycle, SoH focuses on capacity estimation at the current
time, which is a short-term prognostic objective. The EoL
prediction, on the other hand, concerns the end time when
the battery reaches the EoL, indicating a long-term prediction
objective. In contrast, the degradation trajectory predic-
tion focuses more on the future degradation curve prediction
until EoL.

The detailed classifications of battery health prediction are
shown in Fig. 6. The objectives of the battery health prognostics
are divided into three categories discussed above. Then, two
types of methods are included in SoH estimation, which are
model parameter optimization-based and machine learning
based. For EoL prediction, data-driven methods are generally
used which are further divided into feature-based methods and
deep learning methods. The main difference is whether to
extract the features manually or not. Finally, the degradation
trajectory prediction contains three methods, which are curve
fitting methods, model generation methods, and sequence
prediction methods. They differ from each other in the way
they predict future degradation curves. In this classification
method, readers can consider their prediction task first, and
then refer to the specific methods corresponding to this
objective. The detailed concept, general implementation pro-
cess, and representative works of the state of the art for each
method are discussed in the following sub-sections.

3.3. SoH estimation

Battery SoH estimation focuses on short-term capacity or
resistance prognostics. Accurate estimation provides the health

Table 3 Summary of available public data sets for research of battery lifetime prediction

Data
source

Chemistry
of cathode

Battery
types

Aging profiles
(charging/discharging)

Degradation
trends Data and code link Year

NASA121 NCA Cylindric CC-CV/CC Linear https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
prognostic-data-repository/

2008

CALCE122 LCO Pouch/
prismatic

CC-CV/CC Sub/super-
linear

https://web.calce.umd.edu/batteries/data.htm 2014

Oxford123 NCA Pouch CC-CV/dynamic
+ CC-CV/CC

Linear https://ora.ox.ac.uk/objects/uuid:03ba4b01-
cfed-46d3-9b1a-7d4a7bdf6fac

2017

Ref. 124 LFP/
NCA/NMC

Cylindric CC-CV/CC Linear https://iopscience.iop.org/article/10.1149/2.1701712jes#s2 2017

Ref. 119 LFP Cylindric Multi-step CC
� CC-CV/CC

Super-linear https://data.matr.io/1/projects/5c48dd2bc625d700019f3204 2019

Ref. 35 LFP Cylindric Multi-step CC
� CV/CC

Super-linear https://data.matr.io/1/projects/5d80e633f405260001c0b60a 2019

Ref. 114 LCO Coin CC-CV/CC Sub-linear/
linear

https://zenodo.org/record/3633835#.Y3YOLXbMJEY 2020

Ref. 117 NCA Cylindric Calendar aging
+ CC-CV/CC

Linear https://ora.ox.ac.uk/objects/uuid:de62b5d2-6154-426d-bcbb-
30253ddb7d1e

2020

Ref. 125 NMC Cylindric CC-CV/CC Super-linear https://git.rwth-aachen.de/isea/battery-degradation-trajectory-
prediction

2021

Ref. 112 — Cylindric CC-CV/CC Super-linear https://www.sciencedirect.com/science/article/pii/S266638992
1001458?via%3Dihub#appsec2

2021

Ref. 116 NCM Cylindric CC-CV/CC-UDDS Super-linear https://osf.io/qsabn/?view_only=2a03b6c78ef14922a
3e244f3d549de78

2022

Ref. 113 — Coin Random CC/CC — https://zenodo.org/record/6645536#.Y3YOd3bMJEY 2022
Ref. 126 NCM/NCA Cylindric CC-CV/CC Sub/super-

linear
https://zenodo.org/record/6405084#.Y3YQ_3bMJEY/
https://github.com/Yixiu-Wang/data-driven-capacity-
estimation-from-voltage-relaxation

2022
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status of the battery at the current time, updates key para-
meters for other short-term state estimates such as SoC, guides
optimal management strategy design, etc. The methods for
battery SoH estimation contain model parameter optimization-
based and machine learning methods, which will be reviewed in
detail in the following subsections. The general process for the
two types of methods for battery SoH estimation is illustrated in
Fig. 7.

3.3.1. Model parameter optimization. Model parameter
optimization-based battery SoH estimation generally combines
a representative model and parameter estimation algorithm to
estimate the battery SoH. We define it as the model parameter
optimization-based method because, generally, model develop-
ment and parameter optimization are two main steps in this
type of method. Models that are used for battery SoH estima-
tion include the empirical model, ECM, and electrochemical
model (EM). The empirical model is generally an expression that
describes the empirically quantitative relationship between the
influencing factors and the SoH fitted by experiments. The ECM is

built on some representative electric elements that help describe
the behavior of batteries, while EM is built on first principles to
depict the dynamics of internal physicochemical reactions via
partial differential equations.127 It is believed that the accuracy
has gradually improved and the complexity has also increased
from the empirical model to the ECM to the EM. The parameters
of the empirical model that need estimation are generally some
fitting coefficients, while those for the ECM and EM represent
specific physical parameters.128 The algorithms applied for para-
meter optimization also vary. The most popular and mature
methods are Kalman filter (KF), particle filter (PF), and their
variations. Variants of KF include extended KF, unscented KF,
Sigma point KF, cubic KF, and their combination with the
adaptive framework. Unscented PF, adaptive PF, etc. also show
better performances. Other less commonly used (compared to the
former two series) but also effective algorithms include H-infinity
filter, sliding mode observer, moving horizon estimation (MHE),
genetic algorithm (GA), particle swarm optimization (PSO),
least square (LS) estimation, etc. Despite the different algorithms,

Fig. 5 Demonstration of different objects in battery health prognostics.

Fig. 6 Classification of objectives and the corresponding methodologies for battery health prognostics.
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the objective is to estimate the representative parameters accu-
rately to support accurate SoH estimation. Therefore, the general
process for parameter optimization-based battery SoH estimation
is illustrated in Fig. 7.

SoH estimation via an empirical model is a simple yet
mature method that maps the relationship between the influ-
encing factors and battery SoH. For example, Chen et al.129

established a model that quantifies the relationship between
the battery SoH and the diffusion capacity and temperature.
The GA is used to identify the parameters to estimate the
battery SoH online. Similarly, Zhang et al.130 considered the
empirical model that captures the relationship between battery
SoH and the charge transfer resistance, temperature, and SoC,
where sequential quadratic programming was used for para-
meter optimization. A fused model containing capacity fade
and internal resistance growth was built by Guha et al.131 PF was
then used to optimize the model parameters for final SoH
estimation. In addition, the empirical model that described the
relationship between battery SoH and health indicators (HIs),
which generally refers to some features extracted from measured
data or calculated data, was built as the one state-space model,
and the unscented PF was then applied for parameter optimiza-
tion by Liu et al.132 However, poor physics interpretation and
generalization become the main drawbacks of empirical models.

On the other hand, the ECM shows a satisfactory tradeoff
between accuracy and complexity, which also has better physi-
cal interpretation compared to empirical models.133 1 resistor–
capacitor (RC) and 2 RC models are the two most popular
ECMs. Fleischer et al.134 used the weighted recursive least
quadratic squares parameter estimator for the parameter
estimation of a reduced 1 RC model, whose charge transfer
resistance was used to quantify the SoH. Since different time-
scales exist between different battery states, multi-scale estima-
tion methods are widely used. For example, the adaptive sliding
mode observer was used by Ning et al.,135 and the dual EKF was

adopted by Yang et al.136 and Song et al.137 for the parameter
optimization of the 1 RC model to estimate the SoH. Besides,
the multi-scale modified MHE was proposed by Hu et al.138 for
multi-state estimation based on the optimization of the para-
meters for the 1 RC ECM. The framework of the estimation
process is shown in Fig. 8. The short-term SoC and SoP (state of
power) estimations are combined with the long-term SoH
estimation. Specifically, the real-time parameters of current
and voltage are used for SoC estimation. The estimated SoC
is further used for SoP (state of power) and SoH estimation.
SoH is estimated during a long-time scale based on the ratio of
the capacity variation to the SoC variation range. The estimated
SoH is used to update the current capacity which helps the
accurate estimation of SoC and SoP. The results showed the
estimation accuracy superiority of mMHE compared to EKF.
The 2 RC model with the above-mentioned sliding mode
observer139,140 and DEKF141 was also widely used for battery
SoH estimation. In addition, the genetic resampling PF was
used to solve the multi-source noise to improve the accuracy
of the SoH estimation for the battery pack by Bi et al.142

Zhu et al.143 integrated the unscented KF and improved the

Fig. 7 Methods for battery SoH estimation and the corresponding general framework.

Fig. 8 Typical framework of multi-state estimation, adapted from ref. 138
with permission.
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unscented PF for better accuracy and reducing the calculation
time of SoH estimation. Finally, the fractional-order model
(FOM), another type of ECM, is also becoming popular for
battery state estimation. The FOM was combined with DEKF by
Hu et al.144 to ensure that the estimated error was less than 1%
for both SoC and SoH estimation. Yang et al.145 adopted GA for
parameter optimization of the FOM to estimate SoH with
absolute error less than 1.5%. However, the limited informa-
tion obtained using current external sensors makes it hard for
accurate and robust estimation under different scenarios. On
the other hand, the internal sensing technology promotes
smart battery development with highly efficient detection and
management, such as thin film strain gauge and fiber sensing
methods.146,147 For example, Wei et al.148 proposed a joint
estimation framework with an embedded and distributed
fiber optical sensor for internal and surface temperature
measurement. After understanding the internal structure of
the cylindrical battery by computerized tomography scanning, a
0.9 mm hole is drilled into the center of the negative terminal.
Then, the positive terminal is isolated using the Kapton tape, and
the sensor is inserted from the negative terminal. By combining it
with a low-order observer, the estimated capacity reaches a
maximum mean absolute error of less than 0.12 A h, and the
comparisons between the conventional electrical model-based
method indicate better accuracy and robustness of the proposed
new sensor information integrated method.

The last type of model for battery SoH estimation is EM,
which uses partial differential equations to describe the inter-
nal electrochemical reactions. Therefore, the physical meaning
and accuracy are the most significant advantages of EM.
However, the complexity of the full P2D model is very high,
which makes it difficult to solve. Therefore, two ways are
generally used for the implementation of EM for battery SoH
estimation. The first is to simplify the model. The most popular
simplified EM is the single particle model, which assumes the
electrode can be idealized as a single spherical solid particle.149

Zheng et al.150 proposed proportional-integral observers to
estimate the SoC, capacity, and resistance with the SPM. Moura
et al.151 used Padé approximation for parameter identification
of the SPM and adaptive observer for SoH estimation. The SPM
was also used by Hu et al.152 to construct a multi-scale MHE
optimizer for battery SoC and SoH estimation. Another way is to
simplify the partial differential equation via approximation
methods to solve the P2D model. Gao et al.153 simplified the
full P2D model using Padé approximation to obtain the state-
space expression while ensuring the model’s precision and
observability. Then the dual extended Kalman filter (DEKF)
was used for the co-estimation of battery SoC and SoH with
RMSE less than 0.5%. Besides, the P2D model was simplified
via parabolic profile approximation by Liu et al.154 The PF was
then used for online state estimation and the SoH was esti-
mated based on the average lithium concentrations predicted
at the cut-off voltages.

3.3.2. Machine learning. The main process for the above
model parameter optimization method is to build an effective
model to capture battery behaviors, and then estimate some

representative parameters. However, it is difficult to balance
the model complexity and the accuracy for actual applications.
Therefore, the machine learning-based method, which is
model-free, is becoming more and more popular recently.
The machine learning method tries to map the nonlinear
relationship between the selected inputs and required SoH.
But lacking physical explanation becomes one of the major
drawbacks of machine learning-based methods. The general
process for machine learning-based battery SoH estimation
includes data collection and preprocessing, input preparation,
model training, and application (model testing), and is illu-
strated in Fig. 7. According to the types of inputs for the
machine learning algorithms, existing methods can be divided
into feature-based methods and feature free methods since the
output of all types of methods is the same, i.e., SoH.

In feature-based methods manually extracted features are
needed to prepare the inputs, which is also known as HI
extraction.155 These HIs refer to some indices extracted from
measured or estimated parameters to reflect the aging status.
General HI extraction can be divided into direct extraction from
measured data such as current, voltage, and temperature, and
indirect extraction from some calculated data such as incre-
mental capacity (IC) curve and differential temperature (DT)
curve. One common way to evaluate the effectiveness of the
extracted HIs is to calculate the correlation coefficients between
the HIs and battery capacity. The correlation coefficient analy-
sis is also the most popular way to select the final inputs for
machine learning, which is known as the filter-based method.
However, it was pointed out in ref. 156 that the HIs simply
selected based on the correlation coefficients may have high
redundancy, and that some of them need also be removed from
the subset. Another method is to use an optimal search method
for HI selection, such as the wrapper method. The next step
after input preparation is data-driven model training. Since the
extracted HIs generally have high linear correlations with
battery capacity, linear regression (LR) and multi-linear regres-
sion (MLR) can meet the requirement. Other nonlinear map-
ping algorithms also show satisfactory performance, such as
support vector regression (SVR), random forest (RF), and arti-
ficial neural networks (ANN). To provide probabilistic estima-
tion, Bayesian estimation, relevant vector regression (RVR), and
Gaussian process regression (GPR) are popular. After the model
is trained by the training data set, the model can be used for
SoH estimation in the testing data set to evaluate the accuracy
and reliability.

Extracting features from measured data is the direct way to
implement feature-based SoH estimation. Meng et al.157 fig-
ured out that the voltage response to the pulse current varied
with battery aging and selected four representative voltage
values as features. The integration of several weak learners
was proposed to boost the overall performance of the final SoH
estimation.158 Sui et al.159 extracted the fuzzy entropy of the
voltage response to the pulse current as a feature and used SVR
to estimate the SoH. The method was verified at different aging
temperatures. The information on the charging process was
extracted to be the features by Roman et al.,160 such as voltage
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slope, mean voltage, energy, entropy, skewness, and time
difference of the voltage curve. Then the pipeline was proposed
to select features automatically for SoH estimation. Zhu et al.126

extracted similar features from the relaxation process after fully
charging to estimate the SoH with different machine learning
algorithms. Transfer learning was adopted to improve the
accuracy of the estimation for different batteries.161 Transfer
learning is one advanced learning method that uses knowledge
from one domain and applies such knowledge to different but
the related domains. It aims to reuse or transfer information
from previously learned tasks to improve convergence effi-
ciency and model accuracy in new tasks. Che et al.162 extracted
features from partial discharging data and integrated the
degradation pattern recognition and SoH estimation. Specifi-
cally, the detailed framework is shown in Fig. 9. First, standard
deviation, Shannon entropy, and the first principal component
are extracted as features from the partial capacity-voltage curve
and partial differential capacity-voltage curve. These features
are used for both pattern recognition that helps find the most
relevant reference batteries as source batteries and SoH estima-
tion modeling. Transfer learning with a probabilistic neural
network was used for health prognostics. Only several check-
points with real labels are used for the retraining process that
achieves high accuracy and reliability of the estimations with
errors of less than 2%. Features extracted from the EIS data also
showed high correlations with battery capacity and were used
for battery SoH estimation by Fu et al.163 and Zhang et al.114

Vilsen et al.164 extracted and selected features from the voltage
curve using field data based on two stages of principal compo-
nent analysis, and achieved the SoH estimation for practical
use with MLR. Extracting features from transformed curves is
also popular and effective for feature-based battery SoH estima-
tion. For insistence, Wei et al.165 extracted both the morpho-
logical IC feature and entropy information of voltage from
partial charging data to estimate battery SoH via ANN. She
et al.166 extended the IC-based method for the SoH estima-
tion of real-world EVs. The cell inconsistency was taken into
consideration to illustrate the inconsistency variation during

aging. DT voltammetry was used for the feature extraction by
Wang et al.167 and Li et al.168 to estimate the battery SoH. The
extraction method of DT is similar to that of IC. In addition to
extracting features from measured data and transformed data
for SoH estimation, the feature extraction from model para-
meters mentioned in the above subsection can be treated as a
typical model-data fusion method. For example, the internal
resistance and polarization resistance of the 1 RC ECM were
extracted as features by Lyu et al.169 to estimate the battery SoH
based on GPR. Representative features extracted from the
SPM170 and electrochemical-thermal models171 also show satis-
factory performance for battery SoH estimation. More physical
explanations are contained by the features extracted from EM.

Feature-free methods refer to machine learning-based
battery SoH estimations without manual HIs extraction and
selection process. Since the manually extracted HIs require
specific data of the parameters and the HIs vary from one
testing condition to other conditions, HIs usually have poor
generalization. In addition, it is hard to find perfect HIs.
Therefore, researchers use the raw measured data for the
machine learning algorithm, in which the data-driven model
is expected to extract the hidden features themselves. The
automatic feature extraction by a data-driven model requires
strong nonlinear ability, which makes the deep learning
method the preferred choice. The auto-encoder and decoder
with multi-layers are popular for automatic feature extraction.
The convolutional neural network (CNN) and recurrent neural
network (RNN) show satisfactory performance in this regard.115

Therefore, the model is trained directly by the processed raw
data and then applied to SoH estimation.

Tagade et al.172 used the deep GPR framework for battery
SoH estimation using raw data from the discharging process
without feature engineering. The time series data of voltage
and temperature were used directly as inputs. Jones et al.113

integrate the loading profile and the EIS measurement to
achieve SoH estimation under random charging/discharging
conditions, where historical information is not required.
Gong et al.173 adopted the encoder–decoder model-based deep

Fig. 9 Typical framework for feature-based SoH estimation with transfer learning, adapted from ref. 162 with permission.
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learning method for battery SoH estimation using the charging
curves. For the encoder process, two-dimensional convolution
modules were adopted, while the BP neural network was used
in the decoder process for the final SoH estimation. Different
types of batteries were used for the verification of the proposed
method with errors of less than 2%. Zhou et al.174 proposed a
temporal convolutional neural network (TCN) based deep
learning method for battery SoH estimation using the raw data
of partial voltage and temperature. Fan et al.175 fused the gated
recurrent unit neural network (GRU) and CNN to improve the
accuracy of SoH estimation using raw data of current, voltage,
and temperature. A general method for battery health prognos-
tics using CNN-based deep learning was proposed by Ruan
et al.,176 where the internal electrochemical parameter degra-
dation can also be diagnosed. The domain adaptation method
was used by Han et al.177 and Ma et al.178 to improve the
estimation accuracy under different battery applications using
long-short-term memory (LSTM) and CNN bottleneck, respec-
tively. The main idea was to reduce the domain discrepancy
between the hidden layers which represent the information
vector for the source domain and target domain.

3.4. EoL point prediction

For long-term lifetime prediction, the first type of method is
called EoL prediction, where the lifetime or RUL is directly
regarded as a target to obtain feature-based machine learning
or feature-free deep learning method. The flowcharts of these
two methods are shown in Fig. 10. Since the EoL prediction is
generally conducted by using multiple batteries, almost all the
methods belong to data-driven methods. The main difference is
whether specific feature engineering is needed and the selec-
tion of machine learning algorithms.

3.4.1. Feature-based methods. The main idea of feature-
based EoL prediction is to extract some features from current,

voltage, capacity, and temperature curves first, and then fit the
mapping between these features and battery lifetime via
machine learning algorithms. The overall framework for this
type of method is shown in Fig. 10, where five steps are
included. First, the gathered battery data are pre-processed.
Then, various features are extracted based on the aging correla-
tion analysis for the parameters. Generally, voltage-based,
current-based, internal resistance-based, capacity-based, and
temperature-based features are the most popular extraction
ways. However, the extracted feature matrix is usually multi-
dimensional, where some features show poor correlations with
battery lifetime, and some have high redundancy with other
features.156 Therefore, the third step is to select the optimal
feature subset, where four types of methods are popular: filter-
based, wrapper-based, embedded-based, and fusion-based. The
next step is to fit the mapping between the selected features
and battery lifetime via various machine learning algorithms.
Popular machine learning methods include LR and MLR, GPR,
SVR, RF, and ANN. Finally, the fitted model is evaluated by
the testing data sets. This shows that the processes for EoL
prediction and SoH estimation are similar when applying
feature-based machine learning methods. The difference is
that features for SoH estimation are extracted from data of
one battery in each cycle while the features for EoL prediction
are extracted from a large number of batteries using several
early cycles. In other words, SoH estimation is to map the
relationship between the features and SoH from each cycle,
while EoL prediction aims to map the relationship between the
features and EoL of one type of battery aging under similar
working conditions.

Although in implementation we only need one feature
data from one battery for lifetime prediction, in training, many
batteries are needed to fit the regression relationship, which is
time and labor-consuming. Therefore, few people had studied

Fig. 10 Methods for battery EoL point prediction and the corresponding general framework.

Review Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
ja

ne
ir

o 
20

23
. D

ow
nl

oa
de

d 
on

 1
4/

02
/2

02
6 

06
:3

8:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ee03019e


352 |  Energy Environ. Sci., 2023, 16, 338–371 This journal is © The Royal Society of Chemistry 2023

this type of method for battery lifetime prediction before
Severson et al.119 generated a dataset consisting of 124 cells.
They provided a feature that was calculated by the variance of
capacity change between the 100th and 10th cycle, that is
DQ100–10(V), which showed high correlation with battery EoL.
Then, researchers from the same group proposed the capacity
matrix concept along with a series feature representation. They
also developed and compared various machine learning
methods, which can be regarded as the benchmark of more
advanced related studies.179,180 Some other researchers have
conducted methods to improve the lifetime prediction accuracy
based on the work of Severson et al.119 whether using more
manually extracted features with the optimal feature selec-
tion method181–183 or improved hybrid machine learning
algorithms.184,185

In addition to the feature-based lifetime prediction reviewed
above, Paulson186 evaluated the feature-based lifetime predic-
tion on their own data set, which includes 300 pouch batteries
with six different cathode chemistries. Yan et al.187 extracted
features from the IC curve to estimate the capacity first and
then predicted the lifetime by fusing the empirical model and
SVR-based predictions. Weng et al.188 extracted resistance at a
low SoC as a feature, which realized very early stage lifetime
prediction after manufacturing for NMC batteries. Stock
et al.189 also managed to predict the lifetime of NMC batteries
at an early stage with features extracted from electrochemical
impedance spectroscopy (EIS) and cycling data. These two
works show prospects for EoL point prediction with the
resistance-based feature extraction method.

3.4.2. Deep learning. The feature-based prediction method
needs manual feature extraction, which is the main factor that
determines the prediction accuracy. However, the features are
greatly affected by battery chemistry and working conditions.
Therefore, deep learning-based prediction methods try to
extract features from raw data automatically based on deep
neural networks, such as deep CNN. The basic framework for
deep learning-based battery EoL prediction is shown in Fig. 10.
The steps are similar to those of feature-based prediction,
besides the feature engineering and machine learning algo-
rithms, which are replaced by the deep learning process. This
can be seen as the end-to-end prediction framework, where the
raw data are learned directly and automatically to predict
the targets. The difference between feature-free SoH estimation
and deep learning-based EoL prediction exists in whether the
data are from different cycles of one battery or many batteries
(each has one value) and the output.

Due to the availability of a large amount of data, this type of
method has also developed rapidly recently. The CNN-based
method is the main method, because of its strong feature
extraction ability. Due to the different input dimensions and
feature extraction requirements, the 1D CNN, 2D CNN, and 3D
CNN are adopted. For example, Hong et al.190 developed an
end-to-end battery EoL prediction method based on a dilated
CNN with uncertainty expression. The results showed better
prediction accuracy compared to the feature-based prediction
method proposed in ref. 119, with data containing only 4 cycles

for inputs. The hybrid parallel residual CNN was proposed in
ref. 191 to predict the lifetime of batteries. The voltage, current,
and temperature were constructed as 3-dimensional inputs for
CNN. Two attention algorithms were designed to highlight the
prediction. The prediction results showed only a 1.1% error
with only the first 60 cycles. Zhang et al.192 also predicted the
EoL of batteries based on a similar deep-learning framework
using partial charging curves that included only 20% of the
capacity range. Hsu et al.193 adopted CNN for battery EoL
prediction using only one cycle. The advantages of the deep
learning extracted features compared to human-picked features
for battery lifetime prediction were evaluated in this paper.
These papers showed that the deep learning method has better
accuracy and generalization than the feature-based EoL predic-
tion, which would help deep learning-based prediction to
become one main trend in this field. Recently, Ma et al.115

generated a dataset of aging batteries under different protocols
to be used in their deep learning method for battery EoL
prediction with unknown usages. As shown in Fig. 11, different
usages cause different degradation patterns and capacity dis-
tributions. The authors used the partial voltage and charged
capacity, differential partial voltage and charged capacity
curves for the deep learning model training to map the relation-
ship between the battery capacity and EoL. With the latest
30 cycles for the model’s fine-tuning, the deep learning method
achieved mean testing errors of less than 8.27% for battery EoL
predictions without more historical information starting from
fresh batteries. Cloud computing, big data platforms, etc., will
promote the development of this type of method for online
implementation.

3.5. Degradation trajectory prediction

Although EoL prediction shows satisfactory results for both
feature-based methods and deep learning methods with data at
a very early aging stage, the obtained information is still
lacking. For example, the specific degradations at different
aging stages cannot be known. Therefore, degradation predic-
tions try to predict the future trajectory curve of the degrada-
tions to provide more information for battery PHM. The main
methods can be divided into three categories which include
curve fitting, model generation, and sequence prediction
methods. The general processes for these three types of
methods and their specific steps are illustrated in Fig. 12.
The detailed method description and the corresponding state
of art are presented below.

3.5.1. Curve fitting. Curve fitting is a simple way to predict
the trajectory and lifetime of batteries and has been used in
onboard energy management systems.194 Generally, experi-
ments are first conducted to investigate the influencing factors
on battery aging, such as running cycle, current rate, tempera-
ture, DoD, mean SoC, etc.195 The expression between the
degradation curve and running cycles is selected according to
the specific degradation patterns for the specific battery types
under specific working conditions. The most popular expres-
sions include exponential function, polynomial function, loga-
rithmic function, etc. The parameters in the expressions need
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to be updated using historical degradation data. Commonly
used algorithms include the KF series, PF series, PSO, GA, etc.
Then, the fitted model is extrapolated with the running cycles
to obtain the future capacities or resistances until the value
reaches the threshold. Therefore, the future degradation
trajectory, as well as lifetime, can be predicted. It shows that
the curve fitting method for battery trajectory prediction shows

similarity to the empirical model-based SoH estimation. The
difference is that the extrapolation process is needed to predict
the future variation of the trajectory. Therefore, the model is
mainly supposed to map the relationship between the running
cycles and capacity or power fade while that for SoH estimation
contains more other information which can be obtained in
each cycle. In addition to the expression of battery degradation

Fig. 12 Methods for battery degradation trajectory prediction and the corresponding general framework.

Fig. 11 Typical framework for battery EoL prediction using deep learning, adapted from ref. 115 with permission.
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trajectory by the specific models, machine learning can also be
used to map the relationship between capacity or power fade
and number of cycles. The learned implicit model is then
extrapolated by increasing the value of the input cycle number
to obtain values in future cycles for the degradation trajectory
prediction.

The curve fitting method is simple to implement in the PHM
system and is mature in this field. Some representative works
are reviewed to illustrate the usage and performance of this
method. He et al.196 initialized the exponential model para-
meters based on the Dempster-Shafer theory using three train-
ing batteries, then Bayesian Monte Carlo was used to update
the model parameters while acquiring new data to predict SoH
and RUL. A semi-empirical model was proposed to model
battery degradation and used together with a severity factor
map within the hybrid vehicle simulator to minimize fuel
consumption and battery degradation.197 The SEI layer growth
and LAM can also be considered in the semi-empirical model
to fit the aging curves for capacity estimation and RUL
prediction.198 The calendar and cycle aging were combined in
the semi-empirical model to fit the degradation, where the
influence of DoD, C-rate, SoC, and rest periods were considered
to improve the accuracy.199 The above stress factors on capacity
degradation were evaluated in ref. 200, and the temperature
was found to be the most significant factor in battery aging. Liu
et al.201 combined the curve fitting process with GPR to provide
the probabilistic prediction for the future capacity curve. The
curve fitting method was used to quantify the mean function
of GPR and transferred to the testing batteries with early
updating. The sequential capacity estimation method was
proposed in ref. 202 to update the parameter of the model for
capacity degradation fitting. In addition to the model expres-
sion to map the relationship, machine learning can also be
used to fit the curve that represents the relationship between
the number of cycles and capacity or power fade for future
degradation trajectory prediction.203 The main idea is the same
as model-based fitting. Therefore, we put them in the same
category as the curve fitting method. A typical fused method
that combines the machine learning method and filtering-
based curve fitting is shown in Fig. 13.204 The historical
capacity degradation data are used to fit the exponential func-
tion and an LSTM model. Then, in the extrapolation-based
prediction process, the predicted value of the LSTM served as
the measurement to update the parameter of the empirical
function by PF. The EoL is predefined to stop the prediction
that calculates the RUL.

3.5.2. Model generation. The main idea of model genera-
tion is to build ECM or EM which has a good representation of
actual batteries to simulate the aging process.205 The general
process is shown in Fig. 12. The parameters of the models need
to be calibrated in advance. Methods for parameter optimiza-
tion mentioned in the SoH estimation can also be used here.
After the calibration, the model is simulated over cycles to
generate data during each cycle. Therefore, the degradation as
well as the process data, such as voltage and temperature, can
be obtained. The generation data differ from each other under

different aging conditions. The calibration accuracy determines
the performance and prediction accuracy of the models. Unlike
the ECM or EM model-based SoH estimation which uses the
obtained data to estimate the model parameters, the model
here is used to generate the data in future cycles by applying the
load profiles and updating the aging model parameters. This
type of method is more often used to support battery aging
simulation. The typical framework is shown in Fig. 14.41 The
ECM or EM is used to serve as a digital battery with aging
sensitive parameters such as internal resistance and solid-
phase diffusivity, etc. The parameter variation with running
cycles is supposed to be known by experts. Then, the current
profiles are loaded on the model to generate the process data
like voltage curves in future cycles until the capacity reaches the
EoL. Therefore, the future capacity trajectory and process data
can be obtained during simulation, which largely reduces the
time and labor consumption in battery aging tests.

There are many works on this kind of generation. For
example, Ecker et al.206 conducted an accelerated aging test
to fit a semi-empirical aging model and then integrated the
impedance-based electro-thermal model to simulate the aging
of a high-power NMC/graphite lithium-ion battery. Atalay
et al.207 developed a 1D–P2D battery model which considered
multi-layered SEI, lithium-plating, and reduction of anode
porosity kinetics. Then the model was used for both capacity
estimation and lifetime prediction. Pinson et al.208 developed
an SPM that considered the change of the SEI layer as the main
aging phenomenon to predict the capacity fade and lifetime of
batteries. Sulzer et al.209 used the adaptive inter-cycle extrapola-
tion algorithm to accelerate the simulation of the SPM during
aging for lifetime prediction. Li et al.210 proposed a compre-
hensive SPM with aging mechanisms for battery cycling capa-
city prediction, which achieved less than 2% prediction error
over the entire lifetime. The volumetric fraction change on the
cathode and lithium loss on the anode was considered as the
mechanisms affecting battery aging. The main degradation
mechanism at different aging stages has been illustrated.

Fig. 13 A typical framework for the fusion of filtering method and
machine learning for degradation curve fitting-based trajectory prediction,
adapted from ref. 204 with permission.
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Kupper et al.211 integrated three aging mechanisms, including
the formation and growth of SEI film, and dry-out of the
electrode in the pseudo-3D model to simulate the aging process
of LFP/C batteries. The aging model was successful in both
calendric and cyclic aging simulations. Lui et al.212 proposed a
physics-based model for battery lifetime prediction with
the estimation for key parameter degradation. Reniers et al.74

also integrated different aging mechanisms into the SPM
for the aging simulation of batteries, and a toolbox was
provided to support simulation with different aging mecha-
nism considerations.

3.5.3. Sequence prediction. The degradation curve has a
strong sequential relationship, which promotes the methods
for battery lifetime prediction via sequence prediction. Sequ-
ence prediction for battery degradation curves can be further
divided into the sequence-to-point with an iterative process and
sequence-to-sequence prediction. For both methods, the first
step is to reconstruct the capacity values to form the input and
output sequences. The basic structure for these two methods is
illustrated in Fig. 12 (i.e., sequence reconstruction). The main
idea is to take advantage of the sequential variation properties
of the degradation process. Then, the ML (machine learning) or
DL (deep learning) is used to map the relationship between
the input and output sequence. Finally, for future curve pre-
diction, the iterative method is adopted for sequence-to-point
prediction, while the one-shot prediction is applied in the
sequence-to-sequence prediction framework. Note that the
sequence-to-sequence prediction framework can also adopt
the iterative method when the predicted length is less than
the remaining cycles. Since capacity is hard to measure in
actual applications, capacity estimation is usually added before

sequence prediction, which can be realized by the SoH esti-
mated methods summarized in the former section.213

Due to the high sequential relationship of the capacity
variation and the ease of implementation, sequence prediction
for battery trajectory prediction has been developed rapidly in
recent years. The iterative method for sequence-to-point pre-
diction was combined with the Gray model to predict the future
capacity, and PF was added for the uncertainty expression of
the predicted lifetime by Chen et al.169,214 A similar idea was
also shown in ref. 215, where the LS-SVM was used to predict
the capacity of the next cycle while PF is used to update the
parameter. Since the degradation curves are impossible to be
smooth in actual measurements, the degradation curve was
first decomposed by empirical mode decomposition, and then
two different models were used to fit the sequence model of the
first two intrinsic mode functions to predict the future degra-
dation curve.216,217 A cell-to-pack method was proposed in
ref. 218 based on the sequence-to-point prediction of future
HIs for each connected battery cell. Then the future capacities
of both battery pack and each connected battery cell were
predicted through GPR. The transfer learning strategy was
adopted to adapt the varying properties of each connected cell
by using the information from the separated aged battery cells.
A fusion method was proposed in ref. 215, where the one-step
capacity is predicted by the time-series model first, and then
the dual filters were proposed to update the final predicted
capacity.

Although the sequence-to-point method is easy to imple-
ment and only the historical degradation data are required for
model construction, the method may encounter fast degradation
or slope vanish problems. Therefore, the sequence-to-sequence

Fig. 14 The general framework for model generation-based trajectory prediction and future voltage variation prediction, adapted from ref. 41 with
permission.
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method predicts future degradation curves via less interactive
steps, which avoids the above problem. Sequence-to-sequence
model uses the capacity sequence before the current cycle to
predict the future capacity sequence until the EoL which reduces
the iterative steps. A typical work using sequence-to-sequence-
based prediction is shown in Fig. 15.219 Similar to the works
shown in ref. 161, the authors extracted both data features and
physics-based features to group the batteries into three groups
that have long lifetimes, medium lifetimes, and short lifetimes.
Two LSTM layers are used for the encoder and decoder that
predict the capacity curve degradations. The results show that
only 20% of the historical data of the encoder can produce the
future trajectory curve with errors of less than 2.5%. Tong et al.220

used adaptive dropout-based LSTM and Monte Carlo simulation
to predict the future capacity degradation curve for battery life-
time prediction via a many-to-many structure. With the first 25%
of the degradation data, the prediction errors were less than 4%.
Li et al.125 proposed the one-shot prediction method to predict the
future capacity via a sequence-to-sequence method based on
LSTM with autoencoder and decoder methods. The EoL point
and knee point were predicted together with the future degrada-
tion sequence. The robustness of the proposed method was
verified by adding noise to the original capacity, and the predic-
tion errors remained less than 1.3%. They further proposed a
multi-task method to predict the variation of capacity degradation
and resistance increment in the future aging process.118

4. Comparative evaluations

The objects for different types of health prognostic tasks are
different, as mentioned before. In each prognostic task, various
methods are used. In this section, the overall comparative
evaluation for the SoH estimation, EoL prediction, and degra-
dation trajectory prediction is first carried out. Then, the
evaluations of different methods for each task are presented
and discussed. These comparative evaluations are shown in
Fig. 16, which are discussed in detail below.

4.1. Evaluation for the prognostic tasks

The predicted information, timescales, source data requirements,
method categories for each prognostic task, publication trend, and
implementation are evaluated and compared. It is shown in Fig. 5
that SoH estimation and EoL prediction only focus on the predic-
tion of one specific point, either for short-term or long-term. In
contrast, all degradation values of the future SoH until the EoL
point are needed to predict in the degradation trajectory prediction
task, which provides more health information than SoH estimation
and EoL prediction. For the data requirements, SoH estimation
needs historical information or data from a few other batteries for
the modeling, which is similar to the requirement of degradation
trajectory prediction. While for the EoL prediction, since one
battery has only one EoL point, a large number of batteries aged
to EoL are needed to build the prediction model. It can be seen
from the stat-of-the-art review in the above sections that the way
SoH is estimated varies. Many methods can be used for SoH
estimation; most of them are mature, and some have been used
in real-world EVs. There are many methods for degradation
trajectory prediction, but still a little less than SoH estimation.
However, due to the limitation of data, EoL prediction has been
developed slowly and has much fewer methods than SoH estima-
tion and degradation trajectory prediction. Therefore, the publica-
tion trends for SoH estimation, degradation trajectory prediction,
and EoL prediction also show a similar pattern. Batteries generally
degrade in different ways due to random usage scenarios, which
makes them have different degradation patterns and lifetimes.
Therefore, the implementation of degradation trajectory prediction
and EoL prediction is generally more difficult than SoH estimation.
The EoL prediction in existing works is based on the aging of many
batteries under similar conditions, which makes them difficult
to implement in actual applications under various external
conditions. The above evaluation is illustrated in Fig. 16(a).

4.2. Evaluation of the prognostic methods

Comparative evaluations for methods of each specific task
are presented in this section, where the methods for SoH

Fig. 15 The typical framework for the sequence-to-sequence-based trajectory prediction, adapted from ref. 219 with permission.
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estimation are firstly evaluated. Different aspects are considered
to compare the different methods for battery SoH estimation,
including accuracy, computational burden, implementation
complexity, model generalization and robustness, and publica-
tion trends. Specific implementation methods are compared,
which are empirical model-based, ECM model-based, EM
model-based, feature-based ML, and feature-free ML. As men-
tioned before, the EM contains the most physical information
while the empirical model contains the least, and the ECM is
in the middle. The accuracy shows a similar trend while the
computational burden shows the opposite trend. Feature-based
machine learning is generally more accurate than feature-free
machine learning and requires less computation. The accuracy
of the ML learning-based method is similar to that of the ECM
and EM model-based methods and is better than the empirical
model-based method. However, the implementation complexity
is higher because a strict feature engineering process is needed.
Similarly, EM is the most difficult one for implementation, while
the empirical model is easy to use in real-world applications.
On the other hand, the empirical model has the worst model

generalization and robustness, while the EM has the best.
The ML-based method has similar performance to the ECM
model-based method, while the feature-based method is worse
than the feature free based method. Finally, for the publication
trend, ML-based methods showed a higher growth rate than
the model-based methods. The feature-based method has a bit
higher growth rate than the feature free method. The EM-based
method is more popular than the ECM, which has more
research interest than the empirical model-based method.
The main advantages and disadvantages of the different
methods for battery SoH estimation are listed in Table 4.

To compare feature-based EoL prediction and deep learning-
based EoL prediction, indices including the accuracy, compu-
tational burden, model complexity, generalization and
robustness, and publication trend are considered. According
to the published studies, the accuracy of deep learning-based
EoL prediction is better than that of feature-based methods,
while the computational burden and model complexity are
much higher. The generalization and robustness for feature-
based methods are poor since the specific feature for specific

Fig. 16 Comparative evaluation of different prognostic tasks and the corresponding methodologies. (a) Evaluation of different prognostic tasks.
(b) Evaluation of SoH estimation methods. (c) Evaluation of EoL prediction methods. (d) Evaluation of trajectory prediction methods.
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batteries and working conditions are needed, while those for
the deep learning-based method are better since raw data are
directly used. The publication trends for feature-based and
deep learning methods are similar since all of them have
become hot research topics recently. The main advantages
and disadvantages of the feature based and deep learning
methods for battery EoL point prediction are listed in Table 4.

Finally, a comparative evaluation among the curve fitting
based, model generation based, sequence to point-based, and
sequence to sequence-based degradation trajectory prediction
is conducted and discussed. Similarly, prediction accuracy,
computational burden, data requirement, model generalization
and robustness, and publication trends are considered as
comparative indices. First, the accuracy of curve fitting and
sequence prediction is generally better than those of the model
generation method since the parameters in the aging model
are difficult to calibrate and vary. The sequence-to-sequence
prediction method shows a little better accuracy than the
sequence-to-point method because the integral error from the
iterative process can be alleviated. However, the data required
for the training of the sequence-to-sequence method are larger
than that for the sequence-to-point method. The data required
in the curve fitting method are small because only historical
data are required or with degradation data from a few other

batteries, which is like the sequence-to-point method. The
model generation method needs the whole aging test to cali-
brate the model, and several different working conditions are
needed, which are larger than the above two methods while less
than the sequence-to-sequence method. The training burden
for the sequence-to-sequence method is higher than for the
sequence-to-point method, but fewer steps are required in the
prediction process. The curve fitting method requires the least
computation, while the model generation requires the most
calculation time. Transfer learning is proposed as a data-driven
method that improves model generalization. The curve fitting
and model generation methods have a relatively poorer gene-
ration because the parameters are just suitable for the specific
battery aging under specific conditions. Due to the advanced
machine learning and availability of a large amount of data, the
data-driven method shows a fast publication rate, especially the
sequence-to-point prediction. The model generation is hard to
implement and there are few studies. While the curve fitting
method is the earliest and most mature, this also results in
fewer publications than data-driven methods. The main advan-
tages and disadvantages of the different methods for battery
future trajectory prediction are listed in Table 4.

Therefore, when studying battery health prognostics, it is
recommended to consider the specific task first, then select

Table 4 Summary of the advantages and disadvantages for different battery health prognostic methods

Objective Methodology Advantages Disadvantages

SoH estimation Empirical model
parameter optimization

& Easy to implement in real world & Enough experiment to map the
empirical model

& Fast calculation & Poor generalization
& Mature & Low accuracy

ECM parameter optimization & Better physical interpretability & Poor performance in low temperatures
& A few parameters & Poor performance with high current
& Low computational burden & Difficult to implement in real world

EM parameter optimization & High physical interpretability & Difficult to implement in real world
& High accuracy & High computational burden
& Robustness under extreme conditions & Difficult to calibrate parameters

Feature based ML & High accuracy & Poor generalization
& Low computational burden & Sensitive to work conditions
& Easy to understand & Depending highly on the features

Feature free ML & Raw data only & High computational burden
& High accuracy & Sensitive to the processed raw data
& Good generalization & Poor interpretability

EoL prediction Feature based & Early prediction & Large requirement of experiments
& Low computational burden & Difficult to find suitable features
& High accuracy with one certain
battery chemistry

& Sensitive to battery chemistries
and aging profiles

Deep learning & High accuracy in early prediction & High computational burden
& Good generalization & Difficult to implement in real world
& Raw data only & Poor interpretability

Future trajectory
prediction

Curve fitting & Clear correlation with indicators & Poor performance in early prediction
& Fast calculation & Plenty of experiments are required
& Support onboard application & Poor generalization and low accuracy

Model generation & Future process data are obtained & Difficult to calibrate parameters
& Better physical interpretability & Low accuracy
& Support fast aging simulation & Difficult to implement onboard

Sequence to point prediction & Both historical data and data from other
batteries support the modelling

& Difficult for early prediction

& Accurate short-term prediction & Easy to diverge during iteration
& Lower data requirement & Sensitive to window length

Sequence to sequence prediction & High accuracy & Require different degradation data
& Support early prediction & Poor generalization
& Fast prediction in one shot & Data need to be in the same length
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proper methods according to the main indices in the specific
applications. However, from the comparative evaluations
above, the model-based methods are mainly focused on the
coupled EM modeling and the collaboration with data-driven
methods is a promising approach to the complex problem. On
the other hand, as the computation of the battery management
system is approaching the limit, the advanced data-driven
methods combined with cloud edge is a potential research
direction. Therefore, in the next section, some practical chal-
lenges are listed with potential solutions, as well as research
prospects considering the advanced methods and algorithms.

5. Key challenges and research
prospects

Battery health prognostics is one significant and hot research
topic in battery management. Various methods that consider
different application requirements have been proposed in this
field. It is important to know the key challenges and the main
research focus. In this section, the main challenges and some
potential solutions, as well as future research prospects, are
presented and discussed.

5.1. Main challenges and potential solutions

Many useful methods have been proposed in recent years for
battery health prognostics and significant progress has been
made in this field. However, there are still several major

challenges in the following aspects, which are summarized
according to the actual use. Some potential solutions for these
challenges are presented and discussed. The evaluations of
the potential solutions are also presented, considering the
accuracy, robustness, and complexity. The overall illustration
is shown in Fig. 17.

5.1.1. SoH estimation
A. Model transfer for different chemistries with different load

profiles. The SoH estimation method is generally difficult to
satisfy the accuracy requirement when the model is applied
to batteries with different chemistries and different loading
profiles. For the models built based on the model-parameter
optimization-based method, the parameters are generally not
suitable for other chemistries, and the model response can be
different under different loading profiles. Therefore, it is chal-
lenging to build a model that can be used widely for different
battery chemistries. For machine-learning-based SoH estima-
tion, the trained model cannot cover different aging patterns
either. For different battery chemistries and load conditions,
the feature extracted either manually or automatically may have
different correlation relationships between battery SoH and
working conditions. Therefore, the highly coupled physics-
based models are better for meeting the SoH estimation
requirement under different scenarios. However, as the model
become highly coupled, the computation and estimation of
model parameters become the major challenges. Solving the
coupled model may be achieved by designing a fast solver
combining ML to establish the physics-informed machine

Fig. 17 Key challenges regarding battery health prognostics and potential solutions.
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learning framework. For example, the governing equations of
P2D models can be solved by developing a physics-informed
ML to accelerate the calculation. The accuracy and robustness
remain high while reducing the computational complexity.
Additionally, the low sampling frequency of the collected data
in the real world is still challenging for the parameter calibra-
tion of mechanistic models. The advanced sensing technology
is also a promising way to reduce the complex parameter
identification process of the coupled electrochemical model
by detecting the internal variations and key parameters related
to battery aging such as the electrolyte density. For ML
methods, labeled data from the source domain and unlabeled
and insufficient labeled data from the target domain need to be
used to estimate testing batteries. General features should be
extracted to cover scenarios of different aging modes, which
makes the data-driven model more robust and accurate under
different aging scenarios. Continual learning is also a good way
to learn the aging characteristics from different scenarios
to make the trained model suitable for broad applications.
The continual learning strategy can maintain the accuracy
and robustness of the estimations under different new aging
scenarios. However, the continuous online storage of huge
amounts of data needs to be solved.

B. Estimation at extreme temperatures. Generally, research on
battery health estimation only focuses on the verification at
normal ambient temperatures. However, the battery electro-
chemical reactions at low temperatures differ considerably
from those at normal temperatures, which makes the aging
mechanisms and degradation patterns significantly different.
The models also have poor performance under low tempera-
tures, which makes it difficult to estimate the parameters
accurately. This difficulty compromises the accuracy of the
model-parameter optimization-based SoH estimation. On the
other hand, the voltage and temperature responses varied
under low temperatures, which makes it difficult to extract
effective features. Therefore, the data-driven methods for SoH
estimation also lose performance at low temperatures. Regard-
ing the high-temperature conditions, battery aging accelerates
and more potential failures such as fast growth of the SEI film
and the degradation of the cathode material could happen. The
high temperature changes the degradation patterns which
causes the model developed at normal temperatures to perform
poorly at high temperatures. For potential solutions, the tem-
perature information needs to be added to the modeling of the
model-parameter-based SoH estimation framework to ensure
effective estimation at extreme temperatures. However, model-
ing at extreme temperatures is challenging since the internal
electrochemical reactions have different representations from
those at normal temperatures. Investigating highly coupled
modeling is valuable to cover the estimation at extreme tem-
peratures. The coupled model captures the aging and tempera-
ture information which makes the model accurate and robust
under different temperature and aging scenarios. For the
machine learning-based method, the effective feature extrac-
tion method suitable for large temperature ranges is one of the

important research directions to ensure accurate estimation at
extreme temperatures. Temperature-informed features should
be extracted to represent characteristics under variable tem-
peratures. These features can be extracted from the physics
model such as the calculated SEI thickness parameter, lithium
plating side reaction potential, etc. to accurately describe the
aging mechanisms at extreme temperatures. However, the
general features and temperature-dependent features, which
have high robustness under different aging scenarios, are hard
to extract and require a large number of experiments for
investigations. In addition, the internal temperature sensing
technology helps obtain accurate temperatures inside the bat-
tery, which will also improve the accuracy and robustness of the
estimations in future smart batteries.

C. Estimation with the shallow and varying DoD. Generally,
both parameter optimization-based and data-driven methods
for battery SoH estimation require sufficient data covering
stable and relatively wide DoD. However, in actual applications,
shallow or varying DoDs are more common, which makes it
difficult to use the built model for accurate battery SoH
estimation. For example, different DoDs make the estimated
parameters of the models inaccurate under the current condi-
tions, which brings large errors to the final SoH estimation. In
data-driven methods, the shallow DoD brings big challenges for
effective manual or automatic feature extraction, which causes
big errors to the SoH estimations. Therefore, the different and
shallow DoDs in practical applications are one of the major
challenges in battery SoH estimation. The parameter estimated
by the model can be correlated to those at different DoD and
SoC stages that support the model transfer at different stages
for the final SoH estimation. For the data-driven methods, the
correlation between the extracted feature at different DoDs also
needs to be studied. Ensemble learning is also a good tool for
improving estimation accuracy and robustness by integrating
the features extracted from different stages. For practical appli-
cations, suitable sub-learners can be activated according to the
real DoD.

D. Diving warning. In existing works, the SoH estimation and
health warning cannot figure out the capacity diving phenom-
enon in advance. It is difficult to detect the diving before
occurring. It is meaningful if the capacity diving can be
predicted in advance, which helps implement proper mainte-
nance to avoid further damage. However, it is still a big
challenge for such early warning prediction since it is difficult
to capture the changes inside the batteries during operation
using the model. The precise physics-based model that cap-
tures the changes inside the batteries helps predict the
potential capacity diving. A highly coupled and accurate model
needs to be built and reliable parameter optimization algo-
rithms are needed to provide an accurate detection of those
small changes inside the batteries. The variation of key para-
meters related to capacity diving needs to be carefully moni-
tored with high accuracy and robustness. Similarly, complexity
is the main challenge for this kind of method. Machine
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learning can be used to map the relationship between these key
parameters and the possibility and time of diving occurrence.
However, the development of diving warnings is still unseen.
Research in this field is challenging but significant. The early
degradation pattern recognition algorithm helps predict the
probability of fast degradation that is more prone to diving. The
accuracy and robustness of these solutions are not as good as
that of the physics-based method. However, they are more
useful in online applications due to their simplicity compared
with the physics-based method.

5.1.2. EoL prediction. The research progress on battery EoL
prediction started later than that on SoH estimation and
degradation trajectory prediction because of the requirement
of a large number of batteries aged under similar conditions.
Methods for EoL prediction are also much fewer than the other
two prognostic tasks. Therefore, there is a good amount of
research that can be done for battery EoL prediction. Some
main challenges and potential solutions are presented below.

A. Prediction for different applications. Existing methods for
battery EoL prediction, either feature-based or deep learning
methods, only cover the prediction scenarios that the testing
batteries and training batteries have the same battery types
with similar aging conditions, which means they have similar
degradation and lifetime distributions. However, it is difficult
to obtain sufficient data for each battery type under similar
external stresses to train the model for one specific prediction
task. Even the same battery type can be used under various
external stresses in practical applications. However, the differ-
ent external stresses and battery types will have different
degradation modes leading to different aging patterns and
large discrepancies in lifetime distribution. Therefore, the
EoL predictions for batteries that have different aging trajec-
tories from the source batteries are still unsolved challenges.
The features used for EoL prediction play significant roles in
the accuracy and robustness of the prediction framework. The
methods for either manual or automatic feature extraction
should cover the different practical scenarios, which ensure
the effectiveness of the model under different applications.
Therefore, the features which are not sensitive to the specific
operating conditions can improve the accuracy and robustness
of the EoL prediction of batteries with different aging patterns.
For example, these features can be obtained using advanced
sensors that detect the mechanisms inside the batteries. In
addition, the transfer learning strategy can also be considered
to improve the prediction accuracy under different scenarios
with fewer data for training under a new scenario.

B. Knee point prediction. Knee point is generally defined as
the time after which the degradation accelerates.120 The degra-
dation pattern for a specific battery is determined by many
complex factors. The chemistry, environmental temperatures,
and loading profiles can all change the shape of the degrada-
tion curves. Therefore, whether there is an obvious knee point
and when it will appear are difficult to know before it appears.
However, the degradation curve before and after the knee point

shows significant differences. The difference in the degradation
rate before and after the knee point also affects the accuracy of
the life prediction model. Therefore, capturing the knee point
has a huge effect on the accuracy of the final lifetime predic-
tion. There are several knee point prediction methods proposed
in recent years, but their effectiveness has not been proved
under different application scenarios. The existing prediction
framework generally predicts the whole degradation curve first
and then calculates the knee point reversely. The knee point
prediction at early stages is more significant for early main-
tenance and more accurate degradation trajectory prediction.
Pattern recognition is supposed to figure out the curve shape
and whether the degradation curve has a knee point. Then,
both the feature-based and deep learning methods for EoL
prediction at early stages can be explored to the early knee
point prediction. For example, the mapping between the
features extracted at early aging stages and the knee point
can be studied to provide early predictions. Nevertheless, the
accuracy and robustness are hard to ensure since the knee
points are quite random at different stages due to the specific
user applications. The probabilistic prediction can be adopted
to provide a risk warning of knee points, which helps users for
early maintenance.

5.1.3. Degradation trajectory prediction
A. Degradation prediction at variable temperatures. The existing

method mainly focuses on the degradation trajectory prediction at
a specific temperature. However, the temperature in actual appli-
cations varies. The model built using data at one temperature
generally has poor accuracy at other temperatures. The main
degradation mechanism under different temperatures has some
differences, and the available capacity is also different, which
causes the prediction model to lose accuracy. Therefore, degrada-
tion trajectory prediction of batteries at variable temperatures is
challenging in practical applications. Therefore, the external
environment temperatures should be considered in the prediction
framework. The information on temperature change can be
predicted based on the historical temperatures in one specific
region. Then, temperature variations can be integrated into the
prediction framework to provide prediction at variable tempera-
tures. In addition, the degradation trajectory distributions
between the lowest and highest temperature can be predicted to
provide the potential lifetime distribution in the future consider-
ing the variable temperatures. When the trajectory distributions
are predicted, the reliability of the prediction is improved, which
provides more information for the users to help the decision of
maintenance.

B. Detecting capacity recovery. The capacity recovering phe-
nomenon is common during the degradation process, which
generally occurs after rest. It is difficult to predict the future
degradation curve since the time and extent of capacity recovery
are hard to detect before it happens. The capacity recovery
changes the degradation patterns which can change the time
to reach EoL. However, the occurrence is completely random
according to the user’s habits. Therefore, detecting capa-
city recovery and considering it in the prediction have been
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challenging until now. A potential solution is to integrate the
usage habit into the prediction framework. The extent of
capacity recovery needs to be mapped to the stopping time,
the shut-off current rate, environmental temperatures, etc.
Then, the usage habit must be considered in the prediction,
which helps detect when the capacity recovery may happen.
Then, the extent of the recovery can be predicted based on the
recovery prediction models. Finally, the degradation curve with
capacity recovery prediction can be obtained. Although this is a
proper way for the predictions of a capacity recovery, the
capacity recovery is mainly affected by the use case, which
makes the capacity recovery quite random. Therefore, the
accuracy and robustness of this prediction are challenging.

C. Accurate prediction at different aging stages. The aging
mechanisms do not remain the same during the entire degra-
dation process. The variable external conditions also change
the main internal aging mechanisms of batteries, which causes
the batteries to have different degradation patterns at different
aging stages. However, only a single model was built in the
existing works, which is hard to cover the different aging
patterns under different main aging mechanisms at the differ-
ent aging stages. Therefore, accurate trajectory prediction for
the whole life is still challenging considering the different
aging characteristics at the different aging stages. The multi-
stage prediction and model fusion strategy can be a proper
solution to this challenge. Multiple sub-models can be built to
represent the main degradation patterns at different stages.
Then, degradation pattern recognition should detect which
degradation stage is now to help in selecting the most suitable
degradation models. At stage transitions, the fusion of two
adjacent models can be considered to ensure a smooth transi-
tion. In addition, the multi-model fusion helps improve the
accuracy and robustness of the prediction. However, the com-
putational cost will increase, and the pattern recognition and
model fusion methods still require substantial research.

5.1.4. General aspects
A. Prognostics for battery packs. The published works mostly

focus on health prognostics for battery cells. However, the
batteries are connected in series and/or parallel to meet the
energy and power requirements in practical applications. The
inconsistency among the connected battery cells causes differ-
ent degradation rates and influences the available capacity of
the battery pack. The inconsistency increases with the usage,
which brings extra degradation to the connected battery cells
and the battery pack, and leads to different degradations for the
connected battery cells. Moreover, the actual capacity for the
connected batteries is not measurable in real applications,
which makes it difficult to build the model based on the actual
values. Therefore, the health prognostics for battery packs are
closer to the actual demand while facing more challenges.
Proper and accurate models for battery packs with acceptable
computational burdens are required. The mechanistic models
have high accuracy, but simplification of the model for battery
packs is needed and inconsistency should be considered. For
example, the mean difference modeling idea can be adopted

since the overall characteristics of the batteries in a battery
pack are similar while some differences exist. Therefore, a
reference model containing the coupled mechanisms (like an
electrochemical-thermal-aging coupled model) for the pack can
be built for the overall representation of the battery pack while
the difference among the batteries can be built via more simple
models such as the ECM. The main internal reactions can be
presented by the highly coupled mechanistic model while the
differences are detected more quickly via the difference models.
In addition, the battery digital twin can be built on the cloud
with updated parameters of the mechanistic model, which
makes the calculation faster. The data-driven methods that
consider the inconsistency feature for battery pack health
prognostics are also promising. The transfer learning using
domain adaptation can be used for the health prognostics of
connected battery cells in the battery pack since only unlabeled
data of connected cells can be obtained. Besides, continuous
learning is recommended to learn the various degradations
of connected cells to make models have better accuracy and
generalization.

B. Onboard application. The onboard application for the
health prognostics for the real batteries suffers from the
coupling challenges from the above and other factors, such
as insufficient actual data, low sampling frequency, and so on.
Insufficient data and low measurement accuracy make it diffi-
cult to build an online model, and using an offline model
generally has poor accuracy since the onboard batteries
degrade in various ways. Therefore, the actual applications of
the most reviewed methods for onboard prediction still have
many problems before reliable implementation. The model
parameter estimation with optimization algorithms or model
training using sparse data with relatively large noise is a
promising way to promote onboard applications. In addition,
the limited computational ability of the BMS makes it difficult
to implement most of the advanced algorithms in practical
applications despite the model parameter optimization
methods or data-driven methods. The cloud-edge technology
is a promising and feasible way to collaborate with the onboard
BMS for the onboard applications of advanced prognostic
methods. Specifically, the complex calculation for the mecha-
nistic model can be processed on the cloud via the vehicle to
internet technology. Some simplified models with parameter
optimization can be processed onboard at the same time. For
data-driven methods, the model trained in the lab can be
adopted as the base model for online prognostics. Then, using
the obtained data during usage, the model can be retrained to
adapt to the specific aging scenarios to improve the model
accuracy and robustness. This method can accelerate the con-
vergency process with a much lower training computational
burden. Cloud technology is also beneficial for fast calculation
and for the storage of historical data which can be used for
continual training of the model. The model estimation results
and the estimated results of the data-driven methods can
be references for each other to reduce unreliable results to
improve the robustness of the final estimations.
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5.2. Prospects of future research trends

Battery health prognostics is a hot topic in the battery manage-
ment field. Some research prospects are presented in this
section in the following five aspects. A graphical illustration
of these five research prospects is shown in Fig. 18, which are
discussed in detail in the following subsections.

5.2.1. Comprehensive coupled models with fast algo-
rithms. The models for battery SoH estimation and degradation
trajectory prediction are supposed to cover as many scenarios
as possible to ensure effectiveness under different practical
scenarios. Therefore, the multi-physics coupled modeling for
batteries can be one major research topic regarding model-
based health prognostics. For example, the modeling of aging
mechanism, thermal variations, mechanical stress, etc., can be
coupled to ensure the robustness and accuracy of the models
despite different external stresses implemented on battery
aging. The coupling model also provides an accurate explana-
tion of what is exactly happening inside the batteries, thus

figuring out the accurate aging mechanism in the batteries for
the specific aging scenarios. The precise mechanism explana-
tion supports the proper strategy to alleviate the aging process.
However, the complex models are difficult and time-consuming
to solve. Therefore, efficient and fast solutions to the complex
coupled and differential equations to obtain the key informa-
tion of the models will be the subsequent research topics in this
field. The online solution of the coupled model ensures the
online application. Cloud computing and the digital twin are
good ways to enhance the solving process. In addition,
advanced sensing technology help detect the internal variation
of batteries and extract the key parameters directly, while helps
reduce the complex parameter identification significantly.

5.2.2. Physics embedded machine learning framework.
The pure data-driven method or the model-based method has
good performance in battery health prognostics, but the accuracy
and generalization are still not satisfactory. Many researchers
have suggested that the combination of physical information

Fig. 18 Research prospects for battery health prognostics.
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and data-driven method has benefits for battery health
prognostics.221,222 The ways to integrate them can be divided into
three categories: simple model integration, physical information-
driven machine learning, and physics-informed machine learn-
ing. This first way, i.e., simple model integration, means separate
prognostic results obtained by both model and data-driven meth-
ods are fused to provide the final prognostic results. The research
on the fusion method for the fusion of the separate results is the
main research topic in this category. Reasonable and effective
weight allocation is the main challenge here. The second direction
also has two categories. One is to use the mechanistic model,
whose electrochemical parameters (such as electrode thickness,
solid phase and electrolyte Li, electrolyte and solid phase con-
ductivity, etc.) are calibrated in the lab, to generate simulation
data to support the initial training of the ML model. Then the ML
model can be retrained under different applications based on the
available data to suit the personal prognostics requirement. The
other is to extract key features that represent the internal reactions
of the batteries from physics-based models. The internal resis-
tance calculated by ECM is helpful for degradation prediction
since the resistance increases along with aging. The parameters
extracted from the P2D or the simplified model better reflect the
variations inside the batteries. For example, the aging sensitive
parameters such as positive and negative electrode state-of lithia-
tion, porosity, solid phase diffusion coefficient, the thickness of
anode, cathode, separator, and the SEI layer are valuable for the
aging characterization and can be extracted as key features for
battery health prognostics. The development of smart sensors in
batteries helps extract these key parameters more precisely, which
supports more accurate and robust prognostics. Then these key
features can be added to data-driven methods to improve the
accuracy and robustness of the heath prognostics under different
aging scenarios. Another benefit is that the interpretability of the
data-driven becomes better. The last one, physics-informed
machine learning, has two research directions. First, the neural
network can be used for the fast solution of partial differential
equations (such as the governing functions of the P2D model) in
physical models which enables the online application. Besides,
the model can be integrated into the neural network to accelerate
the convergence of the training process and impose some physical
constraints on the machine learning model, which makes the
data-driven methods work in the proper and reasonable ranges
while ensuring accuracy. For example, the electrode state of
lithiation can be used as the features for the neural network for
capacity estimation. The physical relationship between these
parameters and the capacity can be used in the latter physics
regularization loss function, which integrates the physical model
in the neural network to improve the accuracy and robustness of
the prognostic results. Regarding the ML used in MD simulation,
ML methods can be used to accelerate the MD calculation
process. Also, we can do the opposite way, using the important
information from MD, such as potential energy and atomic
interaction forces, as key HIs for ML-based battery health prog-
nostics to improve the accuracy and physical interpretability.

5.2.3. Semi-supervised and self-supervised methods. Most
of the existing data-driven methods use supervised learning to

train the model. However, this is doable mostly in laboratories
where abundant data are available to build the model. The
labeled data in the practical application are limited, which
makes most of the published approaches difficult to imple-
ment. An appropriate way is to adopt a transfer learning
strategy to reduce the demand for training data while ensuring
model accuracy. However, transfer learning in published
papers still requires a range of real-world capacities to retrain
the prognostic model. The oncoming research needs to focus
on the reduction of data for retraining the model. One possible
way is adopting semi-supervised learning to update the model
by using some pseudo values, which can be generated by the
base model, physical model, generative adversarial network,
etc. In this way, the information from the testing batteries can
be used to help improve the accuracy even if the actual labels
are not given.

Another interesting topic is the self-supervised learning
approach for battery health prognostics. It has been mentioned
above that labeled data are insufficient in practical applications
and sufficient unlabeled information can be obtained. There-
fore, the advanced self-supervised method can be adopted
properly to train a basic model by the unlabeled data, which
helps the training convergence of the subsequent usage of the
model for battery health prognostics. Since the unlabeled data
are plentiful, the development of self-supervised-based meth-
ods plays a significant role in this field.

5.2.4. Multi-task learning. The data-driven methods in
published works are almost single-task learning frameworks,
which just focus on specific prediction. For example, the future
capacity prediction needs to predefine the prediction step, such
as the capacity prediction of the next cycle. However, it is
difficult to say which cycle ahead is better than others in the
interactive prediction process. Therefore, the multi-task learn-
ing strategy can be adopted for multiple settings of future step
prediction, and then the ensemble learning framework can be
used to fuse the multiple outputs for the final prediction.
Another application scenario is that the different degradation
patterns can be learned using different task-specific blocks. The
degradation pattern clustering can also be integrated as one
task to identify the probability that the degradation of the
testing battery belongs. Then, several degradation predictions
based on the probability of the degradation pattern can be
fused to output the final predictions.

The parameters of the physical model varied with battery
aging. The estimation of multiple aging-related parameters can
be integrated into the multi-task learning framework to take
advantage of artificial intelligence and reduce the computation
time to promote online applications. The shared hidden
relationship between the external measured parameters and
internal states can be learned using the sharing layers, and the
specific electrochemical parameters are then estimated using
different task-specific blocks.

5.2.5. Multi-model ensemble. There are some ensemble
learning methods for battery health prognostics in existing
works. However, the ensemble strategy still needs further
investigation. For example, the charging process contains
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multiple segments, and the segments that the battery under-
goes in actual applications are a bit random due to the random
usage scenarios. The ensemble design of weak learners to make
the most use of the available information is an interesting and
valuable research direction, which ensures the accuracy and
robustness of the method. In addition, different models or
machine learning algorithms show different performances in
specific prognostic scenarios. A valuable ensemble method to
take advantage of the strength of different methods will benefit
the final prognostics, which has better accuracy and robustness
under different practical applications. How to evaluate the
effectiveness of each method in actual applications and to
assign proper fusion weights are the key but challenging topics
in this field. The computational requirements of the multi-model
ensemble may be beyond the ability of the BMS. Therefore, as
mentioned before, cloud-edge technology is a promising way to
help satisfy online prognostics with complex algorithms.

The potential implementations of the previously presented
prospects (from 5.2.2 to 5.2.5), which are advanced machine
learning-based methodologies, on battery health prognostic are
demonstrated in Fig. 19. The potential research directions lie in
the following aspects. In the early stages, the data analysis and
coupled model are needed for the feature extraction to support
the early prognostic of EoL and keen prediction (which support
early pattern recognition). The coupled model also plays a
significant role in the advanced machine learning algorithms
to impose physical constraints to form physics-informed
machine learning. The prediction of the knee points and the
EoL points are supposed to be provided by the multi-task

learning block. The degradation distribution between the tem-
perature range can also be predicted by the multi-task by
predicting the degradation curve at the higher temperatures
and lower temperatures. When the pattern recognition tells
that the degradation is passing through the transition zone, the
multi-model ensemble methods should provide the fused pre-
diction results of different degradation models to improve the
accuracy. The process data during each cycle may have shallow
and varying DoDs, where the multi-model ensemble framework
helps support the estimation of current SoH. The computa-
tional burden of the multi-task and multi-model ensemble with
physics information extraction will be greater than the comput-
ing power of the BMS. Then, the cloud-edge technology helps
boost the online prognostic. The model can be learned on the
cloud by updating the information from the usage edge. The
predicted results can be sent back to the edge for control.
Finally, in the usage process, generally, very few or no labeled
data but unlabeled data can be obtained. Therefore, the semi-
supervised method can be used, which can generate pseudo
labels by using the learned model before to support the self-
learning for final prediction. Another proper way is to use a self-
supervised method to learn a general representative model.
The limited labeled data can be used to fine-tune the semi-
supervised learned model or for the downstream usage of the
self-supervised learned model. The semi-supervised and self-
supervised methods are promising frameworks to deal with the
prediction requirements under practical applications. Here, the
data collected from the big data platform can be selected to
support the learning of the basic and general characteristics.

Fig. 19 Illustration of advanced machine learning methods for battery health prognostics.
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Big-data driven is another promising research direction in the
battery health prognostics. Some details are presented and
discussed in the next subsection.

5.2.6. Big data-driven prediction. The informatization of
batteries is one trend in future battery management, which
means various data from different battery chemistries/formats
and application scenarios can be obtained and shared for
research on battery health prognostic. The model construction
based on big data is required to improve the accuracy as well as
the generalization that can support the wide applications. The
big data from different applications are mainly unlabeled.
Recently, most of them are not well utilized for model con-
struction and improvement. However, much useful informa-
tion can be used despite no real labels that can be used, as
mentioned before. In addition, the lab data are better com-
pared to the practical data. The large noise, low sampling
frequency, and many missing and faulty data in practical
applications are challenging for model construction. Therefore,
in future work, proper ways to deal with those low-quality data
will be a popular research topic. Then, how to take advantage of
the plenty of data to improve the accuracy, robustness, and
reliability of the health prognostics needs more research work.
Finally, the selection of useful data from big data platforms and
proper information transfer are also meaningful research
topics, which help reduce redundant information, thus improving
the accuracy and reducing the computational burden as well.

6. Conclusions

Battery health prognostics is essential for smart battery mana-
gement and has become one of the hottest topics in this field.
This review article provides a summary of the main aging
mechanisms inside the batteries and the influencing factors;
state-of-the-art methods in battery health prognostics, includ-
ing SoH estimation, EoL point prediction, and degradation
trajectory prediction; as well as the key challenges and research
prospects. The aging mechanisms in both the anode and
cathode are summarized, and the influencing factors for both
calendar and cyclic aging are presented. To illustrate the
coupled relationship among the aging mechanisms, aging
modes, aging types, and external factors more clearly, a
network figure is given.

For battery health prognostics, the classification is pre-
sented based on the prognostic objectives and prediction time
scales. The specific solutions for each prognostic task are
introduced by the general flowchart, followed by the review of
representative works. The unified framework provides a clear
demonstration of the key steps for each prognostic method.
After the detailed review of each prognostic method, compre-
hensive evaluations are provided and discussed. The overall
evaluation among the three prognostic tasks is first discussed,
followed by the comparisons for the specific solutions in
each task. For a more comprehensive evaluation, multiple
indices are included, such as accuracy, computational burden,
robustness and generalization, predicted information, etc. The

evaluation illustrates that the advanced data-driven methods
and coupled physics models are the main research trends and
have better application prospects.

Then, based on the comparative evaluations, some key
challenges regarding each specific prognostic task and general
aspects are summarized. Moreover, for each challenge, specific
potential solutions are provided and discussed. Finally, the
research prospects are provided and discussed. Several new
ideas and methodologies are presented in detail. The roles and
the collaborations of the advanced methods are demonstrated
by a graphic framework to show the potential implementations.
These insight challenges and prospects help guide efficient
research direction in the field of battery health prognostics.

Abbreviations

EoL End of life
BMSs Battery management systems
PHM Prognostics and health management
SoH State of health
RUL Remaining useful life
P2D Pseudo-two-dimensional
SPM Single particle model
FEM Finite-Element Method
MD Molecular dynamics
LLI Loss of lithium inventory
LAM Loss of active material
IR Increase of internal resistance
SEI Solid electrolyte interphase
CEI Catholyte electrolyte interface
SoC State of charge
DoD Depth of discharge
CC Constant current
CV Constant voltage
ECM Equivalent circuit model
EM Electrochemical model
KF Kalman filter
PF Particle filter
MHE Moving horizon estimation
GA Genetic algorithm
PSO Particle swarm optimization
LS Least square
HIs Health indicators
RC Resistor–capacitor
SoP State of power
DEKF Dual extended Kalman filter
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LR/MRL Linear/multi-linear regression
SVR Support vector regression
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RVM Relevant vector regression
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GRU Gated recurrent unit
LSTM Long short-term memory
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ML Machine learning
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T Battery temperature
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Uocv Open circuit potential
I Applied current (A m�2)
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isei SEI side current
d SEI layer thickness
a Transfer coefficient

Subscripts

eff Effective value
p Positive electrode
s Separator
n Negative electrode

Author contributions

Conceptualization: Y. C., X. H. and R. T.; investigation and
methodology: Y. C. and X. H.; writing – original draft: Y. C., X. L.
and J. G.; writing – review & editing: Y. C., X. H., X. L., J. G. and
R. T.; visualization: Y. C.; validation: Y. C., X. L. and J. G.;
funding acquisition, supervision, and project administration:
X. H. and R. T.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was funded by the the Villum Foundation for
Smart Battery project (No. 222860), the National Key Research

and Development Program (No. 2022YFE0102700), and the
National Natural Science Foundation of China (Grant No.
52111530194).

References

1 M. M. Thackeray, C. Wolverton and E. D. Isaacs, Energy
Environ. Sci., 2012, 5, 7854–7863.

2 M. A. Hannan, M. S. H. Lipu, A. Hussain and A. Mohamed,
Renewable Sustainable Energy Rev., 2017, 78, 834–854.

3 J. Cho, S. Jeong and Y. Kim, Prog. Energy Combust. Sci.,
2015, 48, 84–101.

4 X. Hu, Z. Deng, X. Lin, Y. Xie and R. Teodorescu, Renewable
Sustainable Energy Rev., 2021, 152, 111695.

5 T. M. Gür, Energy Environ. Sci., 2018, 11, 2696–2767.
6 Y. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li and Z. Chen,

Renewable Sustainable Energy Rev., 2020, 131, 110015.
7 R. Xiong, Y. Pan, W. Shen, H. Li and F. Sun, Renewable

Sustainable Energy Rev., 2020, 131, 110048.
8 X. Hu, Y. Che, X. Lin and Z. Deng, IEEE/ASME Trans.

Mechatronics, 2020, 25, 2622–2632.
9 Y. Che, A. Foley, M. El-Gindy, X. Lin, X. Hu and M. Pecht,

Automot. Innov., 2021, 4, 103–116.
10 X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li and M. Ouyang,

eTransportation, 2019, 1, 100005.
11 K. Liu, Q. Peng, H. Sun, M. Fei, H. Ma and T. Hu, IEEE

Trans. Ind. Informatics, 2022, 18, 8172–8181.
12 H. Rahimi-Eichi, U. Ojha, F. Baronti and M. Y. Chow, IEEE

Ind. Electron. Mag., 2013, 7, 4–16.
13 S. T. Hung, D. C. Hopkins and C. R. Mosling, IEEE Trans.

Ind. Electron., 1993, 40, 96–104.
14 X. Huang, W. Liu, J. Meng, Y. Li, S. Jin, R. Teodorescu and

D. I. Stroe, IEEE J. Emerg. Sel. Top. Power Electron., 2021,
DOI: 10.1109/JESTPE.2021.3130424.

15 K. Liu, K. Li, Q. Peng and C. Zhang, Front. Mech. Eng., 2019,
14, 47–64.

16 Staff Report: Initial Statement of Reasons, Public Hearing To
Consider the Proposed Advanced Clean Cars Regulation,
California Air Resources Board, 2022.

17 M. Beuse, T. S. Schmidt and V. Wood, Science, 2018, 361,
1075–1077.

18 S. Haustein, A. F. Jensen and E. Cherchi, Energy Policy,
2021, 149, 112096.

19 European Parliament, Plenary – March I 2022, 2022.
20 K. Edström, E. Ayerbe, I. E. Castelli, I. Cekic-Laskovic,

R. Dominko, A. Grimaud, T. Vegge and W. Wentzel, Adv.
Energy Mater., 2022, 12, 2200644.

21 M. of I. and I. T. of China, The Ministry of Industry and
Information Technology will speed up the research and
formulation of the management measures for the recycling
and utilization of new energy vehicle power batteries,
http://www.gov.cn/xinwen/2022-09/16/content_5710290.htm.

22 J. Neumann, M. Petranikova, M. Meeus, J. D. Gamarra,
R. Younesi, M. Winter and S. Nowak, Adv. Energy Mater.,
2022, 12, 2102917.

Review Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
ja

ne
ir

o 
20

23
. D

ow
nl

oa
de

d 
on

 1
4/

02
/2

02
6 

06
:3

8:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.1109/JESTPE.2021.3130424
https://www.gov.cn/xinwen/2022-09/16/content_5710290.htm
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ee03019e


368 |  Energy Environ. Sci., 2023, 16, 338–371 This journal is © The Royal Society of Chemistry 2023

23 A. Ran, Z. Liang, S. Chen, M. Cheng, C. Sun, F. Ma,
K. Wang, B. Li, G. Zhou, X. Zhang, F. Kang and G. Wei,
ACS Energy Lett., 2022, 3817–3825.

24 D. Ren, H. Hsu, R. Li, X. Feng, D. Guo, X. Han, L. Lu, X. He,
S. Gao, J. Hou, Y. Li, Y. Wang and M. Ouyang, eTransportation,
2019, 2, 100034.
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