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Robust Folding of Elastic Origami†

M. E. Lee-Trimble,∗a Ji-Hwan Kang,b,c, Ryan C. Hayward,b,d and Christian D. Santangeloa,e

Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional
shapes, have many potential engineering applications. Though significant effort in recent years has
been devoted to designing fold patterns that can achieve a variety of target shapes, recent work has
also made clear that many origami structures exhibit multiple folding pathways, with a proliferation
of geometric folding pathways as the origami structure becomes complex. The competition between
these pathways can lead to structures that are programmed for one shape, yet fold incorrectly. To
disentangle the features that lead to misfolding, we introduce a model of self-folding origami that
accounts for the finite stretching rigidity of the origami faces and allows the computation of energy
landscapes that lead to misfolding. We find that, in addition to the geometrical features of the
origami, the finite elasticity of the nearly-flat origami configurations regulates the proliferation of
potential misfolded states through a series of saddle-node bifurcations. We apply our model to one
of the most common origami motifs, the symmetric “bird’s foot,” a single vertex with four folds.
We show that though even a small error in programmed fold angles induces metastability in rigid
origami, elasticity allows one to tune resilience to misfolding. In a more complex design, the “Randlett
flapping bird,” which has thousands of potential competing states, we further show that the number
of actual observed minima is strongly determined by the structure’s elasticity. In general, we show
that elastic origami with both stiffer folds and less bendable faces self-folds better.

Origami-like self-actuating structures are found throughout na-
ture1,2 and have inspired a number of engineering applications
from medicine3,4, to solar panel deployment5, to robotics6,7. It
has become clear, however, that the space of configurations ac-
cessible to a rigid origami structure becomes increasingly compli-
cated as the fold pattern itself becomes more complex8,9. Addi-
tionally, face bending allows access to configurations that would
otherwise be impossible in purely rigid origami10–15. These fea-
tures lead to multistability through the proliferation of local min-
ima of the energy16–18, sometimes resulting in origami that does
not fold easily or repeatably into the target shape, impacting de-
vice performance. Various methods to avoid misfolding have been
introduced, including biasing the vertices19 or fine tuning indi-
vidual fold stiffnesses20,21, but the actual mechanisms behind
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misfolding are still not well understood.

Tachi and Hull have proposed a method to prevent misfold-
ing that takes advantage of the branched structure of the origami
configuration space21. They assume each fold is a torsional spring
and adjust the torques induced by the springs to force the origami
in a direction in configuration space perpendicular to all undesir-
able folding pathways. Unfortunately, due to the high dimension-
ality of the configuration space, there is often no choice of torques
that satisfies all of these requirements8. On the other hand, Stern
et al. explored a large class of origami structures made from only
quadrilateral faces and, even in this restricted set, found a prolif-
eration of energy mimima9,20. However, most rigid quadrilateral
origami cannot be folded at all13, and so these energy minima
represent configurations involving stretching rather than distin-
guishing between several valid branches. This suggests a more
careful treatment of elasticity in origami is crucial to uncovering
the mechanisms of misfolding.

In this paper, we compute energy landscapes of weakly folded
origami using a bar-and-hinge model of self-folding that includes
both face stretching and face bending10,13,18,22. Energy land-
scapes provide a detailed picture of the vicinity of the flat state,
where multiple origami branches meet. We show that the mech-
anisms governing the formation of competing local energy min-
ima are poorly captured by the assumption of rigid, unstretchable
origami. Instead, the undesirable energy minima that compete
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with the target configuration are regulated by saddle-node bifur-
cations nucleated near the unfolded state, even when the target
configuration is very folded. Our model allows us to determine
how the “foldability” of an origami design is determined both by
the stretching and bending moduli of the faces: more bendable
faces allow additional folding pathways while more stretchable
faces induce saddle-node bifurcations that reduce the number of
local energy minima. Critically, the reduction in the number of
energy minima does not arise from transitions between branches
that induce large strains in the faces but is, nevertheless, enabled
by small amounts of strain while the origami is barely folded.
Our analysis leads to new insights on the robustness of the target
folding pathway to programming errors in the target fold angles.

To go beyond our theoretical analysis, we also demonstrate
these effects experimentally on self-folding origami structures
using a previously-published trilayer swelling gel system19,23.
These experiments demonstrate the possibility of using face stiff-
ness to tune the metastability of self-folding origami. In contrast,
the few methods that have been proposed to prevent misfolding
require a more careful tuning of fold angles and stiffnesses9,20,21.
We demonstrate that robust folding can still be induced in systems
where such precise control may not be possible.

1 Theory of self-folding origami

1.1 Folding rigid origami

Rigid origami, having both unbendable and unstretchable faces,
can be modeled as a triangulated surface with V vertices joined
by N edges of fixed length spanned by F polygonal faces with ad-
ditional torsional springs. Because each face is decomposed into
triangles, the length constraints of the edges also preserve the
sector angles of the faces. We assume there are NB edges that are
adjacent to a single face which we dub boundary edges to distin-
guish them from the NF edges that adjoin a pair of faces, which
we refer to as folds. Many origami fold patterns do not have tri-
angular faces, however. In those cases, we decompose each face
into triangular subfaces along their shortest diagonals11–13. This
suggests a further division of folds into “face folds”, those folds
spanning a rigid face, and “active folds”, which drive the self-
folding of the origami.

Since the faces are triangular, the state of any origami structure
can be represented completely by its fold angles, (ρ1, · · · ,ρNF ),
where each angle ρi is the supplement of the corresponding dihe-
dral angle made by the faces adjacent to the edge. We introduce
self-folding by incorporating torsional springs on the folds of the
form

EB =
1
2 ∑

I≤NF

κB,I(ρI − ρ̄I)
2, (1)

where κB,I is the torsional modulus of the Ith fold and ρ̄I the equi-
librium angle of the fold. For face folds, we require ρ̄I = 0 so that
Eq. (1) penalizes bending of the faces. On active folds, however,
ρ̄I ̸= 0 which imposes a bending torque that drives the origami to
fold along its active folds.

For models of this type, there are singular configurations where
several branches of allowed configurations meet8,21,24. Each
branch has a tangent space where it meets the singular config-

uration and many such branches meet at this point8. Tachi and
Hull have proposed that misfolding can be prevented when the
torque, defined by τI = −κB,I ρ̄I , is perpendicular to the tangent
space of each branch21 in the space of folds. Indeed, examining
Eq. (1) shows that the Tachi-Hull condition is precisely the condi-
tion that there is no direction along an undesirable branch along
which the energy decreases.

It is notable that the Tachi-Hull condition can be impossible
to satisfy if the origami fold pattern is sufficiently complicated,
as the number of branches grows exponentially with the number
of vertices while the number of folds grows linearly8. If there
are several branches along which EB decreases, each of these
branches must have at least one local energy minimum. Con-
sequently, the number of potential competing energy minima in
a rigid, self-folding origami system can be quite sensitive to even
small errors in the programmed torques τI . The question of sta-
bility and metastability of an origami folding becomes even more
complex when one considers Eq. (1) along an entire origami tra-
jectory, and such an analysis has only been undertaken for some
single origami vertices17.

1.2 Elastic origami

Part of the sensitivity of competing minima to torques arises from
the singular nature of the unfolded, flat origami. To study this
further, we augment our model to allow for stretching. We sup-
plement Eq. (1) with additional terms10 of the form,

ES =
1
2 ∑

i≤N
κS,iγ

2
i , (2)

where κS,i the stiffness of edge i and the elastic strain is given by

γi =
1
2

(
L2

i

L̄i
2 −1

)
. (3)

Note that a small deformations of the edges ∆ ≪ L̄i gives γi ≈ ∆/L̄i

as does the slightly more common form for the elastic strain
γi = Li/L̄i − 1. By formulating the energy in terms of a dimen-
sionless strain, κS,i has the same units as κB,I evaluated on the
same edge (i = I). We set κS,I = Y2DĀI where Y2D is the two di-
mensional Young’s modulus of the origami faces and ĀI is a char-
acteristic face area. Here, we will set ĀI to one third the total
area of the faces adjoining edge I, which implies that AI ∝ LI , and
that edges can be subdivided without changing the energy cost
of a given strain. There are more complex choices for κS,I that
are expected to capture more detailed features of the stretching
deformations14. As an alternative, we also consider a more real-
istic model in which the faces themselves are elastic polygons that
deform affinely, finding good agreement with our simpler model
(see SI). The advantage of Eq. (2) is that it allows us to make con-
tact with the rigidity theory of frameworks on which the analysis
of branched configuration spaces has been done8,17.

Eq. (2) also provides a convenient geometrical interpretation
of the stretching energy of weakly-folded origami in terms of the
Gaussian curvature of the vertices24. In the limit that κS,I ≫ κB,I ,
we obtain an approximate expression for the energy valid when
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the fold angles are small. To do so, we note that vertical mo-
tions of the vertices off the xy−plane preserve LI to lowest order.
Therefore, after accounting for rigid body motions we can express
ES as a function of the VB +VI −3 vertex heights only, where VB is
the number of vertices adjoining a boundary edge and VI are the
number of vertices adjoining only folds. This expression for the
energy, quartic in the vertex heights and can be expressed as

ES =
1
8 ∑

n≤VB+VI−3

(
hT Qnh

)2
(4)

for a vector of vertex heights h = (h1, ...,hVI ) where hi is the height
of the ith vertex and Qn a symmetric matrix which encodes the
geometrical constraints associated with the branches as well as
the stiffnesses of the origami (see SI for details). One can show
that ES = 0 if and only if the discrete Gaussian curvature of each
origami vertex vanishes, and that the matrices Qn have two zero
eigenvalues, one eigenvalue of either positive or negative sign,
and the rest of the opposite sign8.

Finally, we consider how to set the relative magnitudes of the
torsional spring moduli in our energy. As a model of self-folding
origami, we consider a trilayer polymer system described previ-
ously23, in which faces are characterized by a hydrogel of thick-
ness hN sandwiched between two stiffer layers hP ≪ hN and active
folds are induced by cutting trenches in either the top or bottom
of the two stiff layers of a given width. To estimate the bend-
ing rigidity for the faces, we imagine that the bending energy
arises from bending along a cylinder oriented along each fold
of characteristic width WI . Then face folds will have ρ̄I = 0 and
torsional moduli κ f ace,I ≈ Yph2

NhPL̄I/(WI(1− ν2)) where Yp is the
elastic moduli of the stiff layers, LI and WI are the length and
width of the fold, and ν is the Poisson ratio. A similar calculation
shows that an active fold has an approximate torsional modulus
κ f old,I ≈ YNh3

N L̄I/(3WI(1− ν2)) where YN is the Young’s modulus
of the hydrogel layer. Active folds, intuitively, have a WI of the
width of the cuts in the stiff layer, while we assume that the face
folds have a WI determined by the width of the vertices and thus
are determined by the WI of the active folds (see SI). For the rest
of the paper, we will neglect the small changes in WI between
different folds.

For the theoretical numerics and simulations, we will nondi-
mensionalize the spring moduli by a characteristic linear spring
moduli, κS,c, letting us combine the material parameters and de-
fine κ f ace,I/κS,c ≈ K f aceL̄I/ℓ and κ f old,I/κS,c ≈ K f old L̄I/ℓ. We will
also define κS,I/κS,c ≈ KSL̄2

I /ℓ
2. The characteristic fold length ℓ is

introduced to keep K f ace,K f old , and KS nondimensional and inde-
pendent of edge. The details of these estimates can be found in
the Supplementary Information.

2 The origami “bird’s foot”

Eq. (4) provides a means of computing and plotting energy land-
scapes for weakly-folded origami. We start our study of the fold-
ing and mis-folding of elastic origami with the simplest non-trivial
example, the self-folding “bird’s foot” origami (Fig. 1A). The
bird’s foot is a single origami vertex from which four folds emerge.
We supplement these four folds with two additional face folds,

Fig. 1 Schema, configuration spaces, and energy landscapes for the birds-
foot origami. (A) A schematic of the birdsfoot. The folds are marked
in solid lines, while the folds added in the model to imitate face bending
are marked with dashed lines. The folds used to define fold space are
highlighted in red. The face we have “pinned” to a plane is highlighted in
yellow, then the heights of vertices 4 and 6 above this plane defines the
height space. (B) The configurations that correspond to each branch.
(C-D) The branches for a rigid origami in both fold and height space,
respectively. In (D), the heights are non-dimensionalized using the char-
acteristic fold length ℓ. The dashed lines show the linearized trajectories
between the branches at two magnitudes. The height space projection
of the trajectory takes advantage of the linearity between height and fold
space at small heights. In (C), note that the branches in fold space are
perpendicular. (D) also shows the shape of branch 2 in the approximate
energy used to draw the energy landscapes in Fig. 2.

shown as dashed lines in Fig. 1A. It is well known that there are
two folding pathways possible which can be characterized by the
relative signs of the fold angles between vertices 4 and 1, ρ1 and
ρ3 (Fig. 1B).

For the rigid case, in the space of fold angles (ρ1, · · · ,ρ4) the
trajectories of the fold angles are perpendicular and can be pro-
jected conveniently to just a pair of angles as in Fig. 1C. In the
elastic case, if we orient the bird’s foot so that vertices 1, 2 and
7 per Fig. 1A lie on the xy−plane, Eq. (4) suggests plotting the
energy landscape near the unfolded state in terms of the heights
of the remaining four vertices above the plane, h = (h3,h4,h5,h6)

(Fig. 1D) rather than the fold angles.
We program target angles according to

ρ⃗ = (1−A)Mρ⃗B1 +AMρ⃗B2, (5)

where ρ⃗B1 = (−1,0,−1,0) and ρ⃗B2 = (−1,1,1,1) are the fold an-
gles of each branch when folded flat, and M ranges from 0 to
π and controls the degree of folding. The parameter A, which
lies between 0 and 1, tunes the target angles between the two
branches accessible by rigid origami. For values of A other than 0
and 1, the target angles lie between the two branches. It should
be noted that A = 0.5 is not precisely between the two branches
geometrically, and the geometric center, though dependent on the
precise value of M, is closer to A ≈ 0.425. Fig. 1D shows this

Journal Name, [year], [vol.],1–8 | 3

Page 3 of 8 Soft Matter



trajectory in height space for M = π/8 by taking advantage of the
linear relationship between folds and heights to quadratic order8.

Since h3 and h5 are the heights of vertices associated with face
folds, in order to plot the energy landscapes, we numerically min-
imize E(h3,h4,h5,h6) with respect to h3 and h5 to express the en-
ergy in terms of only (h4,h6). Contours of the energy obtained this
way are shown in Fig. 2 for various values of A and for M = π/8.
The minima of the energy are depicted as closed white circles and
saddle points are shown in red, while the target point is denoted
by an open white circle.

All of the theoretical figures in this paper were cre-
ated using a package developed for creating and manip-
ulating origami structures and other similar mechanisms
in Mathematica. This package is located on GitHub at
https://github.com/cdsantan/mechanisms. Mathematica note-
books for each figure and the associated data are also located
on GitHub at https://github.com/meleetrimble/robust-folding-
paper-support.

As seen in Fig. 2, which shows the energy landscapes of the
birds foot with contours on a log-scale, the configuration space
of the rigid origami lies along the bottom of steep valleys defined
by Eq. (4). Because the torsional springs are weaker than the
stretching springs, as A changes from 0 to 1 at fixed M = 1/8,
the energy minimum on the first branch moves inward along the
energy valley. At a critical value of A > 0, a new minimum and
saddle point nucleate near the flat state and as the new minimum
moves outward along the other branch, the old minimum eventu-
ally approaches and annihilates with the saddle point.

As the stretching energy is increased, the energy valleys be-
come steeper but the shape of the energy landscape near the flat
state remains the same. As KS increases and we approach the rigid
limit, the critical A at which a new minimum forms decreases. Yet
for any finite value of KS, the energy landscape is monostable near
A ≈ 0 and A ≈ 1.

2.1 Phase Diagrams

We can determine the size of the region of bistability for differ-
ent values of K f ace, K f old , and prescribed fold angle using the full
elastic energy. To do so, we start at one end of the linearization
we have introduced and find the minimum at that point. Then
we increase the linearization parameter A by one step, and re-
peat the minimization using the minimum just found as the initial
position. We continue taking the next step in the parameteriza-
tion, using the previous minimum, and minimizing until the other
branch has been reached. To see where both minima are present,
we repeat this process but instead start from the opposite branch
and follow the parameterization backwards. The regime in which
both minima are present across both directions is the bi-stable
regime.

To get the full idea of the bistable regime between the two
branches, we repeat the method described above for different val-
ues of M, which represents the magnitude of folding, to draw the
phase diagram between the two branches as a function of M and
A for given elastic moduli.

In Fig. 3, we show the region of bistability as a function of M

and A for four different values of K f old and K f ace. The plots are
asymmetric and, in particular, shifted toward values of A < 0.5.
This is consistent with the midpoint between both branches be-
ing at A ≈ 0.425 rather than A = 0.5. Overall, we see two sepa-
rate trends: decreasing K f old widens the region of bistability with
more widening seen at lower values of M, while more surpris-
ingly decreasing K f ace also widens the region of bistability but
with more growth seen at higher values of M.

These results implicate the balance of in-plane stretching and
torsional spring moduli in governing bistability. In particular,
when K f old is small, indicating that the system is approaching
the inextensible limit, we see that even a small error in program-
ming the fold angles can lead to multistability. This is, in fact, en-
tirely consistent with Ref.21 which argues that for rigid origami,
for which K f old/KS → 0, a metastable minimum exists unless the
vector with components κB,I ρ̄I is perpendicular to a branch.

It is important to note that the change in bistability occurs even
though K f old ≪ KS, indicating that in-plane strains are still small
and Eq. (4) remains a reasonable approximation. Indeed, in our
simulations the energy from stretching is typically 1% of the total
energy. This is also consistent with the energy landscapes in Fig.
2, which show that the bistability arises from the nucleation of ad-
ditional minima near the flat state and not far out along a branch
even when M is large, precisely where we expect our theoretical
analysis of elastic origami to be most accurate.

2.2 Experimental Methods

We next turn to a discussion of self-folding in a tri-
layer, thermo-responsive system23, adapted from our pre-
vious report19. In brief, self-folding origami was pre-
pared by using a bilayer bending mechanism of polymer
films. P(pMS-BP-RhB) (poly(p-methylstyrene-benzophenone-
rhodamine B) and P(DEAM-AA-BP-RhB) (poly(diethylacrylamide-
acrylic acid-benzophenon-rhodamine B) were used as a stiff layer
and a thermosensitive hydrogel layer with a lower critical solu-
tion temperature at around 30°C, respectively. Pendant groups
of benzophenone contained in both pre-synthesized co-polymers
were utilized as a photoreactive cross-linker for multi-layer pat-
terning. First, the bottom stiff layer was deposited by spin coat-
ing of toluene solution of P(pMS-BP-RhB) on a silicon wafer
with a water-soluble sacrificial layer of poly(vinyl alcohol) (PVA,
Aldrich).

To create a microscale crease pattern, UV-light (365 nm, pE-
100, CoolLED) was projected on the layer of P(pMS-BP-RhB) by
an inverted optical microscope (Nikon Eclipse Ti, 10x objective
lens) equipped with a digital micromirror device (DMD). Pix-
elated UV illumination for each layer of birdsfoot pattern was
obtained by the Mathematica notebook provided from Robert J.
Lang (Tessellatica 11.1d7)25 based on the folding angle calibra-
tion at a fixed temperature, 20°C. After cured, a typical devel-
opment process was followed by stripping uncured area of the
film with a marginal solvent (e.g., mixture of toluene and hex-
ane with 1:3 vol%). Next, a few-micron thick hydrogel layer was
deposited on the sample pattern by casting a chlorobenzene poly-
mer solution and slowly drying in the dark chamber. Patterned UV
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Fig. 2 Energy landscapes in height space for the bird’s foot at different values of the control parameter A, for the small magnitude trajectory between
branches shown in Fig. 1(C-D), at K f ace = 10−2 and K f old = 10−4. The white dots represent local minima and the red dots represent saddle points.
The dashed line represents the projection of the trajectory between branches into height space (as in Fig. 1(D)), with the circle denoting the location
on the trajectory of the landscape. Notice that as A increases, the original minimum moves toward the flat state. Between A = 0 and A = 0.37, a
saddle point and the minimum for branch 2 are created, then after A = 0.56 the saddle point and the minimum for branch 1 annihilate each other. The
created minimum also moves out away from the flat state as A increases. Note that the contours and color scheme are on a log scale and inconsistent
between landscapes to emphasize features.

curing with computer-controlled alignment was then followed for
crosslinking of the mid layer on top of the bottom layer. Finally,
another thin layer of P(pMS-BP-RhB) was photo-patterned as a
top stiff layer by using the same procedure as the bottom layer.
For folds with a target angle of zero, a series of square holes was
additionally applied to all three layers as a perforated line be-
tween the vertices of the crease pattern, as shown in Fig. 4A.
Because the perforations align on both sides, the resulting face
folds have a target angle of 0 but are stiffer than the active folds
represented by slits.

The resultant trilayer origami was fully dried before further
use. To release the origami as flat from the substrate, the sam-
ple was dipped in the pre-heated buffer solution (pH 7.0 PBS,
60°C). After full dissolution of PVA layer, the water bath was
cooled down to induce programmed folding of the crease pat-
terns, which was observed by using the optical microscope (Zeiss
AxioTech Vario, with 2.5x objective lens).

2.3 Experimental results

We can now have a small amount of control over K f ace by uti-
lizing the perforated 0 angle folds explained above. Perforating
the faces decreases the amount of stiff trilayer by a factor of 3 to
4, and since the stiff layer provides the majority of the bending

modulus we expect K f old/K f ace to decrease by the same factor.

We created batches of 10 bird’s foot origami both with and with-
out perforated faces for several values of A, corresponding to dif-
ferent target fold angles and controlled by the width of the cuts
in the stiff layer, between the two branches. Fig. 4B shows the
fraction of bird’s foot samples that folded to branch ρ⃗B2 with non-
perforated samples (circles) and perforated samples (squares). In
the non-perforated samples, we see a sharp transition between
branch 1 at small A and branch 2 at large A, with a small region
of values near A ≈ 0.5 that show some bistability. In the perfo-
rated samples we see this bistable region widen, with both states
observed in the A ≈ 0.33 samples.

Some care must be taken in interpreting the results quantita-
tively. Because the experimental system folds slowly, we expect
the number of minima to be governed to some degree by the small
M portion of Fig. 3, even when the programmed fold angles are
large, since we expect that a structure that has found a stable
configuration will tend to remain in that configuration as it folds.
In addition, failure to see misfolded states does not indicate that
those states do not exist; in contrast, even a small number of mis-
folds indicates metastability. Finally, the programmed fold angles
are controlled by the width of the long cuts in either the top or
bottom rigid layers. The cuts that lead to folding then also af-
fect the torsional stiffness of the folds. This effect is negligible for
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Fig. 3 Slices of a four-dimensional phase diagram defined by K f old , K f ace,
control parameter A, and target fold angle magnitude M at four different
values of K f ace and K f old . The regions in light purple represent the re-
gion of bi-stability, where both minima are present. The purple and tan
represent the regions where only the branch 1 minimum and branch 2
minimum are present, respectively.

most folds, except for those with zero fold angle (those remaining
flat), which must be cut on both top and bottom surfaces. This
leads to folds that are weaker than active folds, as is the case at
the A = 0.5 point. This point does, however, highlight that using
target angle tuning to avoid misfolding can be more complicated
to realize in experiment than in theory.

To compare our experimental and theoretical results, we use
the estimates KS ≈ 1 on the folds and boundary edges, K f ace ≈
2× 10−3 and K f old ≈ 2× 10−5 (see SI), and use the factor stated
above when faces are weakened (K f ace ≈ 6× 10−4). According
to the relevant region of plots in Fig. 3, perforating the faces
should widen the bistable region by weakening the face folds and
this effect is seen quite prominently in Fig. 4B, as well as the
bistable region occurring for smaller A. In Fig. 4C, we show a
representative batch of 10 origami structures. It is also notable
that the misfolded configurations in 4C are quite shallow, as we
expect from our theoretical analysis. Though the experiments are
in qualitative agreement with our theoretical model, the effect of
softening the torsional moduli of the faces affects the stability of
experimental bird foot origami rather dramatically whereas the
theory shows more subtle effects. The origin of this discrepancy
remains unclear.

Fig. 4 Experimental schema and results for folding the birdsfoot with
and without weakened faces. (A) Schematic of the tri-layer origami
structure with perforated faces. (B) The percentage of samples folded
to the second branch for both non-perforated and perforated faces. Each
point corresponds to 10 samples. Error bars are from the rule of three.
(C) The folded samples with perforated faces at control parameters (i)
A = 0.33 and (ii) A = 0.67. At A = 0.33 (i), you can see the two samples
that folded to branch 1 while the rest shallowly folded to branch 2.

3 Folding complex origami
Finally, we turn to a more complex fold pattern, the “Randlett
bird”26, (Fig. 5A-B), which we have previously explored with the
trilayer, self-folding origami system23. Here, we use the same
programmed fold angles from Ref.19 (Supplementary Informa-
tion). We previously reported that self-folding trilayer Randlett
birds misfold at a rate of 0.55± 0.1519. Some examples of both
correctly and incorrectly folded birds can be seen in Fig. 5C.

Unlike the bird’s foot origami, the Randlett bird is not foldable
without bending faces. If we introduce face folds across the short-
est diagonal of the faces, however, we expect the Randlett bird to
have 2048 branches each with 6 degrees of freedom (as predicted
by formulas in Ref.8). The high dimensionality of this enlarged
configuration space makes direct visualization of the energy land-
scape impossible. Instead, we will apply a statistical analysis to
the folded minima.

We first initialize the Randlett bird in the folded configura-
tion according to vertices provided by Ref.27 (described in28)
and attempt to numerically minimize using the BFGS algo-
rithm29. For K f ace ≥ 10K f old , this direct numerical minimiza-
tion of the pre-folded state fails. The gray region in Fig. 5D
represents this region. To avoid complications when count-
ing minima, we only use values of K f ace and K f old for which
this minimization produces a reliable energy minimum. Note
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that, for the trilayer origami system, the expected stiffnesses,
K f ace ≈ 2× 10−3 and K f old ≈ 2× 10−5, are within this region. A
Mathematica notebook for this subfigure is located on GitHub at
https://github.com/meleetrimble/robust-folding-paper-support.

For a given set of K f ace and K f old , we start by generating a
sample of 300 randomly perturbed Randlett birds at a given set
of K f ace and K f old by moving each vertex of the bird out of its flat
starting position by a normal distribution with a width of 50% of
the shortest fold in the origami. We then minimize each bird’s
energy and discard any results that fail to find a minimum to
within a target accuracy goal. We continue to generate further
samples until we reach a total of the larger of 500 successful min-
imizations or 10 times the number of distinct minima found. We
then identify distinct folded states by first determining the op-
timal alignment by a least-squares minimization of the distance
between corresponding vertices of a pair of birds with respect
to Euclidean motions, then determining whether all correspond-
ing vertices are closer to each other than a threshold value. This
threshold value is chosen so that the number of distinct minima
does not change when the threshold value is changed.

Finally, we count the number of distinct states, each represent-
ing a mechanically stable state. While there is no way to guar-
antee that this procedure finds every metastable state, we expect
the relative number of energy minima found to scale with the ac-
tual number of metastable minima. We then also extract the per-
centage of samples folded to the target state. We perturbed the
simulated samples from the flat state using a normal distribution,
so the initial birds represent a uniform cloud of initial states in
position space. Thus, this percentage does not represent the fold-
ing rate of experiment, but rather the relative size of the basin of
attraction for the target minima.

Fig. 5D shows the resulting number of minima we find as a
function of K f ace and K f old on a log scale to emphasize the points
that have only a single minima. Fig. 5E shows the percentage of
samples folded to the target minimum for the same data. In both
plots, each point represents at least the larger of 500 birds or 10
times the number of distinct states seen. The two plots together
show that a lesser degree of multistability leads to the basin of
attraction for the correct minimum increasing. This implies that
there is a relationship between the number of minima and the
robustness of the folding origami.

Overall, we see the same effect for the Randlett bird that we
saw for the bird’s foot: multistability increases with both decreas-
ing K f old and decreasing K f ace. The method to arrive at this result
for the Randlett bird can be generalized for any origami, and we
would expect the same general result.

4 Conclusions
We have introduced a simple model to study self-folding origami
that accounts for the finite elasticity of the origami. With fi-
nite elasticity, a more complicated picture of the energy land-
scapes and folding of these structures arises than in rigid origami.
Though the energy landscape is characterized by deep valleys
along the configuration space of the rigid structures (so that
strains while folding are still typically small) we find that the
number of energy minima changes with the elastic moduli of

the folds through a series of bifurcations near the flat configura-
tion. Because these bifurcations occur near the flat configuration,
where finite elasticity dominates the shape of the energy land-
scape, they are not well-captured by analyses of rigid origami.

We demonstrated two methods for using this model to exam-
ine the stability of origami for different stretching and bending
parameters: first one that can be applied to simple origami with
low-dimensional configuration spaces that can be easily repre-
sented, and a second method that can be applied to much more
complicated origami. In both cases, we saw that weakening both
faces and folds results in an increase in the degree of multista-
bility of the structures. In other words, thicker, elastic origami
self-folds better than idealized origami with infinitely stiff faces
and floppy folds.

Both Tachi and Hull21 and Stern et al.20 proposed methods
for avoiding misfolding that utilize tuning the target fold angles
and fold stiffnesses to avoid misfolding. Both methods require
a more precise fine-tuning of fold stiffnesses and angles that are
often difficult to achieve in many experimental platforms. Tuning
the in-plane and out-of-plane stiffnesses of the faces themselves,
either by weakening as suggested here or stiffening by adding
additional layers, is an additional simple tool to avoid misfolding
even when geometric constraints are still dominant.
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