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The principal component analysis of the ring
deformation in the nonadiabatic surface hopping
dynamics†‡

Yifei Zhu, ab Jiawei Peng,bc Xu Kang,ab Chao Xu ab and Zhenggang Lan *ab

The analysis of the leading active molecular motions in the on-the-fly trajectory surface hopping

simulation provides the essential information to understand the geometric evolution in nonadiabatic

dynamics. When the ring deformation is involved, the identification of the key active coordinates

becomes challenging. A ‘‘hierarchical’’ protocol based on the dimensionality reduction and clustering

approaches is proposed for the automatic analysis of the ring deformation in the nonadiabatic molecular

dynamics. The representative system keto isocytosine is taken as the prototype to illustrate this protocol.

The results indicate that the current hierarchical analysis protocol is a powerful way to clearly clarify

both the major and minor active molecular motions of the ring distortion in nonadiabatic dynamics.

I Introduction

Nonadiabatic dynamics plays a critical role in photophysics,
photochemistry and photobiology.1–4 The simulation of non-
adiabatic dynamics is always challenging because the strong-
coupled electron–nucleus motion, i.e., the breakdown of
the Born–Oppenheimer approximation, must be taken into
account.3–5 With the increase of the complexity of systems
under studies, it is also necessary to deal with a large number of
degrees of freedom (DOFs) involved in nonadiabatic dynamics.
In the last few decades, various efforts were contributed to develop
nonadiabatic dynamics simulation approaches, which cover the
full quantum dynamics,3,4,6–10 quantum dissipative dynamics
based on the reduced density operator of the subsystem,3,9

mixed-quantum-classical and semiclassical approaches.3,10–14

Among them, trajectory surface hopping (TSH) approaches are
widely employed due to their simplicity and accessibility in
implementation.11,14–19 After the combination with the on-the-
fly dynamics, TSH methods provide a feasible way to simulate
the nonadiabatic dynamics of realistic polyatomic systems at
the full-dimensional level, which gives a reasonable description
of the photoreaction mechanism with affordable computa-
tional cost.12,14–17,20,21

Within the trajectory-based on-the-fly nonadiabatic dynamics,
numerous trajectories must be propagated until the statistical
convergence is fulfilled. In principle, the statistical analysis of
these trajectories gives important dynamics features, such
as the excited-state lifetime, the branching ratio of reaction
channels, the dominant molecular motions and so on. More-
over, for a direct view to understand the molecular evolution in
the on-the-fly nonadiabatic dynamics, it is extremely crucial to
identify a few key active coordinates that drive the photo-
induced reactions. However, such analysis is not a simple and
trivial task.22 In traditional analyses, several approaches were
normally employed, for instance directly checking the differences
between the hopping and initial geometries with human observa-
tion, examining the geometric evolution in the dynamics by eyes,
and plotting the relevant internal coordinates as a function of
time. The difficulty to perform such traditional analyses dramati-
cally increases when the system size becomes larger, the compli-
cated molecular motions are involved and a large number of
trajectories are calculated. Alternatively, the normal mode analysis
was used to analyse the geometric evolution of nonadiabatic
dynamics.23–25 As a powerful tool, such analyses provide valuable
physical insights into molecular vibrations when small-amplitude
molecular motions are involved.
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Actually it is difficult to extract the underlying structural
evolution from extremely complex motions in the high-
dimensional geometric space. But in the perspective of
machine learning,26–28 it may be helpful to transform a high-
dimensional data set to a low-dimensional reduced one, with
the goal of preserving the main information contained in the
original data set. Based on this reduced-dimensional space, it is
preferable to employ clustering methods and other tools to
obtain a transparent view of the data distribution patterns.
Within this framework, in principle it is possible to introduce
unsupervised machine learning algorithms into the analysis of
the molecular dynamics, to effectively and accurately extract
important dynamics features from the large amount of data
given by trajectory simulations. Along this idea, considerable
efforts were devoted to the analysis of the ground-state molecular
dynamics results.27,29–38

In the meantime, the analysis of the simulation results of
nonadiabatic dynamics with unsupervised learning algorithms
is still challenging and only a few efforts were made in recent
years.39 The diffusion map was used by Virshup et al. to
perform the dimensionality reduction analyses of the photo-
isomerization dynamics with ab initio multiple spawning
simulations.40 The same dimensionality reduction approach
was used by Belyaev et al. to understand the geometric evolu-
tion in the TSH nonadiabatic dynamics.41 Li et al. employed
two closely related dimensionality reduction approaches,
classical multidimensional scaling (MDS) and isometric feature
mapping (ISOMAP) methods, as well as the density-based
spatial clustering of applications with noise (DBSCAN) cluster-
ing approach to analyse the geometric evolution in the non-
adiabatic dynamics.42,43 Principal component analysis (PCA)
was also used by Capano et al.44 and Peng et al.45 to analyse the
photophysics of the Cu-complex in the TSH dynamics and the
role of the bath motion in the symmetrical quasi-classical
dynamics method based on Meyer–Miller mapping Hamilto-
nian, respectively. The combination of the normal mode and
PCA was employed to understand the key motion of the non-
adiabatic dynamics by González and coworkers.23 In addition,
some efforts were also made to employ the unsupervised
machine learning algorithms to analyse the nonadiabatic
dynamics of solid state systems.46,47 Recently, the unsupervised
machine learning algorithms were also applied by Choi et al.
to understand and propagate the dynamics evolution of open
quantum systems.48

The deformation of an aromatic ring widely exists in many
nonadiabatic dynamics processes, including the photostability
of the DNA bases,49–54 the internal conversion of the sunscreen
molecules,55,56 the ‘‘channel-III’’ nonradiative process of
benzene and its simple derivatives,57,58 etc. Therefore, it is
often necessary to find an appropriate way to characterize the
ring deformation. Barbatti et al. once used the Cremer–Pople
diagram59 to clarify the ring distortion in the TSH dynamics.52,60,61

The classification by Boeyens also provided a suitable descrip-
tion of the six-membered ring deformation.62 Certainly, it is
fascinating to check how to employ the unsupervised machine
learning algorithms to analyse the ring distortion. In fact,

unsupervised learning methods were conducted by Cersonsky
et al. to analyse the ring distortion of aliphatic cyclohexane in the
metadynamics.63 The analysis of the ring deformation may not
be straightforward, because we have to find a suitable way to
obtain the balanced description of the major and minor active
ring-part and side-group DOFs involved in the complicated
molecular dynamics.

In the current work, we are committed to develop a hier-
archical protocol based on unsupervised machine learning
algorithms for automatically identifying different photoreac-
tion channels and their corresponding critical molecular
motions from the on-the-fly TSH dynamics simulations. As we
expected, this hierarchical protocol can address the afore-
mentioned difficulties to characterize the ring distortion. Here,
the PCA27,29,30,44,45,64,65 and two clustering methods (DBSCAN66

and agglomerative clustering67,68) were used to perform ana-
lyses in the protocol. It is clear that the ring deformation may
not be well captured by the Cartesian coordinates since such
distortions generally display highly nonlinear features. To avoid
the dilemma posed by Cartesian coordinates, we proposed to
employ six descriptor sets constructed from different groups of
redundant internal coordinates based on chemical meanings.
The whole analysis protocol includes two stages. First, to
identify the reaction channels, we analysed the DOFs belonging
to the ring part and end groups successively by performing the
PCA and clustering approaches of hopping geometries in the
TSH dynamics in a hierarchical manner. In this step, several
disjoint clusters were obtained, and in principle each cluster
should represent a reaction channel. Second, to identify the
major active coordinates of each channel, we compared the
hopping geometries with the corresponding initial ones in each
descriptor space by employing the PCA.

In this work, we selected the keto isocytosine (Table 1) as a
prototype model to demonstrate the above proposed hierarch-
ical protocol. As a tautomer of the cytosine (one of the DNA
bases), the photoinduced processes of the keto isocytosine were
widely studied in both experimental and theoretical works.69–77

Table 1 The molecular structure and atomic labels of keto isocytosine
and six corresponding primary descriptor sets

Molecular structure and atomic labels

Descriptor sets
Dring D(4,1,5,3) D(5,1,4,10) D(10,2,3,5) D(3,2,10,4)

D(2,3,5,1) D(1,4,10,2)
Aring A(4,1,5) A(3,2,10) A(2,3,5) A(1,4,10)

A(1,5,3) A(2,10,4)
Rring R(1,4) R(1,5) R(2,3) R(4,10)

R(3,5) R(2,10)
Deg D(6,1,5,3) D(6,1,4,10) D(1,4,10,9) D(3,2,10,9)
Aeg A(4,1,6) A(2,10,9) A(5,1,6) A(4,10,9)
Reg R(1,6) R(9,10)
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These previous works indicated that several conical intersections
(CIs) are involved in the nonadiabatic dynamics, which are
governed by different ring deformation patterns.75,76 Therefore,
the keto isocytosine is an ideal model to verify the performance
of our hierarchical protocol in realistic systems. Through the
analyses based on the proposed hierarchical protocol, six
reaction channels and their main active coordinates relevant
to the ring deformation were identified. At the same time, even
the minor active molecular motions were noticed. All these
channels were correlated with the optimized CIs and the
further analysis provides the key physical insight into the
nonadiabatic dynamics. This suggests that the current hier-
archical protocol provides a powerful way to analyse the ring
deformation in the nonadiabatic dynamics. Furthermore,
although this work was performed on the basis of the TSH
nonadiabatic molecular dynamics simulation, a similar idea
can be generalized to understand other types of on-the-fly
dynamics simulations.

This paper is organized as follows. Section II focuses on
theoretical methods, implementation and computational details.
Section III provides the applications of the current proposed
methods in the analysis of the nonadiabatic dynamics of keto
isocytosine. Finally, Section IV gives the conclusion of this work.

II Theoretical methods and
computational details
1 Theoretical methods

1.1 Descriptors. When unsupervised machine learning
techniques are employed in the analysis of the on-the-fly
nonadiabatic molecular dynamics simulation, it is necessary
to construct suitable descriptors, namely the high-dimensional
vectors, to characterize the geometric features of the snapshots
in the trajectory evolution.

Although the Cartesian coordinates are used in the nuclear
propagation in the on-the-fly simulation, this set of coordinates
is not a good descriptor due to obvious limitations, i.e., the
lack of translational and rotational symmetries and so on.
Therefore, we need to transform the Cartesian coordinates into
other sets of coordinates (commonly referred to as ‘‘descriptors’’
or ‘‘fingerprints’’), which provide the appropriate description of
the geometry evolution in the nonadiabatic dynamics.

The main purpose of this work is to analyse the ring
deformation in the on-the-fly TSH nonadiabatic dynamics
simulation. It is rather feasible to use internal coordinates to
construct descriptors, since the bond lengths, bond angles and
dihedral angles provide a rather compact and appropriate
characterization of the ring deformation.

In this work, several points must be considered in the
practical implementation:

(I) Different internal coordinates span in different numerical
ranges; thus, they do not have the same scale. Furthermore,
the internal coordinates form an over-completed and non-
orthogonal space, in which different DOFs are correlated. For
example, a simple out-the-plane motion of an end group may

bring changes in both dihedral angles and bond angles.
Here, we divided the bond lengths, bond angles and dihedral
angles into different groups, and constructed several groups of
descriptors.

(II) For each of the above three groups, we also divided all
involved coordinates into two subgroups, which are either
relevant to the motion of the ring part or the end-group part.
Such a division is necessary, as the former and later sets
give the reasonable descriptions on the ring distortion and
the end-group motion, respectively. In this way, two types
of motions are not mixed, and this way largely reduces the
analysis difficulty.

(III) The H atoms generally display the large-amplitude
motions owing to their lightness. In this case, it is easy to
overestimate their contribution to the nonadiabatic dynamics.
Because we mainly focus on the ring deformation, many internal
coordinates associated with hydrogen-atom motions were not
very essential. To avoid emphasizing the H-atom motions too
much, we simply do not include them in the analysis.

We performed all analysis based on a special internal
coordinate set, that is ‘‘redundant internal coordinates’’.78,79

The basic rules to build these coordinate sets were discussed by
previous studies in detail.78,79 Here, we only mention them
briefly. The redundant internal coordinate set is composed of
all pairwise bond distances, the appropriate bond angles and
well-defined dihedral bond angles. The construction of the
redundant internal coordinates can be realized as follows. First,
all atomic distances are examined to determine whether two
atoms are bonded to each other according to the clearly defined
distance criteria.78,79 If yes, these two atoms are considered
as bonded and their distance is considered as a valid bond
distance. Second, the bond angles are assigned only when
two atoms bonded to the same third atom. For example,
A(C2,C3,N5) in Table 1 is defined as an appropriate bond angle
when C2 is bonded to C3 and C3 is bonded to N5. Third, the
valid dihedral angles are assigned to the situation that four
atoms are bonded sequentially. For example, D(C1,N4,C10,O9)
in Table 1 indicates that C1 is bonded to N4, N4 is bonded
to C10 and C10 is bonded to O9. Following the above rules,
a well-defined redundant internal coordinate set is obtained.
In other words, this over-completed coordinate set does not
change when the connectivity of a certain molecule remains
unchanged. The chosen redundant internal coordinates are
employed as default by the Gaussian package.79,80 The similar
coordinate systems are used in the field of quantum chemistry.81–83

More discussions on the chosen redundant internal coordi-
nates are given in the ESI.‡

In this work, the redundant internal coordinates are divided
into either ‘‘ring’’ or ‘‘eg’’ group. If all related atoms are
included in the ring, this internal coordinate is assigned to
be in the ‘‘ring’’ group. For an internal coordinate, if some
involved atoms are in the ring while others do not directly
belong to the conjugated ring, it is labelled as the ‘‘eg’’. For
example, the molecular ring is formed by C1, N4, C10, C2,
C3 and N5 in isocytosine; therefore, A(N4,C1,N5) and
D(C1,N4,C10,C2) belong to the ‘‘ring’’ set, while R(O9,C10)
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and D(N6,C1,N4,C10) are divided into the ‘‘eg’’ group. Since
only the ring deformation is mainly concerned, we did not
consider the coordinates if all involved atoms are not in the
ring moiety.

The current division strategy provides a basic idea rather
than decisive division criteria, that is, we can divide the
redundant internal coordinate space into different subspace
according to different numerical ranges and chemical mean-
ings. For example, in the current division, we may individually
examine the different geometric evolution features in the ring
parts and side groups connected to the ring moieties. If these
two kinds of motions are decoupled or fall in different numer-
ical ranges, the current analysis is very useful. Even if they are
coupled, we still can treat them individually first and place
them together at the end.

1.2 Principal component analysis (PCA). Dimensionality
reduction is a transformation of the original data set from a
high-dimensional space to a low-dimensional reduced one with
the purpose of preserving the most essential distribution
features. PCA27,29,44,45,64,65 is one of the most popular dimen-
sionality reduction methods, in which the transformation is
defined by the linear projection formed by a set of orthogonal
directions showing the highest variances of the data set.
More detailed discussions on the PCA are found in the ESI.‡

Nevertheless, the PCA can only be used in the linear data
distribution. When the data are distributed on a manifold, the
nonlinear dimension reduction methods, such as the diffusion
map,40,84,85 ISOMAP27,29,42,86,87 and t-SNE (t-distributed sto-
chastic neighbor embedding),88,89 become necessary. However,
in many situations, the PCA is still among the first choices due
to several advantages. For example, it provides a clear mathe-
matical view of the data set distribution and explicitly generates
the reduced coordinates. Thus, the PCA was chosen in the
current work.

1.3 Clustering methods. Here, we selected two clustering
algorithms, DBSCAN (density-based spatial clustering of appli-
cations with noise)66 and agglomerative clustering,67,68 to treat
different data distribution patterns.

It is well known that the choice of the clustering approach
strongly depends on the analysis purpose and the data dis-
tribution profile; thus, it is necessary to choose the suitable
clustering method according to the data distribution
patterns.27,28,90 When the data distribution clearly displays
several distinct clusters and a few noise points, the DBSCAN
method should be selected.91,92 If the data density in each
cluster shows a large difference, the agglomerative clustering
approach should work better.68,93,94 More detailed discussions
on these clustering approaches are found in the ESI.‡

2 Implementation and computational details

In this work, we attempted to propose a useful protocol based
on the PCA and clustering approaches to analyse the ring
deformation in the on-the-fly trajectory-based nonadiabatic
dynamics simulation, by following a hierarchical workflow
as illustrated in Scheme 1. The whole analysis protocol is
summarized as below.

1. We performed on-the-fly Tully’s TSH simulations. After
collecting all geometries at hops, we built the database of the
internal coordinate for these structures. We divided all internal
coordinates into several descriptor groups and each represents
a certain kind of geometric features.

2. We attempted to clarify how many reaction channels exist.
Based on each descriptor set, the PCA and clustering analysis were
performed for all hopping geometries. The iterative procedure is
employed until each of the obtained cluster is non-separable,
which should in principle represent a single reaction channel.

3. We attempted to identify the major active coordinates
responsible for each nonadiabatic decay channel by comparing

Scheme 1 The workflow chart of the current work.
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the initial structures and the hopping geometries in each
channel. Such a comparison was performed based on the PCA.

Note that the above procedure is iterative and hierarchical,
and more implementation details are discussed below.

2.1 On-the-fly TSH dynamics simulation of the keto iso-
cytosine model. Here, we chose keto isocytosine as a prototype
to explain how the current ‘‘hierarchical’’ dimensionality
reduction analysis approach works in realistic problems. The
molecule structure of keto isocytosine with the atomic labeling
is shown in Table 1.

The on-the-fly TSH dynamics simulation with Tully’s fewest-
switches surface hopping (FSSH) algorithm11 was performed at
the SA3-CASSCF(12,9)/6-31G* level using the JADE code16,76,95

interfaced with the MOLPRO package.96 The decoherence cor-
rection proposed by Granucci et al.18 is introduced on top of the
TSH algorithm with the correction parameter C = 0.1 hartree.97

All these calculation setups are very similar to our previous
work.76 More details on the TSH simulations are given in the
ESI.‡

2.2 Hop-point geometry collections. Many trajectories were
generated in the TSH nonadiabatic dynamics simulation and
all geometries at the first S1–S0 hops were collected. Next,
we transformed them from the Cartesian coordinates to the
redundant internal coordinates by using the Gaussian 16
package, as the chosen internal coordinates were used as the
default ones in Gaussian. For a few trajectories, the ring break
may occur at hops, and they cannot give the internal coordi-
nates consistent with those of the initial geometries. As
their ratio is very low (o2%), we simply discarded them
in the further analysis. We also neglected the internal coordi-
nates involving the light hydrogen atoms, as discussed in
Section II.1.1.

2.3 Construction of descriptor sets. According to the dis-
cussion in Section II.1.1, we divided all internal coordinates
into six groups. For convenience, these groups are labeled as
Dring, Aring, Rring, Deg, Aeg and Reg. Here D, A, R denote the bond
length, bond angle and dihedral angle, respectively. Mean-
while, the subscript ring and eg define whether DOFs belong
to the ring moiety or relevant to the end groups. For example,
Dring refers to the dihedral angles in the ring part, while
Reg means the bond distances involving the atoms of the end
groups. In fact, each group of descriptors represents the distinc-
tive geometric features involving different types of motions. All the
elements of the used descriptor sets are listed in Table 1.

2.4 PCA and clustering. After the collection of all hopping
geometries, it is very important to identify how many reaction
channels are involved in the nonadiabatic dynamics evolution.
For this purpose, we attempted to divide all hopping geome-
tries by the PCA and clustering analysis according to their
internal coordinates. The main idea is to perform the PCA
based on different sets of descriptors, and then conduct the
clustering analysis until each of the obtained cluster is non-
separable. We assume that each non-separable cluster contains
a single reaction channel. Note that if the number of structures
contained in a cluster is less than 15% of the total number of
hop-points, the cluster is also considered to be non-separable.

Here, we performed the cluster approaches in the reduced
space constructed by the PCA instead of the original space.
In principle, the order of dimensionality reduction and cluster-
ing analysis may not profoundly affect the results. However, in
practice, we always start with the dimensionality reduction due
to the below reasons. First, the noise points and data sparsity in
the high-dimensional space bring difficulties to the perfor-
mance of the clustering analysis. Second, the reduced space
provides some basic understanding of the data set to guide the
choice of clustering methods.27,98

Firstly, we considered the DOFs in the ring moiety only and
performed the PCA using three descriptor sets (Dring, Aring and
Aring). This gives the data distribution patterns in three indivi-
dual reduced spaces. For each of them, the clustering analysis
was then conducted. In some cases, several clusters are
obtained while in other cases we only obtain a single cluster.
Sometimes, the symmetry property, that is, mirror symmetry,
should be taken into account here.

For each individual cluster, we re-performed the PCA and
applied the clustering analysis in the reduced space again, still
based on the descriptor sets associated with the ring moiety.
Such an iterative step was repeated until all clusters are non-
separable. Here, if the separable clusters appear in two descrip-
tor sets, we will take the case which gives the more clear cluster
boundary. After this step, all hopping geometries were well
analysed by the appropriate consideration of the DOFs in the
ring moiety.

After the generation of several non-separable clusters by the
analysis of the ring motion, we wished to separate the hopping
geometries again based on the DOFs in the end groups. For
each non-separable cluster obtained above, we performed the
PCA again for each individual cluster based on the descriptor
sets involving the end groups (Deg, Aeg and Aeg). After the PCA,
the clustering analysis was applied to give some sub-clusters.
After some iterations, several non-separable clusters were
obtained. In principle, each cluster should correspond to a
certain reaction channel.

In the above procedure, both DBSCAN and agglomerative
clustering methods were employed according to the data
distribution.

2.5 Identification of active coordinates. In the above steps,
we obtained some non-separable clusters and each of them in
principle represents a single reaction channel. At this stage, we
attempted to identify the active coordinates of each channel by
comparing the structures in each individual cluster with their
corresponding initial ones. The procedure is outlined below.

Starting from a single cluster, we collected the hopping
geometries of this cluster together with their corresponding
initial sampling structures. Next, the PCA was performed based
on six descriptor sets, and the reduced low-dimensional space
provided a direct view of data distribution patterns. Within the
reduced spaces constructed from different molecular descrip-
tors, we noticed that there are two types of data distribution
patterns. In some situations, the initial geometries overlap with
the hopping geometries, implying that the chosen descriptor
set does not play the active part in the nonadiabatic dynamics.
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In other cases, the initial geometries are well separated from
the hopping geometries, and at the same time, a few leading
components contribute significantly to the variance of the data
distribution. This indicates that the corresponding reduced
coordinates can well capture the geometric difference between
the initial and hopping geometries. In this way, the active
coordinates for the chosen channel were identified. After
the similar analysis procedure was applied for each reaction
channel, all relevant active DOFs were found.

For each non-separable cluster, we attempted two appro-
aches to obtain the representative hopping geometry. In the
first one, the typical geometry was defined as the cluster center,
which was obtained by the following approach. For a given
cluster, we computed all pair-wise distances in the reduced
space obtained from the PCA. For a data point, we calculated
the summation of all inter-point distances of this point. If a
data point gives the minimum of this summation, we chose it
as the cluster center. In the second method, we calculated the
average values of the internal coordinates for all geometries
within the selected cluster to build an averaged molecular
structure. These two ideas provide visible ways to capture the
major geometric features of the given cluster.

All analysis codes were written with Python language,
and some of them were developed based on Scikit-learn
Python toolkit,99 for example, PCA, DBSCAN and agglomerative
clustering.

III Results and discussion
1 The construction of geometric descriptors

In the current simulations, all calculation setups are very
similar to those in our previous work,76 except that more
trajectories were calculated and the longer simulation time
duration was employed. As a consequence, the similar but
more refined results were obtained.

As shown in Fig. S1 (ESI‡), the population of the S2 state
disappears very quickly, along with the accumulation of the S1

state in the early stage of the dynamics. Subsequently, the
trajectories begin to jump back to the S0 state, and the popula-
tion of the ground electronic state increases. Totally, we con-
sidered 1000 trajectories, of which 436 trajectories undergo
S1–S0 ‘‘hops’’ within 1.5 ps. The overall population dynamics is
similar to our previous work.76

We collected all geometries at the first S1–S0 hop events and
constructed the descriptors to characterize their geometric
features. The internal coordinates were built using the Gaussian
package according to Table 1. Whereas the internal coordinates of
seven hopping geometries are inconsistent with those of initial
geometries, because the six-member ring breaks in the excited-
state dynamics. We just discarded them in the further analysis
because of their minor contribution (o2%). In this way, a
database (DB) containing all hopping geometries was constructed,
in which each geometry is represented by a group of geometric
descriptors, i.e., Dring, Aring, Rring, Deg, Aeg and Reg, as discussed in
Section II.2.3.

2 PCA and clustering analysis

Based on all hopping geometries, we wanted to clarify how
many excited-state reaction channels exit in the nonadiabatic
dynamics evolution. For this purpose, we conducted the PCA
and clustering analysis for these geometries. As discussed in
Section II.2.4, the whole analysis process is composed of two
steps: (1) the analysis of the ring-moiety motion and (2) the
analysis of the end-group motion.

2.1 Analysis of ring-moiety motions. We first performed
the PCA of the hopping geometries according to the relevant
descriptors (Dring, Aring and Rring) based on the data set DB. The
corresponding reduced coordinates (RCI and RCII) and the
data distribution are given in Fig. 1(a)–(c). The PCA results
based on the Dring descriptors are significantly different from
those of the other two descriptor sets (Aring and Rring). For the
Dring descriptors, the first reduced coordinate given by the PCA
is dominant (490%), while the PCA of the other two descriptor
sets always indicates that the leading reduced coordinates are
not dominant dimensions (see Fig. S5(A), ESI‡). At the same
time, three distinguishable clusters with clear boundaries pre-
sent in the low-dimensional space spanned by the reduced
coordinates given by the PCA results of Dring, while the features
with well-separated clusters do not exist in other two reduced
spaces (Fig. 1(a)–(c)). Therefore, the different ring deformations
seem to be appropriately represented by the Dring descriptor
sets, as the dihedral angles of the ring part are suitable
coordinates to characterize such motions.

Next, we performed the clustering analysis on top of the PCA
results of the Dring coordinates, because of the existence of a
few clearly separated clusters. As these three clusters have
obviously different densities, we chose the agglomerative clus-
tering method as discussed in Section II.1.1. Three clusters
were identified, which are labeled as Clusters A01, A02 and A03
in Fig. 1(d). The centers of these three clusters were taken to
obtain a rough view of their typical geometric features. We
noticed that the chiral symmetry may play some roles between
the geometries of Cluster A01 and Cluster A03, because both
upward and downward Dring puckering deformations may exist
in the nonadiabatic dynamics starting from the initial planar
structures. In order to eliminate the chiral effect, we simply
reversed the signs of the z-coordinates of the geometries in
Cluster A03. After this mirror operation, we rebuilt the database
DB and re-performed the PCA and clustering analysis. Now two
clusters were obtained, which are labeled as Clusters A1 and A2
in Fig. 1(e).

The next task is to clarify whether each individual cluster
(Cluster A1 or A2) is separable by following the protocol in
Section II.2.4. Since Cluster A2 contains 31 geometries (o15%),
we considered that the Cluster A2 is non-separable. We only re-
performed the PCA and clustering analysis for all geometries in
Cluster A1 and found such a cluster to be not separable.
Therefore, all hopping geometries were well separated into
two groups, Clusters A1 and A2, by the PCA and clustering
analysis of the ring-moiety motions.

2.2 Analysis of end-group motions. Starting from Clusters
A1 and A2, we wanted to understand whether the introduction
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of the DOFs involving end groups allows us to further divide
them into different groups. Since the number of geometries
contained in Cluster A2 is less than 15% of total hopping
geometries, we only performed further analysis for the

geometries in Cluster A1. Here, the PCA was performed based
on Deg and Aeg. For Reg, no dimensionality reduction approach
was conducted further, since this descriptor set only includes
two elements, namely, R(9,10) and R(1,6).

Fig. 1 The whole PCA and clustering analysis (with required parameters) processes. The corresponding data distribution patterns in reduced subspaces
at each step are shown in subfigures (a)–(n). Non-separable clusters are marked with different colors. The DBSCAN algorithm needs two parameters, i.e.,
a maximum distance (e) and a minimum number of neighbors (MinPts). The agglomerative clustering method requires a linkage distance threshold
(Threshold) above which clusters will not be merged.
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As shown in Fig. 1(g) and (h), only one single data cluster is
obtained in the cases when Aeg and Reg were considered.
In contrast, three clusters with almost identical densities
are clearly given in the PCA results based on Deg, beside a few
outliers, as shown in Fig. 1(f). And the most important compo-
nents of RCI and RCII are D(1,4,10,9) and D(3,2,10,9), respec-
tively (see Fig. S6(A1)–(A4), ESI‡).

Next, we performed the further clustering analysis of all
geometries in Cluster A1 on top of the Deg-based PCA results.
The DBSCAN method was taken here because it works well
when we want to separate several clusters with almost
identical densities and to remove some outliers, as discussed
in Section II.1.1. The clustering analysis gave three clear
clusters and 16 noise points (o5%) in Fig. 1(i). Because all
three clusters are sub-clusters of Cluster A1, they are reasonably
labelled as Clusters A1B1, A1B2 and A1B3. They contain 308, 42
and 32 data points, respectively. To date, we have totally obtained
four individual clusters (Cluster A1B1, Cluster A1B2, Cluster A1B3,
and Cluster A2). Among them, only the number of hopping
geometries in Cluster A1B2 is more than 15% of the total, and
thus the other clusters are considered to be non-separable.

To further examine whether Cluster A1B2 is separable or
not, we re-performed the PCA and clustering analysis of all
hopping geometries in this group again. The results are given
in Fig. 1(j)–(l). Among them, the PCA of Deg gives different
results. The first leading reduced dimensional coordinate is
extremely dominant, more than 70% variance, as shown in
Fig. S6(B2) (ESI‡). In the reduced two-dimensional space given
by the PCA of Deg, we still obtain three clusters. Although the
boundaries of these clusters are not perfectly clear, it is enough
to identify these clusters by their different densities. Thus, we
attempted to perform the agglomerative clustering here, and
three clusters were shown, namely Clusters A1B2C1, A1B2C2
and A1B2C3, in Fig. 1(n). Here, these groups contain 232, 50
and 26 hopping geometries, respectively. Therefore, the later
two clusters (Clusters A1B2C2 and A1B2C3) are treated as the
non-separable ones in our view.

We re-performed same the PCA and clustering analysis for
all geometries in Cluster A1B2C1, while this cluster is no longer
separable. Overall, when both the ring-moiety and end-group
parts were considered, we finally obtained six groups,
i.e., Clusters A1B1, A1B2C1, A1B2C2, A1B2C3, A1B3 and A2.

In the above analysis process, sometimes the unclear clusters
may appear in the PCA of some descriptor sets, such as the
situation in Fig. 1(b). In such cases, we always examined which
descriptor set gives more clear separation of all clusters in the
reduced space. If some DOFs show better performance, such as
Dring in Fig. 1(a), we will simply take the corresponding descriptor
set to conduct the further analysis.

3 Major active coordinates of each channel

In principle, each of six individual non-separable clusters
corresponds to a single reaction channel. We attempted to
identify the key active coordinates of each channel by compar-
ing the structures in each individual cluster with their corres-
ponding initial geometries.

For each cluster, we first collected all hopping structures
and their corresponding initial sampling geometries to obtain
an extended database. Each data point in the extended data-
base is also represented by six descriptor sets given in
Section III.2. Specially, here we took the absolute value of all
dihedral angles in Deg to avoid the inherent numerical discon-
tinuity. We performed the PCA based on these descriptor sets,
except Reg that only includes two elements (R(9,10) and R(1,6)).
All results are shown in Fig. 2–7 and each figure is composed of
24 subplots. Among them, the data distribution in the two-
dimensional space spanned by two leading reduced coordi-
nates, the relationship between RCI and a few most important
internal coordinates, the variance ratio of each dimension and
the components of a few leading reduced dimensions in the
PCA are given in subplots (a)–(t). For Reg, we just directly
analysed the space spanned by R(9,10) and R(1,6) in the subplot
(u). In addition, the S0 minimum, the typical hopping structure
and the averaged one in the corresponding cluster are shown in
subplots (v)–(x) in each figure. In all cases, the latter two
geometries give the roughly similar structural features.

3.1 Active coordinates of cluster A1B1. Fig. 2 demonstrates
that the hopping geometries and initial structures are well-
separated in the reduced space given by the PCA based on
different descriptor sets, except Reg (Fig. 2(u)). In the reduced
space related to Dring, the first reduced coordinate is already
dominant (480%) in the PCA (Fig. 2(c)), which is mainly
governed by D(4,1,5,3) and D(5,1,4,10) (Fig. 2(d)). While Aring

and Rring are considered, it is enough to employ the first
reduced coordinate to distinguish the initial and hopping
structures. Here, A(1,4,10) and A(1,5,3), as well as R(1,5),
R(2,3) and R(2,10) are the important components.

By the analysis of the end-group motion, A(2,10,9) and
A(4,10,9) play certain roles in the nonadiabatic dynamics. At
the same time, D(6,1,4,10), D(6,1,5,3) and D(3,2,10,9) contri-
bute to the separation of the hopping geometries from the
initial structures.

In this channel, the puckering of the C1 atom and the
puckering at the C10 site in opposite directions are the domi-
nant molecular motion in the nonadiabatic dynamics.
Overall, D(4,1,5,3), D(5,1,4,10), A(1,4,10), A(1,5,3), R(1,5), R(2,3)
and R(2,10) in the ring part, and D(6,1,4,10), D(6,1,5,3),
D(3,2,10,9), A(2,10,9) and A(4,10,9) relevant to end groups are
the leading active coordinates for this channel. The variations
of D(5,1,4,10), D(4,1,5,3) and several relevant angels indicate
that ring puckering takes place near the C4–C1–C5 region. The
changes of angles A(2,10,9) and A(4,10,9), bond lengths R(2,10)
and others within conjugated part, as well as the relevant
dihedral angles, imply the existence of the C10-puckering of
the ring part and the out-of-plane motion of the CQO bond.
These findings are consistent with the geometric features of the
typical and averaged hopping structures given in Fig. 2(w) and (x).

3.2 Active coordinates of cluster A1B2C1. The ring part
analysis of Cluster A1B2C1 (see Fig. 3(a)–(l)) suggests that
D(5,1,4,10) and D(4,1,5,3), A(1,4,10), A(1,5,3) and A(4,1,5), and
R(1,5), R(2,3) and R(3,5) are the critical active coordinates.
These active coordinates indicate that the C1-puckering motion
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plays an important part in the geometric evolution. For the end-
group part, the dihedral angles D(6,1,4,10) and D(6,1,5,3) vary
significantly from B1801 to B1201. For illustration, we took
the direction of the C1-puckering motion as the upward side
hereafter. Thus, the change in the relevant dihedral angles
implies the downward out-of-plane motion of the C1–N6 bond.

Briefly, the main active coordinates in this A1B2C1 channel
include D(5,1,4,10) and D(4,1,5,3), A(1,4,10), A(1,5,3) and A(4,1,5),
R(1,5), R(2,3) and R(3,5), which indicate the C1-puckering motion,

and D(6,1,4,10) and D(6,1,5,3) relevant to the downward out-of-
plane motion of the C1–N6 bond.

3.3 Active coordinates of cluster A1B2C2. According to
Fig. 4, we found that D(5,1,4,10), D(4,1,5,3), D(6,1,5,3) and
D(6,1,4,10), A(1,4,10), A(1,5,3) and A(4,1,5), as well as R(1,5),
R(2,3) and R(3,5) are the main active internal coordinates
in Cluster A1B2C2. This suggests the existence of the simi-
larity between Clusters A1B2C2 and A1B2C1. D(6,1,4,10) and
D(6,1,5,3) change from 1801 to 1001, indicating that the

Fig. 2 The analysis results of Cluster A1B1. (a)–(d), I–(h), (i)–(l), (m)–(p) and (q)–(t) The PCA results of Dring, Aring, Rring, Deg and Aeg, respectively. (u) The
distributions of R(9,10) and R(1,6). (v)–(x) Represent the S0 minimum, the typical and the averaged structures, respectively.
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C5–C1–C4–C6 regions of the structures in this cluster maintain
a better planarity compared to counterparts in Cluster A1B2C1.
In addition, we also found that A(2,10,9) and A(4,10,9) play
some roles.

As a short summary, the dihedral angles D(5,1,4,10) and
D(4,1,5,3), the bond angles A(1,4,10), A(1,5,3) and A(4,1,5), and
the bond lengths R(1,5), R(2,3) and R(3,5) associated with the
ring moiety, D(6,1,5,3), D(6,1,4,10), A(2,10,9) and A(4,10,9), in
the end-group part are the major active coordinates of the

A1B2C2 cluster. And the dominant motion of this channel is
the C1-puckering motion.

3.4 Active coordinates of cluster A1B2C3. For Cluster
A1B2C3, several ring DOFs, such as the dihedral angles
D(5,1,4,10) and D(4,1,5,3) and the bond angles A(1,4,10),
A(2,3,5) and A(4,1,5) are considered as the main active coordi-
nates. From these internal coordinates, the puckering motion
of the C1 atom can be easily identified. For the end-group part,
D(6,1,4,10) and D(6,1,5,3) that vary from 1801 to 501 and the

Fig. 3 The analysis results of Cluster A1B2C1. (a)–(d), (e)–(h), (i)–(l), (m)–(p) and (q)–(t) The PCA results of Dring, Aring, Rring, Deg and Aeg, respectively.
(u) The distributions of R(9,10) and R(1,6). (v)–(x) Represent the S0 minimum, the typical and the averaged structures, respectively.
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variations of the relevant angles indicate the upward out-of-plane
motion of the C1–N6 bond. Furthermore, a slight stretching of the
C1–N6 bond is found in Fig. 5(u), which is also confirmed by the
typical and averaged structures (Fig. 5(w) and (x)).

Overall, the C1 puckering motion and the out-of-plane
motion of the amino group, accompanied by the CN bond
stretching motion, are the important motions in this A1B2C3
channel. The dihedral angles D(5,1,4,10), D(4,1,5,3), D(6,1,4,10)
and D(6,1,5,3), the angles A(1,4,10), A(2,3,5), A(4,1,5), A(4,1,6),

A(4,10,9) and A(2,10,9), and the bond length R(1,6) contributing
to these certain motions are important active coordinates.

3.5 Active coordinates of cluster A1B3. For Cluster A1B3,
the dihedral angles D(5,1,4,10) and D(4,1,5,3) and the bond
angles A(1,4,10), A(4,1,5) and A(2,3,5) in the ring part play
essential roles here (see Fig. 5), while D(6,1,4,10) and
D(6,1,5,3) related to the end-group motions are also important.
Similar to previous cases, the puckering of the C5–C1–C4
region is also observed. The relevant internal coordinates

Fig. 4 The analysis results of Cluster A1B2C2. (a)–(d), (e)–(h), (i)–(l), (m)–(p) and (q)–(t) the PCA results of Dring, Aring, Rring, Deg and Aeg, respectively.
(u) The distributions of R(9,10) and R(1,6). (v)–(x) Represent the S0 minimum, the typical and the averaged structures, respectively.
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involving the C3–C2–C10 region are almost unchanged, which
implies that its planarity is well-preserved. At the same time, the
out-of-plane motion of the CQO moiety is also observed.

Thus, the main active coordinates of this channel are the
dihedral angles D(5,1,4,10), D(4,1,5,3), D(6,1,4,10), and D(6,1,5,3)
and the bond angles A(1,4,10), A(4,1,5) and A(2,3,5). The C1-
puckering and the out-of-plane motion of CQO contribute mostly
to this reaction channel, and these two motions follow the same
orientation.

3.6 Active coordinates of cluster A2. The analyses of the
leading coordinates in Cluster A2 are shown in Fig. 7. For this
channel, the initial and hopping geometries are well-separated
in the reduced space built by the PCAs of Aring, Rring, Aeg and
Reg. All active coordinates are relevant to the bond angles and
bond lengths. Therefore, we expect that the in-plane motion is
dominant in this channel, while all the out-of-plane motions
are not relevant. Among all active motions, one of the most
important DOFs is the stretching motion of the CQO bond as

Fig. 5 The analysis results of Cluster A1B2C3. (a)–(d), (e)–(h), (i)–(l), (m)–(p) and (q)–(t) The PCA results of Dring, Aring, Rring, Deg and Aeg. (u) The
distributions of R(9,10) and R(1,6). (v)–(x) Represent the S0 minimum, the typical and the averaged structures, respectively.
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shown in Fig. 7(u). This finding is consistent with the repre-
sentative hopping geometries in Fig. 7(w) and (x). Along with it,
the stretching and bending motions located in the six-
membered ring also play visible roles. Compared to other
channels, the whole molecular system remains a relatively
planarity, but not complete planar due to the strong variations
in the ring moiety.

3.7 Summary of all reaction channels. In summary, six
channels were identified by following the above protocol, and

the complex molecular motions responsible for each channel
were also clarified. All findings are summarized in Table 2.
The statistical significance of the major molecular motions
for each channel was examined based on bootstrapping
resampling100,101 as demonstrated in the ESI.‡

All clusters (Clusters A1B1, A1B2C1, A1B2C2, A1B2C3 and
A1B3) belonging to Cluster A1 play the dominant roles (92.5%
of all hops) in the TSH dynamics, which are mainly governed by
the C1-puckering motion of the ring moiety. For illustration, we

Fig. 6 The analysis results of Cluster A1B3. (a)–(d), (e)–(h), (i)–(l), (m)–(p) and (q)–(t) The PCA results of Dring, Aring, Rring, Deg and Aeg, respectively. (u) The
distributions of R(9,10) and R(1,6). (v)–(x) Represent the S0 minimum, the typical structures and the averaged structures, respectively.
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align all representative geometries of these channels by attribu-
ting the C1-puckering motion as the upward motion (Table 2),
and discuss the other key molecular DOFs. All representative
geometries in Cluster A1B1, A1B2 and A1B3 show many similar
geometric features.

Here, we noticed that the representative geometries in
Cluster A1B1, A1B2 and A1B3 are in fact distinctive by different
statuses of the C10 atom in the ring and its associated CQO
moiety. Their differences are clarified by examining two dihedral

angles relevant to the O atom (D(1,4,10,9) and D(3,2,10,9))
(Fig. S6(A1)–(A4), ESI‡) and other relevant internal coordinates.
We take the structure of Cluster A1B2 as the reference to illustrate.
The downward and upward out-the-plane motions of the CQO
moiety are observed in the A1B1 and A1B3 decay channels,
respectively, while the out-of-plane motion of the CQO moiety
is almost negligible in the A1B2 channel.

Three sub-clusters (A1B2C1, A1B2C2 and A1B2C3) exist in
Cluster A1B2, which are characterized by different combinations

Fig. 7 The analysis results of Cluster A2. (a)–(d), (e)–(h), (i)–(l), (m)–(p) and (q)–(t) The PCA results of Dring, Aring, Rring, Deg and Aeg, respectively. (u) The
distributions of R(9,10) and R(1,6). (v)–(x) Represent the S0 minimum, the typical structures and the averaged structures, respectively.
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of the out-the-plane motions of the NH2 group and the pyrami-
dalization motion at the C1 atom. When the pyramidalization
motion at the C1 atom is not obvious, we obtained the A1B2C2
channel. When the strong pyramidalization motions are observed,
different pyramidalization directions result in two channels,
A1B2C1 and A1B2C3. Cluster A2 accounting for 7.5% was also
clarified. The CQO stretching motion and the relevant ring
deformation contribute to this channel, while the aromatic ring
remains nearly planar.

In the analysis of the nonadiabatic dynamics reaction
mechanism, it is meaningful to clarify the reaction channels
and their corresponding major molecular motion. On top of
these identifications, we can conduct the further analysis to
obtain more physical-chemistry insight behind them.

We chose the typical geometries and five randomly selected
hopping structures in each channel as initial guesses, and
performed the CI optimization at the SA3-CASSCF(12,9)/
6-31G* level with the MOLPRO package. As shown in Fig. 8,
three CIs were obtained, which are Ethyl.I, Ethyl.II and CQO
stretching CIs, consistent with the previous work.76 The first
two CIs are characterized as the mixture between the pp* and
ground states, and the latter one displays the np*/GS character.

When the initial geometries in the CI optimizations are
chosen from the A1B1, A1B2C1 and A1B2C2 channels, the CI
optimizations give Ethyl.II CI.75,76 If the channels A1B2C3 and
A1B3 are chosen, Ethyl.I CI is obtained. These two CIs share
some similarities in the presence of the C1 site puckering, but
are distinguished by the different orientations of the out-the-
plane motion. Here, Ethyl.II CI is preferred because the less
NH2 torsion is required and no barrier exists.76 In addition, we
also noticed that different conjugation statuses exist in the ring
moieties at these two Ethyl CIs. The bond lengths in the ring
moiety show larger changes in the A1B1, A1B2C1 and A1B2C2
channels (Ethyl.II CI) with respect to the S0 minimum, com-
pared with the A1B2C3 and A1B3 channels (Ethyl.I CI). In one
word, the latter channels experience less conjugation modifica-
tion in the nonadiabatic decays. Therefore, the PCA results
provide the additional possible reasons to explain that the
Ethyl.II CI channels are preferred from the perspective of the
conjugation alteration of the ring part.

In addition, the CI optimizations starting from the geo-
metries of channel A2 give two CIs, Ethyl.II and CQO stretching
CIs. As discussed in Section III.3.6, the geometries of channel
A2 display quasi-planarity, which is close to the structure of the

Table 2 Summary of all the channels

Channel Important motion Major active coordinates

C1-puckering
C10-puckering
CQO out-of-plane motion[�]a

Ring part:
D(5,1,4,0) D(4,1,5,3) A(1,4,10)
A(1,5,3) R(1,5) R(2,3) R(2,10)
End-group part:
D(6,1,4,10) D(6,1,5,3) D(3,2,10,9)
A(2,10,9) A(4,10,9)

C1-puckering
NH2 out-of-plane motion[�]a

Ring part:
D(5,1,4,0) D(4,1,5,3)
A(1,4,10) A(1,5,3) A(4,1,5)
End-group part:
D(6,1,4,10) D(6,1,5,3)

C1-puckering

Ring part:
D(5,1,4,0) D(4,1,5,3)
A(1,4,10) A(1,5,3) A(4,1,5)
R(1,5) R(2,3)
End-group part:
D(6,1,4,10) D(6,1,5,3)
A(2,10,9) A(4,10,9)

C1-puckering
NH2 out-of-plane motion[+]a

C1–N6 bond stretching

Ring part:
D(5,1,4,10) D(4,1,5,3)
A(4,1,5) A(2,3,5) A(1,4,10)
End-group part:
D(6,1,4,10) D(6,1,5,3) D(3,2,10,9)
A(4,1,6) A(4,10,9) A(2,10,8) R(1,6)

C1-puckering
CQO out-of-plane motion[+]a

Ring part:
D(5,1,4,0) D(4,1,5,3)
A(1,4,10) A(4,1,5) A(2,3,5)
End-group part:
D(6,1,4,10) D(6,1,5,3)

CQO stretching motion

Ring part:
A(2,10,4) A(1,4,10)
R(2,3)
End-group part:
(4,10,9) R(9,10)

a Taking the ring moiety as the reference and the direction of the C1-puckering motion as the upward one, [+] indicates an upward motion while
[�] denotes a downward one.
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CQO stretching CI. Thus, the energy of this CI may be higher
than the Ethyl.II CI. This again gives the additional supports in
that the CQO stretching CI does not play the important role
here. These findings are consistent with the previous work.76

In principle, the CIs are not isolated points but continuous
seams in the high dimensional space. The analysis of the role
of the whole CI seam is also important. In the current protocol,
we clearly demonstrate that different hopping channels may be
associated with a single minimum-energy CI. For example,
the A1B1, A1B2C1 and A1B2C2 channels are associated with
Ethyl.II CI. Therefore, it is clear that different NH2 statuses may
exist along this seam. More detailed analyses of the topology
and branching space of the CI102 are given in the ESI.‡

In the previous work with fewer trajectories,75,76 aside from
the major channel A1B2C1, two minor channels A1B2C3 and A2
were also found. The branching ratio given by the previous
work is qualitatively consistent with the current findings,
although some minor channels (A1B1 (10.2%), A1B2C2 (12.1%)
and A1B3 (7.7%)) were not discussed. One of the possible reasons
is that more trajectories and the long-time (1.5 ps) propagation
were taken into account in the current work. Furthermore, the
traditional analysis of the TSH dynamics may not identify the very
minor and detailed distinctive differences of the ring distortion in
the geometric evolution.

4 Discussion

The current analysis tool is user-friendly and applicable enough
to analyse the ring deformation in the nonadiabatic dynamics.
Let us consider that we want to perform such a task from
scratch.

First, we can choose the redundant internal coordinates as
the geometric features to construct the descriptor sets. The
redundant internal coordinates have the solid theoretical
background.78,79 In the current work, since the ring breaks
are rare in the nonadiabatic dynamics of the DNA bases as we
demonstrated, that is, the current molecular connectivity
remains unchanged, we choose the redundant internal coordi-
nate set, and the construction details are well discussed in
ref. 78 and 79. Since the chosen redundant internal coordinate
system is used by default in the popular Gaussian 16 package, it
is rather simple to use this package to generate the redundant
internal coordinate set. This definitely improves the applicability
of the current approach. If the molecular connectivity changes
dramatically, different redundant internal coordinates for differ-
ent geometries may be obtained. In this situation, we may need to
set up a redundant internal coordinate set that is large enough to

cover all involved internal coordinates and possible connectivity.
Alternatively, it may be necessary to attempt other geometric
descriptors such as the machine-learning based geometry
descriptors.103–106 These are important research topics in the
future. In addition, there are various sets of available internal
coordinate systems, including the curvilinear natural internal
coordinates81,82 and the delocalized internal coordinates by Baker
et al.83 All these coordinate sets are easily generated by different
quantum chemistry packages, which are also friendly choices in
the similar analyses.

Second, we divided all internal coordinates into different
descriptor sets. This division of internal coordinates gave us a
more compact and suitable representation of the geometric
evolution, and thus allowed us to obtain the better description
of the geometric evolution in the relevant subspaces. When we
want to analyse the similar systems, we may always follow the
current division rules to make the preliminary analysis.
In other situations, we may divide all redundant internal
coordinates according to other suitable rules. For example,
when dealing with other high conjugated systems with two
rings, we may divide the redundant internal coordinates into
three subgroups, the ring 1 part, the ring 2 part and their
connectivity part. If the H atom should be considered, we may
set a new subgroup containing the internal coordinates invol-
ving the H atom. Therefore, the current division strategy can be
easily extended to other molecular systems for the analysis of
ring deformation in the nonadiabatic dynamics. In addition,
there is no ‘‘ground truth’’ in terms of the selection of geo-
metric feature representations. Different specialized represen-
tations should be employed according to problems under
study. Since each of these descriptors provides a data repre-
sentation in the non-orthogonal space, the analysis on them
may give different results. In other words, we should choose the
problem-specific feature representations and suitable feature
subspaces to give the appropriate description of the data
distribution patterns. In the current analysis of the ring defor-
mation in the nonadiabatic dynamics, we proposed such a
simple division strategy, because that it can give the reasonable
geometric features and appropriate subspaces to represent our
data. For other similar problems, it is always possible to find
the suitable division ways based on the current philosophy.

Thirdly, we performed the dimensionality reduction method
first, and the resulting low-dimensional space provides a direct
view on the data distributions, which guides the selection of
clustering methods and the adjustment of corresponding para-
meters. Here, although our proposed analysis protocol is based
on these ‘‘unsupervised’’ machine learning algorithms, it still
requires additional human inventions to select methods and
tune parameters.27,28 The PCA-then-clustering procedure give
us the ideas on the appropriate selection of clustering appro-
aches and corresponding parameters.

Finally, the unsupervised machine learning methods are
available from many standard machine-learning libraries, such
as Scikit-learn Python toolkit. Therefore, one may easily trans-
fer our current work to analyse the aromatic ring deformation
of other similar molecular systems.

Fig. 8 Geometries of three CIs (Ethyl.I, Ethyl.II and CQO stretching) of
keto isocytosine optimized at the SA3-CASSCF(12,9) level.
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Although the current protocol was mainly developed to
analyse the Tully’s FSSH dynamics simulation results, in prin-
ciple it can certainly be used to understand the simulations by
other trajectory-based or Gaussian-wavepacket based non-
adiabatic methods.3,10,12,13,107 For example, for the Ehrenfest
dynamics, we may directly extract the geometries when the
trajectories experience the minimum energy gaps between
different electronic states, and use them to compare with the
starting geometries. In addition, the similar idea can be used to
analyse the results obtained from the ab initio multiple spawn-
ing method10 by finding the geometries at the spawning events.
After different reaction channels are identified, the further
analysis can be performed to gain the chemical insight behind
each of them.

IV Conclusions

We proposed a hierarchical protocol based on the PCA and
clustering methods to analyse the ring deformation in the
nonadiabatic molecular dynamics in a rather automatic
manner. This protocol is composed of two steps, i.e., the first
step is to identify how many reaction channels are involved in
the nonadiabatic dynamics evolution, and the second one tries
to clarify which molecular motion is responsible for each decay
channel. First, the PCA and clustering approaches were hier-
archically performed to analyse different sets of DOFs in the
ring moiety and end-group part successively until several reac-
tion channels were obtained. Next, to clarify the major active
coordinates responsible for each channel, the hopping geo-
metries are compared with the corresponding initial ones by
the PCA.

In practice, we collected the internal coordinates of hopping
geometries from the TSH nonadiabatic molecular dynamics
simulation. Then, we constructed six descriptor sets (Dring,
Aring, Rring, Deg, Aeg and Reg). Three of them with a subscript
ring only include DOFs in the ring moiety, while the other three
contains end-group DOFs. Here, D, A and R denote the dihedral
angles, bond angles and bond distances, respectively. Based on
these descriptor sets, we hierarchically employed the PCA and
clustering methods to analyse the DOFs involving the ring part
and end groups successively, until each of the cluster we
obtained is non-separable. In principle, each non-separable
cluster corresponds to a single reaction channel. After clarifying
how many decay channels exit in the current nonadiabatic
dynamics, we wanted to identify the major active coordinates
and other geometric features responsible for each decay chan-
nel. For each, we place the corresponding hopping geometries
and their relevant initial structures together, and then per-
formed the PCA with the above six descriptor sets again. If the
hopping geometries and the initial ones are well-separated
along some leading reduced coordinates, we considered their
important components to be the key active coordinates of the
corresponding channel.

The nonadiabatic molecular dynamics of the keto isocyto-
sine model was used to examine this hierarchical protocol.

Following the above procedure, we totally found six excited-
state nonadiabatic decay channels, and their dominant mole-
cular motions were also clarified. The current hierarchical
method based on unsupervised machine learning algorithms
can capture the major evolution features of the nonadiabatic
dynamics of realistic systems, such as the reaction channels,
the branching ratios and the corresponding dominant motions.
Particularly, this protocol shows the strong ability to character-
ize both the major and minor active molecular motions and the
important features of the ring distortion in detail. Thus, it is a
powerful approach to analyse the ring deformation in the
trajectory-based nonadiabatic molecular dynamics simulation.

With the development of the computational facilities and
the advances of theoretical simulation approaches, the non-
adiabatic dynamics under study may involve more and more
complicated systems with a huge number of DOFs. In this case,
the analysis of the mass amount of high-dimensional data
produced by the nonadiabatic molecular dynamics simula-
tions, such as on-the-fly TSH, becomes necessary. In this sense,
it is highly preferable to develop the automated analysis proto-
col for this purpose. Along with this idea, the current work
proposed a suitable way to perform the analysis of the ring
motion in the nonadiabatic dynamics. In more complicated
realistic systems, we expect that the employment of suitable
geometric descriptors should be essential for such analyses.
Therefore, the application of more advanced molecular
descriptors103–106 should be rather critical and challenging in
the future.
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T. Pullerits and O. Kühn, Exciton–vibrational coupling in
the dynamics and spectroscopy of Frenkel excitons in
molecular aggregates, Phys. Rep., 2015, 567, 1–78.

10 B. F. Curchod and T. J. Martı́nez, Ab initio nonadiabatic
quantum molecular dynamics, Chem. Rev., 2018, 118,
3305–3336.

11 J. C. Tully, Molecular dynamics with electronic transitions,
J. Chem. Phys., 1990, 93, 1061–1071.

12 S. Mai, P. Marquetand and L. González, Nonadiabatic
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24 S. Mai and L. González, Identification of important normal
modes in nonadiabatic dynamics simulations by coher-
ence, correlation, and frequency analyses, J. Chem. Phys.,
2019, 151, 244115.

25 F. Plasser, M. Barbatti, A. J. Aquino and H. Lischka,
Excited-state diproton transfer in [2,20-Bipyridyl]-3,30-diol:
the mechanism is sequential, not Concerted, J. Phys. Chem.
A, 2009, 113, 8490–8499.

26 I. Borg and P. J. Groenen, Modern multidimensional scaling:
Theory and applications, Springer Science & Business
Media, 2005.

27 A. Glielmo, B. E. Husic, A. Rodriguez, C. Clementi, F. Noé
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