Issue 1, 2019

Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature

Abstract

Through 3.7 billion years of evolution and natural selection, plants and animals in nature have ingeniously fulfilled a broad range of fascinating functions to achieve optimized performance in responding and adapting to changes in the process of interacting with complex natural environments. It is clear that the hierarchically organized micro/nanostructures of the surfaces of living organisms decisively manage fascinating and amazing functions, regardless of the chemical components of their building blocks. This conclusion now allows us to elucidate the underlying mechanisms whereby these hierarchical structures have a great impact on the properties of the bulk material. In this review, we mainly focus on advances over the last three years in bioinspired multiscale functional materials with specific wettability. Starting from selected naturally occurring surfaces, manmade bioinspired surfaces with specific wettability are introduced, with an emphasis on the cooperation between structural characteristics and macroscopic properties, including lotus leaf-inspired superhydrophobic surfaces, fish scale-inspired superhydrophilic/underwater superoleophobic surfaces, springtail-inspired superoleophobic surfaces, and Nepenthes (pitcher plant)-inspired slippery liquid-infused porous surfaces (SLIPSs), as well as other multifunctional surfaces that combine specific wettability with mechanical properties, optical properties and the unidirectional transport of liquid droplets. Afterwards, various top-down and bottom-up fabrication techniques are presented, as well as emerging cutting-edge applications. Finally, our personal perspectives and conclusions with regard to the transfer of micro- and nanostructures to engineered materials are provided.

Graphical abstract: Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature

Article information

Article type
Review Article
Submitted
07 ago 2018
Accepted
04 set 2018
First published
04 set 2018

Nanoscale Horiz., 2019,4, 52-76

Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature

Y. Sun and Z. Guo, Nanoscale Horiz., 2019, 4, 52 DOI: 10.1039/C8NH00223A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements