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Large-scale benchmarks of the time-warp/
graph-theoretical kinetic Monte Carlo approach
for distributed on-lattice simulations of
catalytic kinetics†

Giannis D. Savva,‡ab Raz L. Benson, ‡a Ilektra A. Christidic and
Michail Stamatakis *a

Motivated by the need to perform large-scale kinetic Monte Carlo (KMC) simulations, in the context of

unravelling complex phenomena such as catalyst reconstruction and pattern formation, we extend the

work of Ravipati et al. [S. Ravipati, G. D. Savva, I.-A. Christidi, R. Guichard, J. Nielsen, R. Réocreux and

M. Stamatakis, Comput. Phys. Commun., 2022, 270, 108148] in benchmarking the performance of a

distributed-computing, on-lattice KMC approach. The latter, implemented in our software package

Zacros, combines the graph-theoretical KMC framework with the Time-Warp algorithm for parallel

discrete event simulations, and entails dividing the lattice into subdomains, each assigned to a

processor. The cornerstone of the Time-Warp algorithm is the state queue, to which snapshots of the

simulation state are saved regularly, enabling historical KMC information to be corrected when conflicts

occur at subdomain boundaries. Focusing on three model systems, we highlight the key Time-Warp

parameters that can be tuned to optimise performance. The frequency of state saving, controlled by the

state saving interval, dsnap, is shown to have the largest effect on performance, which favours balancing

the overhead of re-simulating KMC history with that of writing state snapshots to memory. Also

important is the global virtual time (GVT) computation interval, DtGVT, which has little direct effect on

the progress of the simulation but controls how often the state queue memory can be freed up. We

also find that pre-allocating memory for the state queue data structure favours performance. These

findings will guide users in maximising the efficiency of Zacros or other distributed KMC software, which

is a vital step towards realising accurate, meso-scale simulations of heterogeneous catalysis.

1 Introduction

On-lattice kinetic Monte Carlo (KMC) is widely used to study the
dynamics of physico-chemical processes of complex materials,
among them heterogeneous catalysts.1–12 It treats adsorptions,
desorptions, diffusional hops and elementary reactions as
discrete events with pre-parameterised rate constants, which
are typically calculated using transition state theory (TST)13,14

combined with density functional theory (DFT).15 Inasmuch as
these approaches are valid and appropriate for the system under

study, dynamical properties calculated with KMC are expected to
be accurate.16

KMC simulations can tackle much longer physical time
scales than methods like molecular dynamics, which require
the trajectory of each atomic nucleus to be simulated explicitly.
This includes fast vibrational motion, which is time consuming
to simulate as it limits the time step to the fs scale.17 In
contrast, the barrier crossing events which are the building
blocks of KMC, corresponding to, e.g., elementary chemical
reactions, occur on a time scale up to ms. Still, for simulating
large (meso-scale) lattices, motivated by the need to capture
phenomena such as pattern formation on catalytic surfaces,18 the
computational time and memory required for KMC are large
enough to preclude serial calculations from being practically
feasible. For instance, in the spiral wave patterns observed by
Nettesheim et al.,19 the smallest wave-length is about 10 mm,
corresponding to more than 25 000 atomic diameters, with the
spiral pattern itself spanning more than 106 atomic diameters.
KMC simulations to understand the fundamentals underpinning
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such phenomena would require lattices with a number of sites
on the order of hundreds of thousands to billions, which are
intractable with serial algorithms. On the other hand,
distributed-memory parallelisation of KMC codes based on
domain decomposition is complicated by the inherently
sequential nature of the underlying algorithm. Put simply,
events that are executed in one area of the lattice can enable,
prevent, or change the propensities of subsequent events
occurring in other areas of the lattice. Naive attempts to
decompose the lattice into independent subdomains are there-
fore plagued by violations of causality.20 Thus, one can either
resort to sophisticated controlled-error approximations,21,22 or
attempt to deal with such causality violations in an exact way,
potentially at the cost of algorithmic complexity.

Following the second option for exact distributed KMC
simulations, one can broadly identify two viable strategies.
Both are based on the basic principle that if event A causes
event B, then event A must be executed before (in real-time
terms) event B. The ‘conservative’ strategy is not to tolerate
any errors, for instance by necessitating that a given event is
executed only when the local KMC time, tKMC, is less than or
equal to that in each of the neighbouring subdomains.23 While
conceptually straightforward, the conservative strategy often
suffers from poor scaling, as it is limited by the worst-case
scenario—a subdomain may be left idle even when its future
events would not lead to any causality violation.24

The other, ‘optimistic’ strategy is to allow errors (i.e.,
boundary conflicts) to occur but correct them retroactively,
for instance via rollback and re-simulation.24–26 A number of
different exact optimistic algorithms have been proposed.
These notably include Lubachevsky and co-workers’ synchro-
nous relaxation (SR) algorithm,26–28 and variations thereof,
such as optimistic synchronous relaxation (OSR),29 and opti-
mistic synchronous relaxation with pseudo-rollback (OSRPR).30

To summarise these methods in brief, the simulation pro-
gresses in chunks or ‘cycles’, at the end of which it is ensured
that the subdomains are synchronised by means of global
communications and conflict resolution. This reliance on
global operations limits the scalability of such algorithms.30

To overcome this, Shim and Amar proposed the semi-rigorous
synchronous sublattice (SL) algorithm,28 which scales very
favourably but sacrifices the exactness of KMC propagation.30

An alternative, exact optimistic approach—that does not rely on
global operations—is exemplified by Jefferson’s ‘Time-Warp’
algorithm, which allows the subdomains to evolve completely
asynchronously. Boundary events are detected as they occur
and communicated between neighbouring subdomains,
prompting rollbacks and re-simulations on a local basis when
necessary to resolve conflicts.25

Recently, Ravipati et al.31 coupled the Time-Warp algorithm
with the graph-theoretical KMC (GT-KMC) framework of
Stamatakis and co-workers, in which the lattice is represented as
a labelled, undirected graph.32,33 Compared to traditional on-lattice
KMC, GT-KMC has the advantage that complex chemistries—
involving multidentate species and intricate surface geometries—are
treated just as naturally as simpler chemistries. Additionally,

GT-KMC can capture coverage effects, i.e. the influence of
lateral interactions between spectators and reactants on the
rates of elementary reaction events. Thus, the implementation
of the Time-Warp algorithm in Zacros, our GT-KMC software
package, constitutes the first validated,§ general-purpose KMC
code with distributed computing capabilities.31 An overview of
the algorithm is given in Section 2.

The Time-Warp algorithm, like other domain decomposition
schemes, enables statistically meaningful KMC simulations of
spatially extended systems, particularly those exhibiting large-
scale spatial inhomogeneities. While it is beyond the scope of
the present study, we note that there is nothing to prevent one
from using the Time-Warp algorithm in combination with other
approaches to KMC acceleration that address different sources
of computational expense. For example, Zacros includes a
procedure for kinetic downscaling of fast, quasi-equilibrated
reactions, along the lines of similar methods proposed in ref.
34–36. Unlike the Time-Warp algorithm, kinetic downscaling
is an approximation and the magnitude of the error it introduces
is difficult to estimate a priori.37 Moreover, as an alternative
to domain decomposition, the KMCLib software package of
Leetmaa and Skorodumova7 applies MPI parallelisation to
process-site matching and rate constant evaluation, which is
highly effective for systems with dense, three-dimensional
lattices and long-range energetic interactions.7 Since Zacros
supports only two-dimensional lattices, we expect domain
decomposition to scale more favourably.

The efficiency of our distributed KMC implementation relies
upon a favourable balance between the speedup due to
increased processing power (relative to serial simulations) and
the overhead carried by communication and conflict resolution
at the subdomain boundaries. For systems with fast diffusion
and/or long-range lateral interactions among adsorbates, this
overhead is expected to be substantial, as a significant fraction of
CPU time will be spent re-simulating (and correcting) KMC
history. Preliminary benchmarks carried out by Ravipati et al.31

showed that distributed parallelisation outperforms serial simu-
lation for sufficiently large lattices, although the magnitude
of the speedup is strongly system-dependent. In particular,
the authors studied the scaling behaviours of two toy models
of reversible CO adsorption. The models are differentiated by the
factor responsible for coupling between subdomains:
� System 1 involves CO* diffusion, but no lateral interactions;
� System 2 involves nearest-neighbour lateral interactions

among CO*, but no diffusion.
In weak-scaling benchmarks, where the number of sites

nsites and the number of processing elements (PEs) nPE are
increased proportionally, System 1 displayed an initial drop in
speed relative to serial simulations (see Fig. 6(d) of ref. 31). This
was attributed to the overhead of resolving conflicts by way of
the Time-Warp algorithm. However, the relative impact of
conflict resolution was found to lessen as the system size
increased, leading to a considerable, but sub-linear, speed-up

§ Validation of the Time-Warp implementation is achieved by verifying that it
produces results identical to those of a ‘parallel-emulation’ serial algorithm.31
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relative to serial simulations. Interestingly, parallelisation of
System 2 displayed much more pronounced, super-linear,
speed-ups (see Fig. 6(e) of ref. 31). This was explained by noting
that the simulation bottleneck is the computation of lateral
energetic interactions, which is necessary to update the reac-
tion rates and is decoupled from Time-Warp related operations.
The weak-scaling results for distributed runs of both systems
are reproduced in Fig. S1 of the ESI.† Similar considerations
were found to be relevant to strong-scaling benchmarks (fixed
nsites with increasing nPE).31 There, parallelisation of System 1
again effected an initial drop in speed, but was found to
become beneficial when the number of processors exceeded
100 (see Fig. 7(d) of ref. 31). In contrast, parallelisation of
System 2 led to appreciable speed-ups with only nPE = 9 (see
Fig. 7(e) of ref. 31). In both cases, the strong-scaling efficiency
eventually plateaus, as the relative area of the halo regions (see
Section 2) increases and the cost of conflict resolution starts to
dominate. These conclusions were further validated in ref. 31
(Fig. 8 therein) by means of strong-scaling benchmarks of a
more realistic system representing CO oxidation dynamics on
Pd(111).

The preliminary benchmarks of ref. 31 thus demonstrated that
distributed parallelisation can be successful in improving simula-
tion efficiency. However, the performance of the Time-Warp
algorithm relies upon fine-tuning a number of user-controlled
parameters, and further investigations are necessary to under-
stand the interplay of these parameters and their effects on the
net rate of KMC-time advancement. These considerations com-
prise the focus of the present study. Aside from the number of
processing elements (PEs), nPE, which we assume to be fixed over
the course of a distributed run, four relevant parameters are
identified. All of them pertain to the state queue (stateQueue),
into which KMC state snapshots are stored at regular intervals
(see Section 2):
� the type of data structure used to store stateQueue—

currently, linked list and vector data structures are implemented
(see Section 2);
� the amount of memory allocated to stateQueue on each PE;
� the KMC state saving interval, dsnap, measured in terms of

locally executed KMC events between each saved snaphot;
� the GVT computation interval, DtGVT, measured in real

time units (this concerns stateQueue because obsolete states
can be safely deleted after each GVT computation in order to
free up memory; see Section 2).

To further simplify things, we assume the memory allocated
to stateQueue to be fixed according to the limitations of the
available hardware, thus its effect is not investigated further in
this paper.¶ Crucially, changing any of the parameters above
has no effect on the results of the simulation, which depend
solely on the initial conditions and the (pseudo-)random num-
bers used to schedule KMC events.

The rest of the paper is structured as follows: in Section 2,
we provide a brief overview of the distributed GT-KMC
approach, then in Section 3, we describe the performance
benchmarks carried out thereof. The results of these benchmarks
are presented and discussed in Section 4. Finally, Section 5
concludes the paper.

2 Overview of distributed GT-KMC

Full details of the Time-Warp algorithm as applied to GT-KMC
are given in ref. 31. Here we give just an overview of the key
components.

Suppose the lattice to be simulated contains NC
a and NC

b unit
cells tiled along the unit cell vectors a and b, respectively
(distributed simulations of irregular, custom-built lattices are
not yet supported in Zacros). We divide the NC

a � NC
b simulation

lattice into MP
a �MP

b subdomains, each containing SZ � SZ unit
cells, such that

NC
a ¼ MP

a � SZ

NC
b ¼ MP

b � SZ:
(1)

Note that the requirement for the subdomains to be equally
sized, with an equal number of unit cells along each direction, is
an implementation choice rather than a fundamental property of
the Time-Warp algorithm; see ref. 31 for a more detailed discus-
sion of this point. Each subdomain is assigned to a different
processing element (PE), of which there are nPE = MP

a � MP
b.

However, in addition to the sites within its assigned subdomain,
each PE also keeps track of a ‘halo’ region surrounding that
subdomain. This region contains lattice sites lying within a
system-dependent width o of the boundary, which belong to
neighbouring subdomains. The code ensures o is large enough
to account for possible couplings across the boundaries due to
reactions, lateral interactions and/or multidentate adsorbates.31

At every KMC step, all possible elementary events associated
with a given subdomain are stored by the associated PE in a
process queue (procQueue).31 In the graph-theoretical formalism,
such elementary events are identified by solving subgraph iso-
morphism problems as outlined in ref. 32. Their inter-arrival
times are generated as exponential deviates with rate parameters
equal to their rate constants, which are estimated using standard
Eyring transition state theory (TST).13,14 The environment-
dependent activation energies are approximated by Brønsted–
Evans–Polanyi (BEP) equations, which are linear correlations
between activation energy and reaction energy.38 The latter is
parameterised by means of a cluster expansion (CE) Hamilto-
nian that encodes the energy of the adlayer and can thus be used
to compute the energy difference between the final and initial
states of a reaction.39,40 Computing the effects of lateral ener-
getic interactions thus boils down to solving more subgraph
isomorphism problems, but where the query graphs correspond
to energetic patterns (clusters) rather than reaction patterns.33

During KMC propagation, each PE independently calculates
rate constants and executes processes pertaining to its own
subdomain. Care is required when the impact of an event spills

¶ The internal structure sizes in Zacros have been hand-optimised to make best
use of the available memory. A way to automate this is currently under
development.
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over into the halo region, either directly affecting the coverage
therein or introducing/eliminating energetic clusters that could
affect activation energies. Such ‘boundary events’ must be
communicated to the PEs which manage the impacted neigh-
bouring subdomains. This is achieved by means of messages,25

which are stored by both the sending and receiving PEs
in a message queue (messgQueue), and instruct the receiving
PE to schedule the boundary event appropriately in its own
procQueue.31

Complications arise when the time-stamp, tmessage, of a
message received by a PE is less than the current KMC time in
its subdomain, i.e. the message instructs the PE to execute
an event in the past. This constitutes a violation of causality,
which can only be resolved by ‘rolling back’ in time25 and re-
simulating KMC history. Furthermore, ‘un-doing’ previously exe-
cuted boundary events and simulating new ones in the process of
‘correcting’ the history of the affected subdomain might trigger
further violations (conflicts), which in turn might give rise to even
more, and so on. Thus, the worst-case scenario involves a cascade
of conflicts that propagates throughout the entire lattice.31

To make it feasible for the PEs to deal with this on a
local level (i.e., avoiding the need for global synchronisation),
snapshots of the local KMC state are saved by each PE to a state
queue (stateQueue) at regular intervals of dsnap KMC steps. This
state-saving is a core component of the Time-Warp algorithm,
as it enables a PE to roll-back to a KMC state with time-stamp
tstate o tconflict

message (where tconflict
message corresponds to the message that

triggered the conflict). Any messages that were sent by the PE
after tconflict

message are no longer valid and must be undone by
sending corresponding ‘anti-messages’, which instruct PEs to
delete the invalid messages from their message queues.25 The
PE can then begin ‘rollback propagation’, which re-simulates
the original KMC timeline until tconflict

message, at which point the
pertinent (conflict-triggering) message can finally be acted
upon.31 The key elements of the Time-Warp algorithm are
illustrated in Fig. 1.

Note that, if one was able to save KMC state snapshots after
every KMC event, no rollback propagation would be necessary.
However, this is infeasible in practice; KMC states are saved
after several KMC events, and thus, having a saved KMC snap-
shot available just before the conflict-triggering message is
typically unlikely. Note also that, when a rollback occurs in
Zacros, the entire state of the simulation is restored, including
the adjustable parameter dsnap (see the discussion of stateQueue
sparsification in Section 4.1).

The snapshots of the system saved to each stateQueue can
occupy large amounts of memory and may need to be accessed
frequently, so it is pertinent to consider the most appropriate data
structure for this purpose. Currently, linked list and vector
data structures are implemented in Zacros. In the linked list,
the nodes (‘kmc_state’ objects) are not necessarily stored con-
tiguously in memory, rather each node points (‘links’) to the next
in the sequence. This means that memory can be allocated and
deallocated as needed each time a snapshot is saved or deleted.
In contrast, the vector has a fixed number of slots in a
one-dimensional array of type ‘kmc_state’, plus an additional

one-dimensional array for indexing purposes. The memory thus
needs to be allocated once and for all at the start of the simulation.

Whichever data structure is chosen, to avoid exhausting the
memory available, it is also important to have a robust protocol
by which PEs can delete any snapshots that are no longer
needed. This leads naturally to the concept of global virtual
time (GVT), tglob, which is defined as the minimum among
all the KMC times and time-stamps of buffered messages
(i.e., those sent but not yet acted upon) across all PEs.25 On
each PE, the earliest KMC state that could need to be reinstated
to restore causality is the last one saved such that its time-
stamp tstate = tGVT

state
� satisfies tGVT

state
� o tglob. All those with

tstate o tGVT
state

� are obsolete can be safely deleted. Likewise, any
obsolete messages may be deleted from messgQueue. In prac-
tice, tglob is calculated by means of a global communication
event at regular clock-time intervals of DtGVT. Knowledge of tglob

is also used to decide when to terminate the simulation.31

3 Details of benchmarks

Having discussed the main features and procedures of the
implementation of Time-Warp within GT-KMC, we now pro-
ceed to discuss the performance benchmarks thereof.

Fig. 1 Schematic of procedures used to resolve causality violations among
multiple PEs in the Time-Warp algorithm. KMC timelines are represented by
orange stripes, with black rounded squares representing saved snapshots
of the simulation state. Black and red circles represent sent and received
(anti-)messages, respectively, with each message indicated by a solid arrow
and each anti-message by a block arrow. A dashed outline indicates of an
(anti-)message that it is received ‘in the past’ and therefore triggers a
rollback. In (a), PE 2 receives a message from PE 3 with timestamp t5, which
violates causality. In (b), PE 2 performs a rollback, reinstating the simulation
state saved at t4 then re-simulating history until t5. PE 2 also sends an anti-
message corresponding to the previously sent message at t6, which is
received by PE 1. Since this anti-message also violates causality, in (c), PE
1 reinstates the simulation state saved at t3 then re-simulates history until t6.
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3.1 Systems studied

The present benchmarks focused on three systems. Physically,
Systems 1 and 2 are highly idealised and differ only in the factor
responsible for coupling between subdomains. As described in
ref. 31, System 1 models reversible CO adsorption on a square
lattice, with one site per unit cell. The adsorbed CO molecules, CO*,
do not interact with one another and are allowed to diffuse between
nearest-neighbour sites. The elementary steps involved are:

COþ � Ð
kads

kdes
CO� (2)

CO� þ �
�!kdiff � þCO� (3)

System 2 is the same aside from two key differences: surface
diffusion is forbidden (i.e., kdiff = 0) and a repulsive interaction
exists between CO molecules adsorbed on nearest-neighbour lattice
sites. The rate constants and energetic interaction parameters for
each system are given in Table 1. In both cases the external
temperature and pressure are set to 500 K and 1 bar, respectively.
If neither the diffusion of System 1 nor the lateral interactions of
System 2 were present (i.e., if kdiff = 0 s�1, eCO* = 0 eV), the
parallelisation would be trivial as there would be no coupling
among subdomains and therefore no boundary conflicts.

Our final system is based on the ‘Brusselator’ model of chemical
oscillations41 and entails the following elementary steps:42

Xþ � Ð
kX
ads

kX
des

X� (4)

X� þ BÐ
k1

k�1
Y� þD (5)

2X� þY�
�!k2 3X� (6)

X� þ �
�!
kX
diff � þX� (7)

Y� þ �
�!
kY
diff � þY� (8)

X� þY�
�!
kXY
diff

Y� þX� (9)

We will refer to this as System 4, in order to be consistent with the
numbering convention of ref. 31, in which ‘System 3’ was used to
refer to a realistic model of CO oxidation on Pt(111). Similarly to
Systems 1 and 2, the lattice of our ‘Brusselator’ variant is chosen
to be square, with one site per unit cell. The adlayer is assumed to
be ideal (no lateral interactions), and the rate constants are given in
Table 2. We have chosen this system because it exhibits oscillatory

dynamics, as well as complex and long-range spatiotemporal
pattern formation, namely rotating spiral waves. This will generate
strong, causal relationships between events spanning the entire
simulated domain, thereby constituting a demanding test of the
efficiency of our Time-Warp implementation. Unlike Systems 1 and
2, the dynamics of System 4 are spatially inhomogeneous, so we
expect the computational load to be shared unevenly among PEs.
This property makes System 4 the most representative of ‘real’
systems for which one might wish to employ distributed paralleli-
sation, since one cannot faithfully capture the inhomogeneity
without simulating a sufficiently large lattice.

3.2 Simulation details

Our choice of performance metric is the elapsed clock time per
unit of KMC time,

t� ¼ tclock
tKMC

: (10)

In practice, t* was estimated from the final KMC time recorded
during a fixed clock-time interval (1 hour for Systems 1 and 2, 3
hours for System 4). It was important to ensure that the
benchmark simulations progressed under stationary conditions,
such that the rate of event execution would remain roughly
constant. This way, the KMC time would advance roughly
linearly with clock time, establishing t* as a meaningful perfor-
mance metric. Steady states of Systems 1 and 2 were prepared by
running a long simulation of each system on a 100 � 100 lattice.
These were then tessellated (tiled) as needed to generate initial
state input for the 200 � 200 and 1200 � 1200 lattices employed
in our benchmarks, with each PE assigned one 100 � 100
subdomain giving nPE = 4 and nPE = 144, respectively. These
were both used as data points in the weak-scaling benchmarks of
ref. 31 (see Fig. S1 of ESI†). The crude approach to upscaling
used for Systems 1 and 2 is justified by their spatially homo-
geneous dynamics. On the contrary, System 4 exhibits pattern
formation on mesoscopic length scales, thus an appropriate
initial state for System 4 was prepared by explicitly simulating
a 4000 � 4000 lattice to the point of (approximate) stationarity.
This lattice size was found sufficient to observe near-linear KMC-
time advancement long enough to obtain reliable benchmarks.
On smaller lattices, one observes oscillations in the rate of
advancement that are commensurate with those of the total X*
and Y* coverages. The initial state of the benchmarks of System 4
is visualised in Fig. 2. For System 4 benchmarks, each PE was
assigned a 160 � 160 subdomain, giving nPE = 625.

Table 1 Rate constants of elementary events and energetic interaction
parameters for Systems 1 and 2

System kads (s�1) kdes (s�1) kdiff (s�1) esite (eV) eCO* (eV)

1 1.0 1.0 10.0 0.0 0.0
2 1.0 1.0 0.0 0.0 0.1

Table 2 Rate constants of elementary events for System 4

Rate constant Value (s�1)

kX
ads 0.7

kX
des kX

ads/0.91
k1 9.0
k�1 0.6
k2 3.8
kX

diff 400.0
kY

diff 4.0
kXY

diff 400.0
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All simulations contributing to the performance benchmarks
were carried out on Thomas (https://www.rc.ucl.ac.uk/docs/Clus
ters/Thomas/), a UK National Tier 2 High Performance Computing
Hub in Materials and Molecular Modelling, which is a CPU-based
computational cluster. Each computational node contains 24 CPU
cores (2 � 12-core Intel Xeon E5-2650 v4) and 128 GB RAM.

4 Results and discussion
4.1 System 1

In Fig. 3 and 4, we plot the elapsed clock time per unit of KMC-
time, t*, for System 1 against dsnap (left) and DtGVT (right), for
two different lattice sizes: 200� 200 and 1200� 1200. Note that
the left-hand and right-hand plots for each stateQueue data
structure contain the same data, only presented differently.
Comparing the two figures, one sees that the performance is
worse in general (t* larger) for the larger lattice size. As
discussed in ref. 31, this is because the conflict resolution
overhead becomes more significant when there are more sub-
domain boundaries.

Moving on to our discussion of the tunable parameters, our
first observation is that faster KMC-time advancement is
achieved with the vector data structure than with the linked
list. This is true for both lattice sizes and over the full set of
values of dsnap and DtGVT. It can be attributed to the additional
time spent allocating and deallocating memory to stateQueue
when the linked list is employed. In contrast, the size of the
vector structure is fixed and all its needed memory allocated
only once, at the beginning of the simulation.

Unsurprisingly, the performance of each KMC simulation is
seen to depend strongly on dsnap. Naively, one may expect a
monotonic improvement in performance as dsnap is reduced,
since this reduces the total amount of time spent in rollback
propagation. However, the performance is observed to improve
only up to a point, upon reducing dsnap. In fact, we observe
optimum performance (i.e., miminum t*) around dsnap = 100
when using the vector stateQueue data structure, and slightly
higher for the linked list. The sharp rise in t* for smaller values
of dsnap is attributed to the additional time spent saving and
deleting snapshots, which constitute the simulation bottleneck
in this regime.

On the other hand, the choice of DtGVT hardly affects the
overall performance, indicating that the global communication
overhead is negligible. That said, one should refrain from

choosing absurdly small values of DtGVT lest the simulation
output files occupy vast quantities of disk space.8 One must
also ensure that, for a given choice of dsnap, DtGVT is sufficiently
small such that obsolete snapshots are deleted before the
memory allocated to stateQueue is filled up. This is exemplified
by the several ‘missing’ data points in Fig. 3 and 4, e.g. all
points for which dsnap = 5, DtGVT 4 10 (DtGVT 4 5) are absent
with the linked list (vector) stateQueue structure in Fig. 3. A data
point is omitted wherever stateQueue in at least one PE became
too large to fit in the available memory before the allocated
1 hour of clock time had passed.

It is important to stress that the missing data points just
described do not imply failed simulations. This is because,
when memory does fill up, Zacros is configured to ‘sparsify’
stateQueue by deleting every second snapshot. The frequency
with which future KMC states are saved is correspondingly
reduced by doubling dsnap. This sparsification procedure can
occur, in principle, arbitrarily many times on each PE, such that
a poorly chosen input (initial) value for dsnap will not result in
simulation failure. In Systems 1 and 2, we found that sparsifi-
cation tended to occur either permanently** throughout most
of the PEs, or not at all. This behaviour can be attributed to the
spatial homogeneity of the dynamics, with the upshot that t*
for such simulations is not truly reflective of the input dsnap

value, since the latter changes during the run. Thus, we opted
to omit the results of any simulations during which sparsifica-
tion of stateQueue occurred.

4.2 System 2

Fig. 5 and 6 show how the KMC simulation performance for
System 2 varies with dsnap and DtGVT. Comparing with Fig. 3
and 4, we see that t* is typically smaller for System 2 than for
System 1 by more than an order of magnitude. This is consis-
tent with the absence of CO* diffusion in System 2, which for
System 1 is fast and therefore constitutes the vast majority of
events in the process queue (see Table 1). Thus, the KMC time
advances faster for System 2, even if the rate of event execution
is comparable.

Aside from this, the behaviour of System 2 as a function of
dsnap, DtGVT, and stateQueue data structure is broadly similar to
that of System 1. This suggests that the main sources of
computational effort in the Time-Warp algorithm are indepen-
dent of whether conflicts arise during event execution (System 1)
or energetics calculation (System 2). The optimal dsnap values are
slightly smaller for System 2, at around 50 across both lattice
sizes and stateQueue data structures, which could be indicative
of a greater proportion of KMC time having been spent in
rollback propagation.

Fig. 2 Initial state of System 4, showing the coverages of species X* and
Y* exhibiting a pair of well-developed spirals.

8 After each GVT computation, Zacros prints information to each of the nPE

general_output*.txt files, which consequently would become extremely large if,
say, the GVT were computed every 1 s for several hours. See the Zacros User Guide
for further details.
** ‘Permanently’ in this context means that dsnap was not subsequently reverted
to its input value by means of a rollback.
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Fig. 3 Results of the performance benchmarks of System 1 with lattice size 200 � 200 (distributed over 4 processors). The elapsed clock time per unit of
KMC time, t*, is plotted against the state saving interval, dsnap (left) and GVT computation interval, DtGVT (right).

Fig. 4 As in Fig. 3 but for lattice size 1200 � 1200 (distributed over 144 processors).
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Fig. 5 Results of the performance benchmarks of System 2 with lattice size 200 � 200 (distributed over 4 processors). The elapsed clock time per unit of
KMC time, t*, is plotted against the state saving interval, dsnap (left) and GVT computation interval, DtGVT (right).

Fig. 6 As in Fig. 5 but for lattice size 1200 � 1200 (distributed over 144 processors).
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4.3 System 4

As noted in Section 3, System 4 differs greatly from Systems
1 and 2 in its chemical characteristics. The production of Y*
from X*, followed by the autocatalytic regeneration of X*, leads
locally to oscillations in the coverage of each species. Coupled with
slow versus fast surface diffusion for X* versus Y*, respectively, as
well as appropriate initial conditions, these oscillations manifest as
rotating spiral waves spanning the entire simulated domain. The
dynamics are thus highly spatially inhomogeneous, such that each
subdomain exhibits a qualitatively different coverage pattern at any
given time. In this context, a robust scheme for conflict resolution
at the boundaries is essential if one is to capture the propagation of
the spiral wavefronts accurately, since the characteristic wavelength
of the pattern exceeds the size of the subdomains.

In spite of these differences, our performance benchmarks
paint a broadly similar picture for System 4 (Fig. 7) as for
Systems 1 and 2. Optimal performance is obtained with dsnap C
150, while the choice of DtGVT has little overall effect. In
contrast to Systems 1 and 2, we have not indiscriminately
omitted data points for which sparsification occurred; due to
the spatial inhomogeneity, stateQueue can be sparsified in a
small fraction of the 625 processors without significantly
affecting the overall performance. In fact, such isolated sparsi-
fications are often found to be reversed by subsequent roll-
backs. This is illustrated in Fig. 8, which shows how dsnap varied
with clock time during selected simulations of Systems 2 and 4.
The ‘missing’ data points in Fig. 7 correspond to (dsnap, DtGVT)
values for which large-scale sparsification was to be expected
based on the predicted memory requirements.

5 Conclusions

We have built on the work of Ravipati et al.31 to understand how
the performance of distributed on-lattice KMC, facilitated by
Jefferson’s Time-Warp algorithm,25 depends on the treatment
of state snapshot saving during the simulation. In particular,
we were interested in how overall performance is affected by the
frequency of saving events, quantified by the state saving

Fig. 7 Results of the performance benchmarks of System 4 distributed over 625 processors. The elapsed clock time per unit of KMC time, t*, is plotted
against the state saving interval, dsnap (left) and GVT computation interval, DtGVT (right). Only the vector stateQueue was used.

Fig. 8 Plots to illustrate the nature of dynamic updates to dsnap for (a)
System 2 with lattice size 1200 � 1200 and (b) System 4. In both cases,
DtGVT = 120s. For System 2, the number of PEs with the input dsnap value of
50 drops rapidly and irreversibly in the early stages of the simulation,
reflecting the spatial homogeneity. In contrast, for System 4, most PEs
preserve the input dsnap value of 150, while just one sparsifies irreversibly
and others fluctuate between dsnap = 150 and dsnap = 300.
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interval dsnap, as well as the global virtual time (GVT) computa-
tion interval, DtGVT, which determines how often the obsolete
snapshots are erased from memory. We also investigated
whether a linked list or vector data structure (currently the
default in Zacros) is preferable for storing the state queue
(stateQueue).

Our benchmarks focused on three systems. Systems 1 and 2
are both highly simplified models of reversible CO adsorption,
spatially homogeneous and identical except in the factor
responsible for coupling between subdomains (diffusion and
lateral energetic interactions, respectively). In contrast, System
4 – a lattice-based adaptation of the well-known ‘Brusselator’
model – exhibits complex and large-scale spatiotemporal pat-
tern formation, and is thus an ideal test case for our Time-Warp
implementation. For all systems, we found consistently that
using a vector data structure to store stateQueue leads to faster
KMC propagation than using the linked list, which we attribute
to the overhead of allocating and deallocating memory to the
latter. We also found, however, that the state saving interval,
dsnap is by far the most important tunable parameter in con-
trolling Time-Warp performance. We reasoned that optimising
dsnap corresponds to minimising the combined overheads of
rollback propagation and that of saving and deleting snap-
shots. On the other hand, DtGVT was seen to have minimal
effect on simulation performance, provided it is small enough
to prevent the memory allocated to stateQueue from filling up.

Currently in Zacros both dsnap and DtGVT are set by the user
at the beginning of the simulation. However, if stateQueue runs
out of available memory, dsnap is updated dynamically and
memory is freed by way of ‘sparsification’, whereby every
second snapshot in stateQueue is deleted and dsnap is corre-
spondingly doubled. In the case that the initial value of dsnap is
‘optimal’, i.e. maximises the KMC-time advancement rate, each
sparsification event will result in performance degradation for
the remainder of the run. A more desirable approach might be
to enable dynamic updates also to DtGVT such that it can be
reduced when stateQueue is seen to be filling up the available
memory too quickly. This would be challenging to implement
in practice, since, while dsnap is declared locally on each PE
(so sparsification is a local operation), DtGVT is a global variable.
Hence, dynamic optimisation of DtGVT would rely on global
communication among PEs, which currently only occurs during
the GVT computation events themselves.

Some important aspects of performance optimisation remain
unaddressed, notably the best way to estimate the optimal
MPI configuration (number of PEs) and dsnap value in general
(without resorting to extensive benchmarking case-by-case). One
should expect the optimal dsnap to decrease as nPE increases in
the strong-scaling regime (fixed lattice size), as smaller subdo-
mains will demand less CPU time for saving/deleting snapshots
while incurring more frequent boundary conflicts. Preliminary
strong-scaling benchmarks of System 4 appear to support this
hypothesis. Another issue that we have yet to address fully is load
balancing; so far, we have focused on benchmarking systems in
which the time-averaged surface coverages are roughly constant
across the simulated domain. However, in situations where the

coverage is inherently dispersed, the topological restrictions
imposed on domain decomposition in Zacros (see Section 2)
may inhibit good scaling efficiency. We are considering generalising
our code in the future to relax these restrictions. Notwithstanding,
the benchmarks presented herein highlight the key principles that
should guide Zacros users towards maximising the performance of
distributed GT-KMC simulations.
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