Issue 11, 2024

Advances in conductive hydrogels for neural recording and stimulation

Abstract

The brain–computer interface (BCI) allows the human or animal brain to directly interact with the external environment through the neural interfaces, thus playing the role of monitoring, protecting, improving/restoring, enhancing, and replacing. Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. According to the electrode position, it can be divided into non-implantable, semi-implantable, and implantable. Among them, implantable neural electrodes can obtain the highest-quality electrophysiological information, so they have the most promising application. However, due to the chemo-mechanical mismatch between devices and tissues, the adverse foreign body response and performance loss over time seriously restrict the development and application of implantable neural electrodes. Given the challenges, conductive hydrogel-based neural electrodes have recently attracted much attention, owing to many advantages such as good mechanical match with the native tissues, negligible foreign body response, and minimal signal attenuation. This review mainly focuses on the current development of conductive hydrogels as a biocompatible framework for neural tissue and conductivity-supporting substrates for the transmission of electrical signals of neural tissue to speed up electrical regeneration and their applications in neural sensing and recording as well as stimulation.

Graphical abstract: Advances in conductive hydrogels for neural recording and stimulation

Article information

Article type
Review Article
Submitted
10 jan 2024
Accepted
15 abr 2024
First published
16 abr 2024

Biomater. Sci., 2024,12, 2786-2800

Advances in conductive hydrogels for neural recording and stimulation

H. Dawit, Y. Zhao, J. Wang and R. Pei, Biomater. Sci., 2024, 12, 2786 DOI: 10.1039/D4BM00048J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements