Issue 3, 2024

Additive-regulated one-step dynamic spin-coating for fabricating high-performance perovskite solar cells under high humidity conditions

Abstract

Due to the humidity sensitive nature of the lead halide perovskite materials, high-performance perovskite solar cells (PSCs) can only be fabricated in glove boxes with inert gas protection. This work introduces a simple and environmentally less sensitive strategy for preparing high-performance PSCs. To start with, high-quality vertically aligned perovskite films are prepared with the one-step dynamic spin-coating method. The fabrication processes are completed under high humidity conditions. Besides, the anti-solvent treatment is not needed during our dynamic spin-coating, which simplifies the fabrication process. Additionally, methylammonium acetate (MAAc), ammonium thiocyanate (NH4SCN), and ammonium acetate (NH4Ac) have been introduced to regulate the growth of the solution-processed perovskite films. Shown on the in situ ultraviolet-visible absorption spectrum, the additives have a significant impact on the nucleation speed and intermediate growth rate of the perovskite films. Finally, with a relative humidity (RH) of 45%, MAAc-regulated PSCs with the MAPb(I1−xBrx)3 formula show a maximum power conversion efficiency (PCE) of 19.09%. Besides, the MAAc-regulated devices retain 80% of their initial PCEs after more than 500 hours of storage under 40% RH conditions. This simple one-step dynamic spin-coating method introduced in this work reduces the environmental sensitivity of PSCs during device fabrication, which will be helpful for the industrial-scale fabrication of PSCs.

Graphical abstract: Additive-regulated one-step dynamic spin-coating for fabricating high-performance perovskite solar cells under high humidity conditions

Supplementary files

Article information

Article type
Paper
Submitted
27 set 2023
Accepted
06 dez 2023
First published
07 dez 2023

J. Mater. Chem. C, 2024,12, 913-921

Additive-regulated one-step dynamic spin-coating for fabricating high-performance perovskite solar cells under high humidity conditions

T. Wang, T. Zhang, J. Zhang, B. Zhao, C. Song, H. Yin, S. Zhu, X. Sun, H. Liu, Y. Chen and X. Li, J. Mater. Chem. C, 2024, 12, 913 DOI: 10.1039/D3TC03529H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements