
A Neural Network-based Approach to Predicting Absorption 
in Nanostructured, Disordered Photoelectrodes

Journal: ChemComm

Manuscript ID CC-COM-06-2020-004229.R1

Article Type: Communication

 

ChemComm



COMMUNICATION

Please do not adjust margins

Please do not adjust margins

a.Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 
AR 72701. Email: rcoridan@uark.edu

b.Materials Science and Engineering Program, University of Arkansas, Fayetteville, 
AR 72701.

Electronic Supplementary Information (ESI) available: [details of any 
supplementary information available should be included here]. See 
DOI: 10.1039/x0xx00000x

Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

A Neural Network-based Approach to Predicting Absorption in 
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Disordered nanostructures in photoelectrodes can increase light 
absorption in photoelectrochemical system designs.  Predicting 
their optical properties is an elusive task due to the immensity of 
unique configurations and the intrinsic variance of each.  A neural 
network trained from a small subset of simulations can emulate 
the complex absorption properties of the entire configuration 
space for a model disordered system with quantifiable accuracy 
and computational efficiency.

Building electrodes to trap incident light in small-volume 
semiconductors is important for maximizing the power 
conversion efficiency in photoelectrochemical (PEC) and 
photovoltaic (PV) systems.  A commonly used structure is the 
inverse opal, based on the functionalization of the void space 
surrounding a self-assembled, close-packed colloidal crystal.1–4 
The inverse opal template is easy to fabricate and results in a 
high-surface area electrode. A highly-crystalline inverse opal 
exhibits a photonic stop band that localizes light of particular 
wavelengths in a thin volume of the structure.5,6 The general 
fabrication approach is slow and produces small electrodes (~ 
1 cm2).7  More significantly, the inverse opal motif is defined 
by a single free design parameter, the diameter of the 
nanosphere used.  PEC electrodes require multiscale 
structuring to balance the characteristic length scales of light, 
electron, and chemical transport.8,9  It is advantageous to 
identify new, highly tailorable and scalable photoelectrode 
structures. Disordered assemblies of light scatterers exhibit 
unique light-trapping properties as well.  When the 
characteristic mean free path of light is on the order of its 
wavelength, localized modes can emerge due to multiple 
scattering.10  This is the fundamental principle of light trapping 
in random lasers,11 nanoparticle-based solar distillation,12 and 
some approaches to passive radiative cooling.13,14  Recent 

work has shown that the organization of colloidal scatterers 
can be controlled by the selective removal of a determined 
fraction from a polymer-silica composite film resulting in an 
electrode structure that significantly enhances absorption and 
photocurrents in an ultra-thin film semiconductor.15,16 
Disordered films prepared from multiple populations of 
colloidal particles can potentially function as a tailorable and 
easy-to-fabricate photoelectrode structure. 
Predictions of the optical or other properties of an inverse opal 
photoelectrode are relatively easy because it is crystalline.  
The optical properties of a disordered photoelectrode are 
determined by an average over all possible configurations of 
the electrode, or the ensemble. The number of possible 
configurations can be extremely large even for disorder on 
simple scales, and there is no a priori method of simplification. 
Designing an electrode structure that maximizes light 
absorption in a semiconductor device requires a search 
through a large number of structural parameters, with each 
point in the search requiring a unique ensemble calculation. It 
is necessary to identify methods to approximate ensemble 
calculations for predicting the properties of a disordered 
material.     
To address this need, this work describes a method for 
approximating the ensemble properties of disordered light-
absorber structures of interest to PEC and other applications 
based on libraries of finite-difference time-domain (FDTD) 
simulations and machine learning (ML)-based emulation. A 
two-dimensional model for a photoelectrode is proposed, 
comprised of a single semiconductor light absorber embedded 
in a lattice of close-packed dielectric scatterers.  The model is 
referred to here as an omission glass photoelectrode.  An 
ensemble of the omission glass is the set of all possible 
configurations of dielectric cylinders on n lattice sites with k of 
the cylinders omitted from the structure. An example of one 
configuration of an (n, k) = (41,3) omission glass is shown in 
Figure 1a. In the context of disordered photonics, k determines 
the density of scatterers, and therefore tailors the mean free 
path of light propagation. The omission glass photoelectrode is 
a useful system for studying ensemble calculations because 
the disorder is discrete and definite, and the ensemble 
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properties can be computed exactly for small k. The exact 
ensemble average of a property such as the absorption 
spectrum in the light absorber is a straightforward calculation, 
yet becomes computationally intractable for even small values 
of k. An ML algorithm can infer otherwise hidden correlations 
between absorption profiles from a training set of simulations 
to act as an approximation of one or even many entire 
ensembles. A neural network regression algorithm was used to 
emulate the two-dimensional spatial distribution of absorption 
in the semiconductor for every possible configuration of a 
given (n, k) ensemble for the omission glass.  This emulator 
acts a function mapping the relationship between a specific 
omission glass configuration to the spatial distribution of 
absorption in the embedded light absorber. The statistical 
accuracy of the emulator is measured by comparing its 
predictions to a subset of the ensemble not used in its training 
(a test set) or on an entire ensemble where feasible. The result 
is an emulator that can predict the optical properties of a 
combinatorial number of disordered electrode structures with 
quantifiable accuracy. 

Here, a single omission glass photoelectrode example is used 
to illustrate the ML ensemble emulator ensemble approach. 
The geometry of the omission glass photoelectrode is a 250 
nm GaAs cylinder centered in a close-packed lattice of 250 nm 
SiO2 cylinders (n = 41, organized into 7 close-packed layers, 
Figure 1a).  FDTD simulations were performed using the 
software package MEEP for calculating the steady-state 

electric field and absorption in the simulation volume.17 Details 
of the implementation of the FDTD simulations and optical 
characterization of the close-packed, k = 0 photoelectrode are 
included in the Supporting Information. Each omission 
configuration for the k = 1, 2, 3, and 4 ensembles was 
simulated  at incident wavelengths λ = 600 nm, 700 nm, and 
800 nm (Figure 1b).  The brute-force, ensemble-averaged 
absorption spectra for k = 1 to k = 4 showed that increasing k 
from 0 to 4 has a small effect on absorption in the GaAs 
cylinder.  Absorption increased at λ = 600 nm, from 0.231 to 
0.276 (a 20% increase) and decreased at λ = 700 nm, from 
0.311 to 0.264 (a 15% decrease).  The per-configuration 
variability and absorption extrema for integrated absorption 
increased at all wavelengths for increasing k.  The spatial 
organization of the k voids therefore can have a significant 
effect on the absorption for a given configuration within a 
single ensemble.
A multilayer perceptron (MLP)-based emulator was used to 
predict the two-dimensional absorption profile in the GaAs 
absorber for a given configuration of SiO2 scatterers. An MLP is 
an example of a supervised machine learning algorithm, 
meaning that it is trained on a subset of input-output 
observations to allow for predictions on all possible input 
signals. Assigning an addressable index to each of the N lattice 
positions provides a unique 41-bit, binary input representation 
for each configuration in the ensemble: ‘1’ for present 
scatterer at that site and ‘0’ for omission (Figure S1). For k = 3, 
each configuration is represented by a unique list of 38 ones 
and three zeros. An MLP emulator trained on a set of FDTD 
simulations acts as a function that can predict the absorption 
profile for the 41-bit representation of any omission glass 
configuration. The emulator studied here were implemented 
using the MLPregressor function in the scikit-learn Python 
library.18 Details of the representation of the simulation data 
and the MLP implementation parameters are described in the 
Supplemental Information.

Beginning with the complete k = 1-4 ensembles allowed for the 
evaluation of the statistical accuracy of the MLP emulator 
compared to the true physical behavior of the ensemble.  It 

Figure 1 – (a) Schematic geometry of a 2D omission glass.  A 
GaAs cylinder absorber (black) is surrounded by a lattice of n 
= 41 SiO2 cylinders (blue).  For this specific example, three 
cylinders have been omitted from the structure, or k= 3.  
Illumination is incident from above (red arrows), with the 
polarization vector parallel to the cylindrical axis. For FDTD 
simulations, the geometry has periodic boundary conditions 
along the x-direction. (b) Integrated absorption spectra for k 
= 1-4 computed from the complete set of ensemble 
configurations.  The dots represent the integrated absorption 
for each configuration in the ensemble to show the intrinsic 
physical variance in the ensemble.  The k = 0 absorption 
spectrum (dashed red line) is plotted for comparison in each 
panel.

Figure 2 – Randomly chosen examples of the MLP-predicted 
profile Apred, the corresponding true profile AFDTD, and the 
difference between the two profiles (difference). The 
integrated absorption (λ = 600 nm) for each profile is 
included at the bottom of each panel. The  metric for 𝛔𝐩𝐩
each pair is included at the bottom of the difference panel.  
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also allowed for the evaluation of predictive accuracy in 
relation to the size of the training set and choice of included 
FDTD simulations. To supplement the k = 0-4 ensemble data, a 
library of randomly chosen FDTD simulations from each of the 
k = 5, k = 6, k = 8, and k = 10 ensembles was generated, 
including 20,000 examples from each ensemble.  
The per-pixel variance of a prediction to the true value, , is 𝛔𝐩𝐩

a metric for quantifying the prediction accuracy of a trained 
emulator. The mathematical definition of  is included in the 𝛔𝐩𝐩

Supporting Information. Figure 2 shows examples of  and 𝐀𝐩𝐫𝐞𝐝

 for randomly chosen k = 3 configurations by an MLP 𝐀𝐅𝐃𝐓𝐃

emulator trained on the complete set of k = 0-2 FDTD 
absorption profiles (862 total simulations) for λ = 600 nm. 
Additional examples of these predictions are shown in Figure 
S2-4.  The spatial distribution and magnitude of  and 𝐀𝐩𝐫𝐞𝐝

 agreed qualitatively in general, but  quantified the 𝐀𝐅𝐃𝐓𝐃 𝛔𝐩𝐩

accuracy of the prediction.  A discussion regarding the 
statistical accuracy of MLP emulator predictions on single 
ensembles are included in the Supplemental Information.  

Figure 3 – (a)  measurements for MLP emulators trained 𝛔𝐩𝐩
on with a fixed number of samples (Nset = 3000) with varying 
distribution (described in text) across the ensembles in a 
library of λ = 600 nm FDTD simulations.  No simulations from 
the k = 7 or k = 9 ensembles were included in the training set 
but were included as a test set.  Each line represents the  𝛔𝐩𝐩
measurement averaged over eight unique models. The solid 
bars represent the standard deviation of measurements.  (b) 

 measurements for MLP emulators (solid lines) trained 𝛔𝐩𝐩
on the ‘k ≤ 10’ training set as a function of Nset.   was also 𝛔𝐩𝐩
calculated for varied contributions from each ensemble.  
The ‘X’ data represents   measurements for an emulator 𝛔𝐩𝐩
trained a training set of simulations skewed towards high k-
values, consisting of the entire k = 0-2 ensembles, 500 
simulations from k = 3, 500 from k = 4, 2500 from k = 5, 2500 
from k = 6, 6000 from k = 8, and 6000 from k = 10.   
To measure large scale prediction accuracy, the library of 
simulations was used (k ≤ 10) to train MLP emulators to 
measure prediction accuracy across each ensemble. The test 
set for each ensemble calculation of  used all simulations 𝛔𝐩𝐩

from the library excluding the ones used in the training set.  
Figure 3a shows the effect that the distribution of simulations 
(λ = 600 nm) in a training set (Nset) of fixed size has on the 
accuracy.  Each emulator was trained with a training set 
comprised of the complete k = 0-2 ensembles and Nset = 3000 
simulations from the rest of the library, randomly selected in 
equal number from the contributing ensemble.  For example, 

‘k ≤ 4’ included 1500 simulations each from the k = 3 and k = 4 
ensembles, and ‘k ≤ 10’ included 500 simulations each from 
the k = 3, k = 4, k = 5, k = 6, k = 8, and k = 10 ensembles.   𝛔𝐩𝐩

values were low and relatively constant for predictions on the 
k = 2-5 ensembles regardless of the training set composition.  
As the number of ensembles represented in the training set 
increased, the accuracy of predictions on the larger k-values 
improved.  For k = 10,  decreased from 0.192 for the ‘k ≤ 4’ 𝛔𝐩𝐩

emulator to 0.153 for the ‘k ≤ 10’ emulator.   showed 𝛔𝐩𝐩

similar decreases for simulations from ensembles (k = 7, k = 9) 
that were not included in the training set.  

Figure 4 - Scatter plots showing the distribution of 
integrated absorption values (λ = 600 nm) for each of the 
test data configurations, using an emulator trained on a 
training set consisting of the k = 0-2 ensembles, 500 
simulations from k = 3, 500 from k = 4, 2500 from k = 5, 
2500 from k = 6, 6000 from k = 8, and 6000 from k = 10. For 
each configuration in the ensemble, the x-coordinate of the 
point represents the FDTD-derived absorption for the 
configuration while the y-coordinate represents the MLP-
predicted absorption.  The black ‘X’ in each plot indicates 
the average of the predicted (y-coordinate) and the FDTD-
determined true (x-coordinate) absorption for that 
ensemble.
Increasing Nset showed a nearly uniform decrease  for most 𝛔𝐩𝐩

of the ensembles (Figure 3b).   increased slightly for 𝛔𝐩𝐩

predictions in the k = 2 ensemble, for which all of the 
simulations are included in the training set.  The increase in 

 can be attributed to the relative decrease in the total 𝛔𝐩𝐩

fraction of k = 2 simulations in the total training set.  Using the 
same procedure, the distributions of random samples from 
each of the ensembles (k = 3-10) were modified to include 
more simulations from ensembles with larger k-values. 
Increasing the relative number of contributions to the training 
set from ensembles with large values of k resulted in a further 
reduction of  compared to the uniformly distributed 𝛔𝐩𝐩

examples.  slightly increased for predictions on the k = 2-6 𝛔𝐩𝐩

ensembles due to the relative decrease in the representation 
of those ensembles in the training set. 
The integrated absorption (λ = 600 nm) for  and  𝐀𝐩𝐫𝐞𝐝 𝐀𝐅𝐃𝐓𝐃

for each ensemble in the test set is shown in Figure 4. Each 
unique simulation in the test set is represented by a point in 
the scatter plot. The absorption values predicted are in 
statistical agreement for configurations with low true values of 

Page 3 of 5 ChemComm



COMMUNICATION Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

absorption, as indicated by the symmetric and narrow 
clustering around the diagonal line (slope = 1). The clustering 
tends to be lower than the diagonal line for high true values of 
absorption, indicating that an MLP emulator tends to 
underestimate the absorption for those configurations. The as-
trained emulator predicts that the ensemble-averaged 
absorption in the omission glass will increase with increasing k, 
which is consistent with the FDTD-derived absorption.  At k = 
10, the emulator predicts an absorption of 0.292, a 27% 
increase over the k = 0 electrode.  While there is a significant 
difference between the predicted and true absorption values 
(0.310), the emulator captures the relationship between k and 
total absorption (see Figures S8-9 for λ = 700 nm and 800 nm).
Here, this work has demonstrated that a neural network 
algorithm can be used to emulate the complex optical 
absorption properties of a disordered electrode design.  An ML 
algorithm can infer the hidden correlations between different 
electrode configurations to predict the spatial distribution of 
absorption in a small-volume light absorber.  Entire sets of 
ensembles can be approximated by this method with 
quantifiable accuracy while reducing the simulation cost 
(number of total simulations for ensemble calculations) by 
more than five orders of magnitude over the brute-force 
approach of simulating entire ensembles. Specifically, an MLP 
emulator can predict the absorption profiles and the assess 
the accuracy of prediction for the k = 0-10 ensembles of an 
omission glass (1.5 x 109 unique configurations) with fewer 
than 104 simulations. 
These results demonstrate the potential for using ML in the 
design of photoelectrodes for PEC applications. This can 
improve the computational efficiency for predicting the optical 
performance or incident photon-to-carrier conversion 
efficiency (IPCE) performance of device designs based on 
disordered materials.  Emulation may have significant impact 
for IPCE prediction, which in general depends on the spatial 
distribution of absorption. This is particularly important in 
semiconductors with low minority carrier diffusion lengths 
where light trapping strategies are commonly used.19,20  As a 
direct application of this work, the MLP emulator can speed up 
calculations to identify the best performing combination of n 
(or density of GaAs cylinders), k (the omission fraction), and 
diameters of GaAs and SiO2 cylinders for a PEC solar-to-fuels 
electrode.  Emulation can be applied more generally to 
continuously disordered materials, though it is necessary to 
identify a representation that uniquely describes the system 
structure and corresponding absorption profile.  
A drawback for the MLP approach, and most neural network 
ML algorithms in general, is that the trained emulator does not 
provide physical insight to high or low performance structures 
or produce an analytical model that can be generally applied.  
An MLP algorithm simply acts as a highly parameterized fitting 
function that can infer correlations between electrode 
structures and absorption profiles. Though the ability to make 
structure-function predictions as described here can spur 
further statistical analysis to identify the principal factors 
affecting variance in the absorption profile or otherwise be 
used to improve the accuracy of the emulators through 

rational choice of simulations for the training data.  
Understanding the factors that affect the absorption profile 
may spur the development of new fabrication methods to 
enhance power conversion efficiency in PEC or photocatalytic 
devices.
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A neural network-based emulator can accurately and efficiently predict the spatial 
distribution of absorption throughout a nanoscale semiconductor in a disordered 
photoelectrode.
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