Issue 18, 2021

Nanoscale metal–organic frameworks for tumor phototherapy

Abstract

Metal–Organic Frameworks (MOFs) are constructed from metal ions/cluster nodes and functional organic ligands through coordination bonds. Owing to the advantages of diverse synthetic methods, easy modification after synthesis, large adsorption capacity for heavy metals, and short equilibrium time, considerable attention has recently been paid to MOFs for tumor phototherapy. Through rational tuning of metal ions and ligands, MOFs present abundant properties for various applications. Light-triggered phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is an emerging cancer treatment approach. Nanosized MOFs can be applied as phototherapeutic agents to accomplish phototherapy with excellent phototherapeutic efficacy. This review outlines the latest advances in the field of phototherapy with various metal ion-based MOFs.

Graphical abstract: Nanoscale metal–organic frameworks for tumor phototherapy

Article information

Article type
Review Article
Submitted
19 fev 2021
Accepted
31 mar 2021
First published
31 mar 2021

J. Mater. Chem. B, 2021,9, 3756-3777

Nanoscale metal–organic frameworks for tumor phototherapy

X. Huang, X. Sun, W. Wang, Q. Shen, Q. Shen, X. Tang and J. Shao, J. Mater. Chem. B, 2021, 9, 3756 DOI: 10.1039/D1TB00349F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements