Issue 2, 2004

Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities

Abstract

An introductory overview of the use of microfluidic devices for tissue engineering is presented. After a brief description of the background of tissue engineering, different application areas of microfluidic devices are examined. Among these are methods for patterning cells, topographical control over cells and tissues, and bioreactors. Examples where microfluidic devices have been employed are presented such as basal lamina, vascular tissue, liver, bone, cartilage and neurons. It is concluded that until today, microfluidic devices have not been used extensively in tissue engineering. Major contributions are expected in two areas. The first is growth of complex tissue, where microfluidic structures ensure a steady blood supply, thereby circumventing the well-known problem of providing larger tissue structures with a continuous flow of oxygen and nutrition, and withdrawal of waste products. The second, and probably more important function of microfluidics, combined with micro/nanotechnology, lies in the development of in vitro physiological systems for studying fundamental biological phenomena.

Article information

Article type
Tutorial Review
Submitted
10 nov 2003
Accepted
16 fev 2004
First published
10 mar 2004

Lab Chip, 2004,4, 98-103

Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities

H. Andersson and A. V. D. Berg, Lab Chip, 2004, 4, 98 DOI: 10.1039/B314469K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements