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The development of gas sensing devices to detect environmentally toxic, hazardous, and volatile organic
compounds (VOCs) has witnessed a surge of immense interest over the past few decades, motivated mainly
by the significant progress in technological advancements in the gas sensing field. A great deal of research
has been dedicated to developing robust, cost-effective, and miniaturized gas sensing platforms with high
efficiency. Compared to conventional metal-oxide based gas sensing materials, metal—organic frameworks
(MOFs) have garnered tremendous attention in a variety of fields, including the gas sensing field, due to their
fascinating features such as high adsorption sites for gas molecules, high porosity, tunable morphologies,
structural diversities, and ability of room temperature (RT) sensing. This review summarizes the current
advancement in various pristine MOF materials and their composites for different electrical transducer-based
gas sensing applications. The review begins with a discussion on the overview of gas sensors, the significance

of MOFs, and their scope in the gas sensing field. Next, gas sensing applications are divided into four
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Accepted 11th December 2021 categories based on different advanced transducers: chemiresistive, capacitive, quartz crystal microbalance
(QCM), and organic field-effect transistor (OFET) based gas sensors. Their fundamental concepts, gas sensing

DOI: 10.1039/d1na00798] ability towards various gases, sensing mechanisms, and their advantages and disadvantages are discussed.

rsc.li/nanoscale-advances Finally, this review is concluded with a summary, existing challenges, and future perspectives.

“Department of Physics, College of Science, United Arab Emirates University, Al-Ain “Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE,
15551, United Arab Emirates. E-mail: saleh.thaker@uaeu.ac.ae King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900,
*Zoological Survey of India, Kolkata, 700053, India Saudi Arabia

‘Department of Chemistry, College of Science, United Arab Emirates University, Al- Sensor Group, R&D Section, Dyson Tech. Limited, Malmesbury, UK

Ain 15551, United Arab Emirates t Electronic  supplementary information (ESI) available. See DOI:

10.1039/d1na00798;j

applications. Ashraf Ali received his Master's in Physics at King's
College, London, UK and PhD degree from Anna University, India. He
is currently working as a Research Associate at UAEU. His research
Jfocuses on metal-oxide framework/conducting polymer composites for
gas sensing applications. Yaser E Greish obtained his PhD degree from
Pennsylvania State University (USA 2001). Currently, he is working as
a professor of materials chemistry at UAEU. His research focuses on
the design of various types of nanostructured materials for biomedical
and environmental applications. Ahmed Alzamly obtained his PhD
degree in inorganic chemistry from the University of Ottawa, Canada.
Currently, he is an Associate Professor at the Dept. of Chemistry,
UAEU. His research focuses on the design and synthesis of transition-
metal catalysts for energy and environmental applications. Saleh T.
Mahmoud obtained his PhD degree in Physics from IIT-Delhi, India.
He is a full professor at the Dept. of Physics, UAEU. He is the PI and
Co-PI of 20 research projects, and has vast experience in the synthesis
of nanomaterials and sensors’ fabrication for detecting hazardous
gasses.

From Left to right : Dr Sanjit Manohar

Majhi, Dr Ashraf Ali, Prof. Ahmed Alzamly,

Prof. Saleh T. Mahmoud, and Prof. Yaser E. Greish
Sanjit Manohar Majhi obtained his PhD degree from Jeonbuk
National University, South Korea. Currently, he is working as
a Research Associate at United Arab Emirates University (UAEU), UAE.
He is currently working on MXene based 2D materials for gas sensing

© 2022 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2022, 4, 697-732 | 697


CrossMark:http://crossmark.crossref.org/dialog/?doi=10.1039/d1na00798j&domain=pdf&date_stamp=2022-01-29
http://orcid.org/0000-0002-3088-3727
http://orcid.org/0000-0001-7640-3306
http://orcid.org/0000-0003-3425-1265
http://crossmark.crossref.org/dialog/?doi=10.1039/d1na00798j&domain=pdf&date_stamp=2022-01-29
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1na00798j
https://pubs.rsc.org/en/journals/journal/NA
https://pubs.rsc.org/en/journals/journal/NA?issueid=NA004003

Open Access Article. Published on 13 dezembro 2021. Downloaded on 02/08/2024 09:34:08.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Nanoscale Advances

1. Introduction

The significant development of high-performance gas sensors
has witnessed a vast change in recent times owing to the
growing awareness of increasing environmental pollution.
Various types of pollutants such as toxic/hazardous gases and
volatile organic compounds (VOC) are being released to the
environment from different sources such as industrial wastes,
household use, and human activities, thereby causing alarming
damage to the environment and sustainability of human
development.'” Furthermore, some gases when exposed to even
a very low concentration, such as parts per million (ppm), cause
several health risks.>® Therefore, gas sensors play a vital role in
our daily lives including disease diagnosis, environmental
monitoring and human safety, food quality monitoring,
industrial safety, etc.7-9 In a typical gas sensor, the sensing
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materials are responsible for interacting with the chemical
entities by changing their physical properties such as conduc-
tivity (o)/resistivity (p), work function (¢), and dielectric
constant (¢), as explained in Fig. 1. The chemical interface
between sensing materials and analytes plays a vital role in
determining the sensing performance. The transduction unit of
the gas sensor converts one of the physical quantity changes
mentioned above to a change in one or more electrical param-
eters such as capacitance (C), inductance (L), or resistance (R)."*
The transducer transforms the analytical information into
different types of readable signals such as current (I), voltage
(V), impedance (Z), resistance (R), change of frequency (f), phase
(¢), and electrical potential (E), as shown in Fig. 1a.">'* There-
fore, based on the underlying different transduction mecha-
nisms, gas sensors can be further categorized into various
typeS.13_21

The current challenges in the gas sensing field are sensi-
tivity, selectivity, response time, long-term stability, and cost of
sensing devices. Over the years, several conventional analytical
techniques such as gas chromatography (GC), mass spectrom-
etry (GC-MS), optical spectroscopy, high-performance liquid
chromatography (HPLC), and surface-enhanced Raman spec-
troscopy (SERS) have been utilized for the detection of gas/
chemical species.””*” However, the use of the above techniques
has some limitations, such as they are expensive and bulky in
size, often require highly trained people to operate, and require
complex and time-consuming sample preparation and analysis
methods. To overcome the above issues, it is essential to
develop inexpensive sensing techniques with high sensing
performances for practical applications. Various strategies have
been developed to improve the gas-sensing properties,
including exploring new and novel sensing materials. Over the
past few decades, metal-oxides semiconductors (MOXs)" have
been widely used as promising chemiresistive sensing mate-
rials. However, their high working temperatures, poor selec-
tivity, and low stability issues have hindered further practical
applications. Thus, there is an urgent proposition to develop
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Fig.1 (a) Schematic diagram of a function of a gas sensor with different principles of electrical transducers, where g, ¢, ¢. C, L, R, I, V. E, f, and &

are the conductivity, work function, permittivity capacitance, inductance, resistance, current, voltage, electrical potential, frequency, and phase,
respectively. Reprinted from ref. 10 with permission from American Chemical Society, copyright 2021; (b and c) yearly publications in the field of
gas sensors and MOF-based gas sensing materials from 2005-2021 (internet search of the Scopus on June 3rd, 2021) with sensor device
fabrication and its integration. Keyword search: Gas sensors, MOF gas sensors, metal-organic framework-based gas sensors.

good sensing materials exhibiting a highly exposed surface and
numerous active sites available for the analyte to bind and react
with the surface, as well as with good mechanical properties and
device flexibility.® In this context, metal-organic frameworks
(MOFs) have garnered tremendous interest in exploring gas
sensors.”®* The following section further discusses the signif-
icance of MOFs and their promising applications in gas sensing
fields.

1.1 Metal-organic frameworks (MOFs): their significance
and scope in gas sensing applications

MOFs have emerged as a class of materials with enormous
academic research after the pioneering work led by Prof.
Yaghi®**** by virtue of their superior features.*> MOFs are
endowed with exceptional properties, including diverse struc-
tures with tunable ultra-high porosity and pore size, high degree
of crystallinity, ultrahigh surface area, abundant accessible
active sites, high structural tunability, facile synthesis process,
and high gas accessibility.**** These features differentiate them

© 2022 The Author(s). Published by the Royal Society of Chemistry

from the conventional metal-oxides, thereby leading to MOF's
application in a plethora of fields, including catalysis,*** gas
separation and adsorption,®**° energy storage and conver-
sion,"** and gas/chemical sensors."”***¢ Fig. 1b and c show the
publications of gas sensors and MOF-based gas sensors and the
number of times that they have been listed in the past 16 years
based on a recent search in Scopus.

Upon adsorption of guest molecules, there would be
a significant change in physicochemical and structural prop-
erties of MOFs as well as their selectivity, which may be due to
the interaction with functional groups in the organic ligand and
the active sites of the MOFs. Other interesting features, which
make them highly sensitive and selective materials for many
gases, are their ability to bind to different analytes through
hydrogen bonds, electrostatic and van der Waals interactions.
Additionally, MOFs can be utilized as versatile precursors to
fabricate other forms of functional nanomaterials with hybrid
structures, which showed superior properties compared to their
counterparts when used as gas sensing materials.*”>°
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Until now, various research-based and review articles on
MOF-based gas and chemical sensing applications have been
reported. For instance, Yi et al. reported a review article on
chemical sensors based on MOFs.>® However, they primarily
focused on luminescence-based sensing towards ions, pH,
humidity, biomolecules, and temperature. Vikrant et al. re-
ported a review article on MOF-based luminescence and cata-
luminescence sensors for H,S detection.”> Kumar et al®
reported MOF-based optical, electrochemical and electrolumi-
nescence sensors for the detection of NOx. They also further
reported a review article on MOF based sensing and sorptive/
catalytic removal of nitroaromatic compounds.* Jing Li and
coworkers published a review paper on MOF-based sensors that
discusses sensing of fluorocarbons/chlorofluorocarbons and
chemical warfare agents.® Fang et al.>® reported MOF-based
sensors for sensing environmental contaminants with a focus
on the luminescence, electrochemical, and FET-based gas
sensors in an aqueous solution. Wagner et al. reviewed MOF
materials for the detection of pesticidal persistent organic
pollutants (POPs).* Therefore, immense research attention has
been focused on the investigation of sensing properties of MOF-
based materials and their derivatives. This eventually opened
the opportunity to explore other electrically transduced gas
sensors such as capacitive, QCM, and organic field effect tran-
sistors (OFETSs) in detail. However, there is no specific review
article that exists to discuss the above advanced transducers for
gas sensing applications utilizing the state-of-the-art MOF
materials. As compared to MOX based chemiresistive sensors
that operate at high temperatures, the above electrical trans-
ducers can operate under lower or RT conditions. Thus, it would
be interesting to review the above three types of transducer gas
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sensors along with chemiresistive based gas sensors. The
current review emphasizes to review recent advances in four
types of the state-of-the-art MOF-based electrically transduced
gas sensors based on chemiresistive, capacitive, QCM, and
OFET principles. The first section covers recent advances in
pristine MOF materials for chemiresistive gas sensors. It is
further sub-grouped as MOF derived metal-oxides and their
composite-based chemiresistive sensing materials. Secondly,
we discuss capacitance-based transducers and their gas sensing
applications. Thirdly, we discuss MOF-based QCM gas sensors
and their sensing applications followed by organic field-effect
transistor (OFET) based transducer gas sensors with some of
their interesting sensing performances. The current review
summarizes the design strategies of MOF materials, their
integration into different transducers, sensing performances,
and mechanisms. Finally, we discussed the present challenges
and future perspectives of gas sensors.

The fundamental concepts and working principles of all the
above electrically-transduced gas sensors have been discussed
in the ESL{ Fig. 2 shows the overview of the MOF-based gas
sensing materials with different transduction principles and
the burgeoning field of MOFs in different gas sensing fields.?

2. Pristine metal—organic frameworks
for chemiresistive gas sensors

Chemiresistive gas sensors detect gas molecules by changing
the sensing material's electrical conductivity, resulting in
a change in the resistance of the sensing layer as an output
signal. In most of the chemiresistive gas sensors, the gas
sensing materials are activated at some elevated temperature to
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Fig.2 Graphical representation of the formation of MOFs (a), MOF-based electrically transduced device fabrication (b), and the burgeoning field
of MOFs in different sectors such as indoor and outdoor air quality monitoring, industries, agricultural and food sectors, and human health and
security, (c), redrawn from ref. 3 under the Creative Commons Attribution-3.0 License, copyright 2021, Royal society of Chemistry.
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acquire the desired electrical signal to detect target gases. In
this regard, various materials such as metal-oxides and other
conducting materials have been deployed for the sensing
measurements. In addition, MOFs have been utilized in various
applications, including gas sensing applications.*® However,
their insulating characteristics at RT limit the chemiresistive
sensing application. Recently, there has been a surge in the
development of various electrically conductive MOFs, which
have opened the door for their application in chemiresistive-
based gas sensors.””*® In these electrically conductive MOFs, the
charge mobility can be increased with temperature. This section
discusses recent advances in pristine MOFs and their chemir-
esistive-based gas sensing properties at moderate and RTs.* In
addition, a few reports on pristine MOF based composites gas
sensors are also discussed. The sensing performances of pris-
tine MOF-based gas sensors are summarized in Table 1.

2.1 Application of pristine metal-organic frameworks in
chemiresistive gas sensors

The pioneering work on chemiresistive-based gas sensors
synthesized from pristine MOFs was studied for the first time by
the Zhang group in 2014.° They used zeolitic imidazolate
frameworks (ZIFs) with a remarkable surface area of 1832.2 m>
g ' as the sensing materials for formaldehyde sensing. It was
coated over the surface of interdigitated electrodes (IDEs) for
formaldehyde sensing. The maximum response (13.9) of the
ZIF-67 sensor with a low band gap (E, = 1.98 V) was recorded
for 5 ppm formaldehyde at 150 °C with good selectivity. In
another study they utilized a cobalt imidazolate framework
material [Co(im),],, deposited on a Au-Pg IDE transducer for
a trimethylamine (TEA) gas sensor.®* The sensor exhibited
excellent selectivity with a response of 14.1 at 75 °C towards 2
ppm TEA, among other VOCs. Due to the strong interaction
between TEA molecules and the [Co(im),],, MOF sensing layer,

View Article Online
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a stronger adsorption of the target gas on the sensing layer
caused a higher resistance change resulting in a higher
response.

It has been reported that MOF-74, which is characterized by
infinite (-M-O-). chains, showed semiconductor properties
with high charge mobility,>® making it an ideal candidate for
chemiresistive-based gas sensing materials. Accordingly, Phan
and Kim et al. recently reported two kinds of conducting MOFs
based on Mg-MOF-I and Mg-MOF-II, which are iso-reticular to
the MOF-74 structure.”® They used H,ODA 4,4'-[oxalylbis(i-
mino)] bis (2-hydroxybenzoic acid) and H,TDA (4,4'-[1,4-phe-
nylenebis-(carbonylimino)] bis (2-hydroxybenzoic acid) organic
linkers with Mg®" metal ions to synthesize Mg-MOF-I and II,
respectively. When the above two sensors were tested at
different temperatures ranging from 25-200 °C, it was revealed
that Mg-MOF-II exhibited higher NO, response at 200 °C for 50
ppm NO, than Mg-MOF-1.

DMello et al.*®® reported a NH,-UiO-66 (Zr) MOF towards the
moderate temperature sensing. They have investigated the
effect of modulation of the organic linkers (bdc (1,4 benzene
dicarboxylic acid), bdc-NH,, bdc-OH) on the sensing properties
of different acidic gases (NO,, SO, and CO,). Their change in
resistance was studied, and it was found that the NH, func-
tionalized-UiO-66 (Zr) gas sensor exhibited a decrease in resis-
tance (an increase of conductivity) in the presence of target
gases. Among these three acidic gases, a sensor made from the
NH,-UiO-66 (Zr) MOF showed the highest response (R = 21.6%)
toward 10 ppm SO, at 150 °C. Also, basic groups such as -NH,
facilitate the response to acidic gases in the order of SO, > NO, >
CO,. Hence, selecting organic ligands with appropriate func-
tional groups plays a great role in the selectivity of MOF-based
chemiresistive gas sensors.**

The emergence of highly conductive 2D MOFs resulting from
redox-active organic linkers and metal nodes has provided an
additional opportunity to utilize MOFs in chemiresistive

Table 1 Summary of the sensing performances of pristine MOF based gas sensors®

Response (S Working temp.
MOF materials Target gas = Ry/Rg) and $% = (R, — Rg/R,) x 100  Concentration ~ LOD (°Q) Ref.
ZIF-67 Formaldehyde 13.9 5 ppm NA 150 50
[Co(im)y],, TEA 14.1 2 ppm NA 75 61
Mg-MOF-74 (Mg-MOF-II)  NO, 1.35 50 ppm NA 200 62
NH,-UiO-66 (Zr) SO, 21.6% 10 ppm NA 150 63
Cu;(HITP), NH; 3.5 (S% = AG/G,) 10 ppm 0.5 ppm  RT 66
Ni,(HITP), NH, 0 10 ppm NA RT 65
Cuz;HHTP, Methanol —9% 200 ppm NA RT 67
CuzHITP, Methanol —-1.8% 200 ppm NA RT 67
CuzHITP, Ethanol —0.8% 200 ppm NA RT 67
Ni;HITP, Ethanol 3.9% 200 ppm NA RT 67
NizHITP, Methanol 3.9% 200 ppm NA RT 67
CuzHHTP, H,S 0.5% 80 ppm 2 RT 67
Ni;HHTP, H,S 4.2% 80 ppm 2 RT 69
CuzHHTP, NO —1.8% 80 ppm 2 RT 69
Ni;HHTP, NO 1.7% 80 ppm 2 RT 69
Cuz;HHTP, Methanol 30% 100 ppm NA RT 70
Cu,HHTP, NH, 129% 100 ppm 0.5 RT 70

% NA: not available.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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sensing in RT sensing. Campbell et al. reported various Cu-
based 2D conducting MOFs for chemiresistive gas sensing. They
controlled the electronic conductivity of these MOFs by
systematic variation in their metal centers.®® Their structural
effects on the gas sensing properties were investigated by
replacing Ni atomic sites with Cu atoms in Niz(HITP),. The
isostructural Cuz(HITP), (HITP: 2,3,6,7,10,11-hexaimino-
triphenylene) MOFs showed a conductivity of 0.2 S cm™" and
were studied to detect ammonia. The Cuz(HITP), sensor fabri-
cated by a simple drop-casting method on the IDE transducer
showed a linear response (S% = AG/G, = 3.5) with p-type
behavior towards ammonia starting from the sub-ppm level to
the ppm level (0.5 ppm to 10 ppm). However a sensor made
from a Niz(HITP), MOF did not show any response towards
ammonia. The possible higher response of Cuz(HITP),
compared to Niz(HITP), was attributed to the replacement of
Ni*" with Cu®>* with higher d-electrons increasing the energy of
the Fermi level, thereby resulting in differences in the selec-
tivity.*® Thus, the functionality of chemiresistive sensors can be
tuned by rational synthetic variation of conductive MOFs.

They further investigated the effect of chemical structures in
MOFs on the chemiresistive response toward various analytes.®”
They constructed a few structurally analogous 2D MOFs such as
Cu3(HHTP), (HHTP: 2,3,6,7,10,11-hexahydroxytriphenylene),
Cu3(HITP),, and Niz(HITP),, respectively and studied their
array-based sensing properties towards the discrimination of
many analytes, including aliphatic/aromatic hydrocarbons,
ketones, amines, ethers, and alcohols. It is observed that the
responses of the Niz(HITP), MOF was found to be negative to
Cu3(HHTP), and Cuz(HITP), MOFs when tested at 200 ppm of
analytes. It has been found that the charge transfer as well as
the hydrogen bonding are responsible for the observed sensing
properties along with the charge density affected by the Ni(u)
orbital (d8) versus the Cu(u) orbital (d9). However, the lack of
good quality and the controlled thin film of such conductive
MOFs have limited their application in high-performance
devices. The deposition of MOFs into chemiresistive devices
during fabrication often poses a challenge due to their high
resistivity and poor solubility, which result in the ohmic
contacts in the electrodes.®® To overcome this, recently, Smith
et al. described the technique for the miniaturized fabrication
of MOF-based IDE chemiresistive devices.* Initially, graphite
wires were drawn on shrinkable polymeric films using
a commercial hard-black (HB) pencil for the fabrication of IDEs.
The second step involved the growth of two MOF nanorods
(CusHHTP, and NizHHTP,) directly on the device chip from
molecular precursors. The sensors made from the above
materials were examined for NH;, H,S, and NO. Both MOFs
displayed the lowest sensing response for NH;. When the
sensors were exposed to NO, a consistent decrease in resistivity
was observed, whereas for H,S, the resistivity was increased.
This behavior corroborated the ability of Cu3HHTP, and Nis-
HHTP, sensors to distinguish and monitor among these toxic
gases NHj3, NO, and H,S at the ppm-level.

Yao et al.”® also demonstrated the fabrication of a Cuj;(-
HHTP), thin film by a layer-by-layer (LBL) method using the
liquid phase epitaxy (LPE) technique (Fig. 3a and b). The crystal
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structure of Cuz(HHTP), is shown in Fig. 3a. The thickness of
the Cuz(HHTP), thin film was controlled by varying the growing
cycles (the thickness of Cuz(HHTP),-10C was ~20 nm, whereas
for Cuz(HHTP),-50C was ~100 nm). When the sensor was
tested towards 100 ppm NHj, a sensitivity (S%) of 129% with
a LOD of 0.5 ppm with an excellent selectivity among other
interfering gases (Fig. 3¢ and d) was observed. The sensor also
showed excellent long-term stability for three months. Fig. 3e
shows the NH; gas sensing mechanism of the Cuz(HHTP),
MOF. The strong interaction between the Cuz(HHTP), MOF and
NH; is attributed to the high selectivity.

Recently, Surya and co-workers™ studied zinc-based MOFs
with three different organic ligands such as ZIF-8, isonicotinic
acid (Zn-INA), and nicotinic acid (Zn-NA) and deployed them as
a chemiresistive-based ammonia sensor at RT. The surface
areas of the corresponding MOFs were found to be 160.6 m*> g~
(zn (NA)), 525 m*> g ' (ZIF-8), and 103.6 m> g ' (Zn (INA)),
respectively. Among the three gas sensors, Zn (NA) displayed
a high response (R,/R, = 220) towards ammonia at 100 ppm, 9
for ZIF-8, and 139 for Zn (INA). The sensors also showed good
response and recovery times (46 s/200 s) and good stability with
minimal response fluctuation for 15 days. This study revealed
that isonicotinic acid and nicotinic acid-based MOF sensing
materials showed good sensing ability towards ammonia
compared to ZIF-8. The following sensing mechanism could be
expected for the above sensor towards ammonia gas.

OZ(g) +e¢ — O[(ads) (1)
0O, (ads) + e= — 207 (ads) (2)
2NH; + 307 (ads) — 3H,O + N, + 3e™ (3)

Both high surface area and good efficiency of adsorption of
test gas molecules are among the factors that led to the
observed high sensing response towards ammonia for Zn-NA
based MOF sensors.”>”?

Utilizing pristine MOFs and to construct composite mate-
rials with tailored properties is at the forefront of novel tech-
nological exploration. Composites prepared from MOFs with
polymers or organic materials can be used as potential sensing
materials.”>”* Our group has recently developed a flexible MOF-
polymer-based composite gas sensing device based on a copper
plate and stainless steel grid as top and bottom electrodes,
respectively for ppb level H,S gas sensing at RT. Ali et al.” re-
ported MOF-5/Chitosan polymer (CS)/IL (ionic liquid)-based
flexible membrane materials as gas sensing materials and
examined their H,S gas sensing at RT. A simple technique of
grinding in a mortar and pestle was used to partially break the
three dimensional (3D) structure of MOF-5 (as shown in Fig. 4a
and b), which eventually provided high surface area (621 m> g *
before grinding and 643 m* g~ " after grinding) and lowered the
H,S detection limit (1 ppm). The as-prepared MOF-5/CS/IL
based sensor exhibited a response (S% = R,/R, x 100) of 91% at
100 ppm with a quick response time (<8 s) at RT. Selectivity is
one of the important parameters of the gas sensor. Among other
gases (H,, C,H,, H,S, and CO), the MOF-5/CS/IL gas sensor

© 2022 The Author(s). Published by the Royal Society of Chemistry
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exhibited high selectivity and response towards 100 ppm H,S at
RT (Fig. 4c). When the sensor was tested for long-term stability
for 21 days, it showed excellent stability with minimal response
fluctuation for 50 ppm H,S at RT (Fig. 4d). Moreover, the sensor
showed good repeatability for 5 consecutive cycles of 50 ppm
H,S (Fig. 4e). The high sensing performance is attributed to the
geometry of MOF-5 having a number of oxygen atoms with
nonbonding electrons, which facilitated the interaction of their
active sites with an acidic proton of H,S gas molecules. On the
other hand, the CS-IL polymer matrix helps as an electron
transport pathway throughout the membrane and leads to open
porosity of the MOF-5 structure (Fig. 4f). Hence, the synergistic
effect of the conducting polymer matrix and MOF-5 together
with high porosity, the polarization of the MOF, controlled pore

© 2022 The Author(s). Published by the Royal Society of Chemistry

size and shape, and types of secondary components play a great
role in deciding the sensitivity towards the gas sensing.”®

2.2 Metal-organic framework derived metal-oxides and
their composites for chemiresistive gas sensors

The previous section discussed the sensing properties of pris-
tine MOF materials at room and moderate temperatures for
different gas molecules and vapors. In addition to pristine
MOFs as active sensing materials, researchers have also studied
functional materials derived from pristine MOFs. Conventional
MOX based gas sensors are often limited with low surface areas
and high working temperatures.® On the other hand, MOFs
endowed with the exceptional surface area are promising
materials for sensing applications. The poor thermal stability of
MOFs at high operating temperatures can be taken as an

Nanoscale Adv., 2022, 4, 697-732 | 703
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advantage to prepare many interesting structures using the
calcination method due to the easy decomposition of organic
linkers. The newly formed porous MOXs/composites (Fig. 5)
derived from pristine MOFs are endowed with high surface area
with a controlled morphology and porosity, hollow architec-
tures, and intrinsic open pores, which act as trapping centers
for gas molecules.”””® Thus, MOF-derived MOXs and their
composites can be further used as gas sensing materials.>>” In
this section, different MOX materials derived from MOFs and
their composites have been discussed along with their sensing
applications towards many gases.*® The sensing performances
of MOF derived metal-oxides, and their composite-based gas
sensors are summarized in Table 2.

2.2.1 Application of metal-organic framework derived
materials in chemiresistive gas sensors. Among different MOFs,
ZIF-67 has been extensively studied due to its simple fabrication
to prepare p-type cobalt oxides (Co;0,). Zhang and co-workers®'
synthesized different kinds of porous hierarchical Coz;0,
structures using ZIF-67 by a simple calcination method opti-
mization. In this study, four kinds of Coz;0,-based structures
were developed such as core-shell (C-S) (350 °C for 3 h), porous

704 | Nanoscale Adv., 2022, 4, 697-732

core-shell (PC-S) (350 °C for 10 h), porous popcorn (PPC)
(calcined in both air and N, atmospheres at 350 °C for 3 h and
500 °C for 1 h where the temperature was increased at a rate of
1°C min "), and Co;0, nanopatrticles (NPs) (calcined at 600 °C
—3 h in air, where the temperature was increased at a rate of
10°C min "), with particle sizes ranging from 1.7 pm to 150 nm.
Two sensors with sensor core-shell structures such as CS- and
PCS-Co3;0, materials exhibited high sensing performance
towards 200 ppm acetone with a response (Ry/R, = 13) and (R,/
R, =11), respectively at 190 °C, and a quick response time (tresp)
of 4 s. The repeatability and long-term stability test show
excellent repeatability with minimal fluctuation of the response
in long-term stability tests. Long-term stability was tested for 30
days, which showed excellent reproducibility with minor varia-
tions of responses. The high sensing performances of C-S and
PC-S-Co30, core-shell materials were attributed to the open
interior architectures derived from MOFs.

Kuang and co-workers®> reported that Co;0, nanoparticles
were synthesized from ZIF-67 by the precipitation technique
followed by annealing of ZIF-67 at 300-400 °C temperature. The
obtained concave nanocubes of porous Co;0,-300 °C particles

© 2022 The Author(s). Published by the Royal Society of Chemistry
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showed a response of (Ry,/R, = 3.2) to ethanol (200 ppm) gas
with a quick response time (t.s) of 10 s and LOD of 10 ppm
only. Such a performance of MOF derived Co;O, concave
nanocube particles was attributed to the excellent specific
surface area (120.9 m> g '), high porosity, and abundant
surface-adsorbed oxygen atoms. In 2017, Zhou et al.** prepared
a hierarchical Co;0, nanostructure by calcining Cos-MOF (Cos
(u3-OH),(1,4-NDC),(bix),],) bar-shaped microcrystals for form-
aldehyde sensing at low operating temperatures. The C0;0,-350
spherical particles exhibited high formaldehyde sensing at 170
°C, a low detection limit of 10 ppm, and long-term stability (30
days) as compared to other calcination temperatures. Such
extraordinarily efficient properties might have resulted from the
hierarchical structures, larger surface area, and unique pore
structure. Meanwhile, for high formaldehyde concentration
sensing characteristics, the response (Ry/R,) values of the Co;0,
NPs correspond to 11.7, 14.1, 15.1, 16, and 17 for 100, 200, 300,
400, and 500 ppm of formaldehyde vapor, respectively.

© 2022 The Author(s). Published by the Royal Society of Chemistry

Recently, Wang et al.®* synthesized a pristine Sn-based MOF
aiming toward the formation of SnO, nanoparticles for form-
aldehyde sensing. A Sn-based MOF was synthesized from the
H3BTC (1,3,5-benzenetricarboxylic acid) and SnCl, precursors
by a solvothermal method at 180 °C followed by calcination at
400 °C —2 h to obtain desired SnO, hollow hexagonal nanorods.
The specific surface area of the pristine Sn—-MOF was 1142.71 m>
g~ ' with a pore size of 3.0 nm. The obtained SnO, hollow
hexagonal nanorod sensor displayed an ultrahigh response of
882, and e of 19 s towards 2 ppm formaldehyde vapor at 120
°C. The high selectivity towards formaldehyde could be attrib-
uted to the low bond energy of formaldehyde (H-CHO = 368.4
k] mol "),**® where, formaldehyde gas molecules could be
easily destroyed at such lower temperature to participate in the
sensing reaction.*®

Wu et al.¥” prepared various morphologies of CuO such as
a pure octahedron, octahedron with a sponge like structure, and
spheres from annealing of Cu(u)-MOF (HKAUST-1) at various

Nanoscale Adv., 2022, 4, 697-732 | 705
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Table 2 Summary of sensing performances of MOF derived metal-oxides and their composite based gas sensors

Response [S Working Response/

= Ry/R; I Ry/R, and 5% = (R, — Concentration temp. recovery
Materials Target gas R,/R;) x 100] (ppm) LOD (°Q) time (sec) Ref.
ZIF-67 (CS-C030,) Acetone 13 200 NA 190 4 s/— 81
ZIF-67 (PCS-C030,) Acetone 11 200 NA 190 4 s/— 81
2-C0;0, rods-ZnO sheet Acetone 29 5 NA 450 NA 91
PdO-loaded Co30,/SnO, HNCs Acetone 22.8 5 1.61 (5 450 90 s/108.4 s 93

ppb)

ZIF-8 (Au/ZnO NPs) Acetone 17.1 1 600 ppb 275 247 s/209 s 108
Au-Co;0, HNCs Acetone 14.5 100 1 ppm 190 NA 103
PdO-loaded Co;0,-In,0; hollow Acetone 146.9 5 N. A 225 NA 110
spheres
Porous C0;0,-300 °C Ethanol 3.2 200 10 ppm 300 10s 82
C030,4/N-RGO-0.5 Ethanol 3.9% 200 NA 200 20 s/51 s 98
C030,4-350 sphere Formaldehyde 11.7 100 NA 170 NA 83
SnO, hollow hexagonal nanorods Formaldehyde 882 2 NA 120 19 s/— 84
Pt@ZnO-TiO, NTs Toluene 11.13 1 23 ppb 300 75 /20.1 s 111
Pd/ZnO loaded WO; NFs Toluene 22.22 1 NA 350 20 115
Co030,4 nanocages p-xylene 78.6 5 NA 225 10 5/86 s 88
Pt/ZnO —1 wt% 3DIO NPs H,S 11.2 1 25 ppb 320 8.7 5/19.4 s 116
2% Pt NPs@ZnO polyhedra (e{0) 90 50 100 ppb 100 895/175 s 119
Cu0-400 (HAKUST-1) TEA 102 100 5 ppm 230 21 s/150 s 87
RGO/a-Fe, 03 TAE 24 50 NA 280 25s/7s 99
SWCNT/PdO-Co;0, HNCs NO, 44.11% 20 1ppm 100 NA 122
In,03/MoS, NO, 371.9 100 8.8ppb RT 152 5/179 s 123

temperatures (400-500 °C). The gas-sensing characteristics of
the as-prepared CuO samples were investigated. The results
revealed that the p-type CuO-400 sensor exhibited an excellent
response (Ry/R, = 102) towards 100 ppm triethylamine (TEA)
with a LOD of 5 ppm at 230 °C. The sensor also displayed
excellent long-term stability and reproducibility. The above
sensing results of CuO-400 were attributed to its unique
morphology having numerous active sites for sensing reactions,
which facilitated the efficient adsorption of TEA molecules. The
possible sensing mechanism of TEA sensing was reported as
follows:

O2(g) = Oxaas) (4)

O(ads) = O2ads)” * Dehotey” (5)
Ogaasy — 207 +3h™" (6)

N(C,Hs); + 0>~ + 2h* — N, + H,0 + CO, (7)

It is essential to note that to achieve high sensing perfor-
mance, the variation of sensing materials should be tailored by
controlling the size of the nanostructures to be highly porous
and gas-accessible. Controlling the morphology, size, porosity,
and thickness of the shell wall of MOF-derived hollow nano-
structures by one-pot hydrothermal/solvothermal is chal-
lenging.*®*° Jo et al.®® successfully synthesized Co;0, nanocages
derived from ZIF-67 with four different sizes. They were used as
sacrificial templates to allow the growth of Co-layer double
hydroxide (LDH) (schematically shown in Fig. 6A) followed by
calcination to obtain Co;0, hierarchical hollow nanocages
(HHN). Fig. 6B-E show the TEM images of four different

706 | Nanoscale Adv., 2022, 4, 697-732

structures (30-40 um) after calcination at 400 °C. Fig. 6F shows
the response transients of the Co;0, nanocage sensor tested at
225 °C. The as prepared sensor (size of ~1.0 pm; 10-ZIF-67
derived 10-Co;04) displayed high response (Ra/R; = 78.6) to 5
ppm p-xylene with excellent selectivity to methylbenzene at 225
°C. Fig. 6G shows the repeatability of the Co;O, nanocage
sensor for 10 cycles towards 5 ppm xylene at 225 °C. The high
sensing results are ascribed to the unique hierarchical hollow
morphology, which facilitated abundant access of analyte
molecules, high surface area, and the catalytic activity of Co30,.

Construction of heterostructures is one of the best
approaches towards increasing sensitivity and overall sensing
performance.®® Heterostructures possess high surface area,
high porosity, and electronically sensitized multi-hetero-
junction structures.”® Kim and co-workers® synthesized
different morphologies of Co;O, materials, including ZIF-67
with a rod shape, a sheet with a leaf shape (ZIF-L), a ZIF-67
polyhedron, and ZIF-67 belts, respectively, by simply controlling
the mixing of solvents with cobalt precursors and 2-methyl-
imidazole (HiM), as shown in Fig. 7A. Subsequently, daisy-
flower like Co030,-ZnO p-n heterojunction hybrid nano-
structures were synthesized by mixing ZIF-67 rods (1.2 wt% to 7
wt%) in ZIF-L solution with Zinc precursors followed by
annealing at 450 °C (as shown in Fig. 8B), which exhibited
enhanced acetone sensitivity. Among three Co;0,~-ZnO hetero-
nanostructures, the 2 wt% Co3;0, rods-ZnO sensor exhibited the
highest response (S = R,/Ry = 29) for 5 ppm acetone at 450 °C in
comparison to Coz0,4 rod (S = 1.06) and ZnO sheet (S = 10)
sensors. The possible sensing reaction for acetone gas sensors
is as follows:

© 2022 The Author(s). Published by the Royal Society of Chemistry
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ppm), and (G) repeatability test at 225 °C. Reprinted from ref. 88 with permission from American Chemical Society, copyright 2021.

CH3COCH3(g) + 80" — 3H20 + 3C02 + 8e™ (8)

The authors also studied the principal component analysis
(PCA) as a pattern recognition tool to further study the selec-
tivity of acetone.”® The result showed that even at a high

© 2022 The Author(s). Published by the Royal Society of Chemistry

humidity level of 90 RH%, acetone and the other 6 interfering
gas molecules were distinguished into regions (green and red
dotted regions) (Fig. 7E). The enhanced acetone-sensing prop-
erties are attributed to the (i) formation of p-n heterojunctions,
(ii) highly porous nanostructures, and (iii) chemical sensitiza-
tion effect of Coz0,, respectively.**
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