Issue 19, 2013

Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm

Abstract

Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the oxygen vacancy and band gap narrowing of m-ZnO. m-ZnO enhanced the visible light catalytic activity for the degradation of different classes of dyes and 4-nitrophenol compared to p-ZnO, which confirmed the band gap narrowing because of oxygen defects. This study shed light on the modification of metal oxide nanostructures by EAB with a controlled band structure.

Graphical abstract: Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm

Supplementary files

Article information

Article type
Paper
Submitted
23 mai 2013
Accepted
23 jul 2013
First published
25 jul 2013

Nanoscale, 2013,5, 9238-9246

Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee and M. H. Cho, Nanoscale, 2013, 5, 9238 DOI: 10.1039/C3NR02678G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements