Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

1

simulations electrochemical metallization Atomistic of cells: 2 mechanisms of ultra-fast resistance switching in nanoscale devices 3 4 Nicolas Onofrio, David Guzman, and Alejandro Strachan* 5 School of Materials Engineering and Birck Nanotechnology Center 6 Purdue University, West Lafayette, Indiana 47906 USA 7 We describe a new method that enables reactive molecular dynamics (MD) simulations of 8 electrochemical processes and apply to study electrochemical metallization cells (ECMs). The 9 model, called EChemDID, extends the charge equilibration method to capture the effect of 10 external electrochemical potentials on partial atomic charges and describes its equilibration 11 over connected metallic structures, on-the-fly, during the MD simulation. We use EChemDID to 12 simulate resistance switching in nanoscale ECMs; these devices consist of an electroactive metal 13 separated from an inactive electrode by an insulator and can be reversibly switched to a low-14 resistance state by the electrochemical formation of a conducting filament between electrodes. 15 Our structures use Cu as the active electrode and SiO_2 dielectric and have dimensions at the 16 foreseen limit of scalability of the technology, with dielectric thickness of approximately 1 nm. 17 We explore the effect of device geometry on switching timescales and find that nanowires with 18 an electroactive shell, where ions migrate towards a smaller inactive electrode core, result in 19 faster switching than planar devices. We observe significant device-to-device variability in 20 switching timescales and intermittent switching for these nanoscale devices. To characterize the 21 evolution in the electronic structure of the dielectric as dissolved metallic ions switch the device, 22 we perform density functional theory calculations on structures obtained from an EChemDID 23 MD simulation. These results confirm the appearance of states around the Fermi energy as a

^{*} Corresponding Author: <u>strachan@purdue.edu</u>

Nanoscale Accepted Manuscript

24 metallic filament bridges the electrodes and show that the metallic ions and not defects in the
25 dielectric contribute to the majority of those states.

26

27 1. Introduction

Electrochemical processes are at the heart of a wide range of established and emerging 28 applications from energy storage¹ and materials processing to nanoelectronics^{2,3,4,5} and 29 neuromorphic computing.^{6,7} In nominally all applications of current interest the operation of 30 devices is an emergent phenomena that originates from the interplay between processes with 31 32 disparate time and length scales; these include: electrochemical reactions at complex 33 interfaces, dissolution and deposition of ions, their transport and aggregation, injection and 34 trapping of electrons and holes, changes in composition, phase and valence change in the electrolytes, Joule heating and electromigration. Remarkably, some of these devices can be 35 scaled down to the nanoscale and operate at nanosecond timescales,⁸ opening exciting 36 37 potential applications but also complicating their experimental characterization. As a result, the 38 atomistic mechanisms that govern the operation of devices like batteries, pseudocapacitors and electrochemical metallization cells are not fully understood. Given these significant challenges 39 and the increasingly important role of molecular dynamics simulations in materials science, it is 40 perhaps surprising that the first attempts to describe electrochemical processes using empirical 41 force field methods date back only a few years.^{9,10,11} In this paper we describe the 42 43 electrochemistry dynamics with implicit degrees of freedom EChemDID method, that enabled 44 the first fully atomistic simulations of electrochemical metallization cells (ECMs) that can exhibit

45 ultra-fast resistance switching and apply to explore the role of device geometry and atomic46 processes in the switching of ECMs.

47 Nanoscale resistance switching electrochemical devices hold great promise as memory and logic elements in future nanoelectronics devices with the potential to contribute to the 48 49 extension of Moore's law beyond the rapidly approaching end of scaling and even enable 50 neuromorphic computing. Resistance- and threshold-switching electrochemical cells are fascinating devices that can reversibly or irreversibly change their electrical resistance with an 51 applied voltage via a variety of processes induced by electrochemistry.^{12,13,14} Their deceptively 52 simple structure, consisting of two metallic electrodes separated by a solid dielectric or 53 54 electrolyte, seems at odds with the wide range of I-V characteristics that can be achieved by the appropriate choice of materials:¹³ from linear to non-linear bipolar and nonpolar resistance 55 switching to threshold switching (an abrupt but reversible change in resistance). Importantly 56 both from applied and basic science points of view, these devices can exhibit switching in 57 nanosecond timescales⁸ and scaling to approximately ten nanometers,¹⁵ where the distinction 58 59 between material and device becomes meaningless. Despite the significant experimental and 60 theoretical efforts devoted to these devices in recent years the underlying materials processes responsible for their remarkable properties are not fully known. Even the switching 61 mechanisms, interfacial reactions, and the nature of the conducting paths are not known in 62 many cases.¹³ Recent experimental studies based on high-resolution transmission electron 63 microscopy imaging¹⁶ and scanning tunneling microscopy^{17,18} are providing key insight and 64 65 quantitative information regarding the fundamental physics of these devices. However, these techniques are not without limitations, especially when dealing with devices at their 66

67 miniaturization limit (few nanometers) and operating at ultra-fast speeds (nanoseconds). In 68 Section 3 of this paper we use EChemDID to explore the resistive switching of nanoscale ECMs consisting of Cu as the active electrode and SiO₂ dielectrics. We focus on the effect of device 69 70 geometry on switching dynamics and find that nanowire geometry tends to facilitate the creation of metallic filament. Interestingly, the simulations show that switching occurs with 71 72 negligible changes in the atomic structure of the amorphous dielectric. Section 4 introduces 73 multiscale simulations coupling EChemDID to ab initio electronic structure calculations to study the electrical characteristics of the systems. We find an increased number of states around the 74 75 Fermi energy of the dielectric as a metallic filament bridges the electrodes and that these states are predominantly originate on the metallic ions and not on defects in the dielectric. 76

2. Reactive molecular dynamics of electrochemistry

78 2.1 Reactive MD simulations

The use of many-body, partial bond-orders to describe covalent interactions^{19,20} together with 79 charge equilibration methods (QEq, initially proposed by Rappe and Goddard²¹ and by Mortier 80 at al.²²) to obtain geometry dependent partial atomic charges led to the development of 81 powerful reactive force field such as ReaxFF,²³ COMB²⁴ and REBO²⁵. These reactive potentials 82 enable large-scale (multi-million atoms) molecular dynamics of materials processes involving 83 chemistry. Examples of recent successes include areas as disparate as shock-induced 84 decomposition of explosives,²⁶ combustion,²⁷ water reactions in cement,²⁸ and reactions in 85 nanomaterials.²⁹ In this paper we use the reactive force field ReaxFF that has been 86 parameterized to describe Cu, SiO₂ and its interactions^{30,31} to model the ECMs of interest. A 87 88 detailed description of the potential including extensive validation tests and sensitivity analysis

96

Nanoscale

are included in the Supporting Information of Ref. [10] and will not be repeated here. The
following subsection describes how EChemDID enhances reactive MD simulations enabling the
description of an external electrochemical potentials to reactive metallic electrodes.
2.2 EChemDID simulations
Over the last 10 years Strachan and collaborators developed a family of simulation techniques
denoted dynamics with implicit degrees of freedom (DID)³² that was recently extended to
describe electrochemistry. DID couples particle dynamics with the evolution of degrees of

97 application of DID is the capability of describing the thermal role of electrons in MD simulations

freedom that are not captured explicitly in the particle description. For example, an important

98 of metals via an implementation of the two-temperature model. ³³

99 DID describes time evolution of the local electronic temperature in the vicinity of atom *i* (T_i^{ele}) 100 using the atoms as a grid and coupling to the atomistic dynamics via the position update 101 equation:³³

$$\dot{V}_i = \frac{F_i}{M_i} \tag{1b}$$

104
$$\dot{E}_i^{ele} = C_i \dot{T}_i^{ele} = \gamma |F_i|^2 + \kappa^{ele} \nabla^2 T_i^{ele}$$
(1c)

105 where the subscripts denote atoms, *R*,*V*, *F* and *M* are atomic position, velocity, force and mass, 106 and κ^{ele} is the thermal conductivity of the valence electrons. The dynamical parameter γ_i 107 governs the strength and directionality of the energy transfer between the electronic and 108 atomic subsystems at location *i*. It is defined as: $\gamma_i \propto \mu(T_i^{ion} - T_i^{ele})$ where T_i^{ion} is the local

Nanoscale Accepted Manuscript

atomic temperature in the vicinity of atom i and μ is the strength of the electron-phonon

110 coupling. The Laplacian in equation (1c) is solved numerically via:^{32,33}

109

111
$$\nabla^2 T_i^{ele} = \sum_{j \neq i} \frac{T^i - T^j}{R_{ij}^2} \omega(R_{ij})$$
(2)

112 where ω is a localized weighting function that defines the extent of the local neighborhood of 113 the calculation; see Ref. [32] and its supplementary information document. The range of this 114 local weighting function is a few atomic distances and its details do not affect the results in an appreciable manner; this is due to the fact that in the applications of interest the local 115 116 electronic temperature and its Laplacian do not vary significantly within atomic distances. The 117 DID formulation has several desirable properties, total energy (ions plus electrons) is conserved, 118 the equations are Galilean invariant and we demonstrated the strong foundations of the approach in statistical mechanics.³³ The method was recently extended to accurately describe 119 120 metal/semiconductor and metal/insulator interfaces by enabling direct electron-phonon coupling across the interface.³⁴ 121

We recently combined the DID method with a modified version of charge equilibration to enable the application of external voltages in reactive MD simulations. This new method, called EChemDID, enabled the first atomistic simulation of an electrochemical metallization cell.¹⁰ In the QEq formalism, partial atomic charges are computed on the fly during molecular dynamics simulations from a self-consistent minimization of the total electrostatic energy, written as:^{21,22}

127
$$E(\{R_i\}\{Q_i\}) = \sum_{i}^{N} \left(\chi_i Q_i + \frac{1}{2} H_i Q_i^2\right) + \sum_{i < j}^{N} Q_i Q_j J(R_{ij})$$
(3)

128

129

130

131

132

133

134

135

136

137

138

139

140

Nanoscale

where J(R) is the distance dependence of the electrostatic interaction (often shielded Coulomb). QEq requires atomic electronegativity χ_i and hardness H_i parameters as input and is often parameterized against partial charges obtained from ab initio. The application of an external electrochemical potential difference $\Delta \phi$ between atoms in two electrodes causes an energy difference in an electron of $e\Delta\phi$; this can be accomplished within QEq by changing the electronegativity in one electrode to $\chi_i \rightarrow \chi_i + \Delta \phi/2$ and to $\chi_i \rightarrow \chi_i - \Delta \phi/2$ in the other. To simulate the effect of an external electrochemical potential EChemDID assigns an additional dynamical variable to each metallic atom to represent the local external electrochemical potential ϕ_i . This value is added to the atomic electronegativity used for charge equilibration, thus affecting the charge distribution and enabling electrochemical processes. The challenge is to dynamically equilibrate the electrochemical potential in connected metallic regions during a reactive simulation, including atoms dissolving into the dielectric or depositing from it. EChemDID describes this equilibration process using a diffusion equation for ϕ_i :

141
$$\dot{\phi}_i = k^{\phi} \nabla^2 \phi_i, \tag{4}$$

where k^{ϕ} is an effective diffusivity for the electrochemical potential. This fictitious dynamics 142 143 (instead of solving Maxwell's equations) is chosen for computational convenience. The 144 electrochemical potential propagates at the speed of light and, consequently, its equilibration 145 occurs much faster than any atomistic processes. For our purposes the details of this ultra-fast 146 equilibration are irrelevant and sufficiently fast diffusive equilibration meets our needs. We 147 numerically solve equation (4) on-the-fly during the MD simulation using atoms as a grid and a 148 local weighting function as in the DID method described above, Eq. (3).

Figure 1 exemplifies EChemDID in the two devices of interest in this paper: i) a configuration 149 150 with a fin-shaped active electrode and ii) a core/shell nanowire. The snapshots show the 151 metallic atoms in the systems (the dielectric is not shown for clarity) and atoms are colored by 152 electrochemical potential in the top panels and partial atomic charge in the bottom ones. In 153 these simulations an electrochemical potential difference of 8V is applied to a group of atoms 154 in the active (electropositive, blue) and inactive (negative, red) electrodes far away from the 155 electro-active interfaces. As seen in the top panels, EChemDID equilibrates the applied 156 electrochemical throughout the metallic structures and affects the atomic charges, bottom 157 panels. We see that charges appropriately localize at the free surface of the metallic structures.

158

160 potential under an applied voltage of 8 V (top) as well as the corresponding partial atomic

- 161 charges (bottom)
- 162 An important by-product of EChemDID is its ability to describe resistive electron transport when
- 163 a metallic filament bridges between two electrodes kept at different potentials. This originates

164 from the diffusive nature of Eq. (4) used to equilibrate the electrochemical potential. We note 165 that under diffusive electrical transport the gradient of the electrochemical potential is 166 proportional to the electronic current density; thus, the Laplacian in the RHS of Eq. (4) represents the divergence of the current density around site *i* (i.e. time derivative of the total 167 168 charge density around the site). The details of the calculation of an electronic current are explained in Ref.¹¹ and will not be repeated here in the interest of brevity. EChemDID has been 169 170 implemented in the parallel molecular dynamics package LAMMPS from Sandia National Laboratories³⁵ and is available for download from our website.³⁶ 171

172 EChemDID summary. In concluding this section, we point out that simulations presented here 173 involve no tunable parameters and are, thus, predictive. The inputs are force field parameters 174 that were obtained from ab initio simulations designed to describe the various interactions but not specifically designed for electrochemistry or ECM simulations. The EChemDID parameters 175 176 to describe the equilibration of electrochemical potential have a negligible role in the simulations are only chosen so that the equilibration of the voltage occurs fast compared with 177 178 atomic processes. We also highlight that simulations of this complexity necessarily involve 179 approximations, neglect processes and include uncertainties. These include the use of a force 180 field to describe atomic interactions, limitations intrinsic to the charge equilibration method 181 used, and the neglect of electronic transport when a conducting filament forms. As discussed in Section 5 we believe these approximations do not affect the main results of our simulations. 182

As with all other simulation techniques EChemDID is not without approximations. In addition to the use of an interatomic potential to describe interactions, EChemDID does not describe electron transport (including trapping defects). Consequently, Joule heating and electron

migration are not modeled at this point. These processes would not play an important role until a bridging filament is formed, enabling electronic current. However, a compliance current is imposed to limit electron flow and control the conductivity of the filament;^{37,38} thus limiting Joule heating. A characteristic time for thermal equilibration can be estimated as the ratio between a characteristic length squared (taking into account the oxide thickness we can take Nanoscale Accepted Manuscript this as ~4 nm²) and the thermal diffusivity (a typical value for oxides is 10^{-6} m²/s). This yields 4 ps, indicating that thermal equilibration occurs in timescales significantly shorter as compared with switching and justify our neglect of Joule heating and the use of a thermostat to maintain constant temperature throughout the simulations. The neglect of Joule heating in the current version of EChemDID implies that RESET is governed by electrochemical dissolution and not aided or driven by Joule heating. This is consistent with experimental observations in bi-polar devices where erase voltages are lower than those required to significant Joule heating³⁹ but

199 2.3 DFT electronic structure calculations

would not apply to unipolar devices.³

186

187

188

189

190

191

192

193

194

195

196

197

198

200 Ab initio electronic structure calculations of the operation of the ECMs of interest here will be 201 computationally prohibitively expensive for the foreseeable future; yet, only such calculations 202 can provide answers to some of the key open questions in the field such as the nature of 203 electronic transport. To bridge this gap, we performed EChemDID MD simulations on small 204 simulation cells (275 atoms) and extracted a series of atomistic configurations to study their 205 electronic structure using density functional (DFT) calculations.

206 The geometry optimization and electronic structure calculations were carried out with DFT using the Vienna *ab initio* simulation package (VASP)^{40,41}. Projector-augmented-wave (PAW) 207

pseudopotentials⁴² were used to describe core electrons, and the electron exchangecorrelation potential was computed within the generalized gradient approximation (GGA) as proposed by *Perdew-Burke-ErnZerhof* (PBE)⁴³. The kinetic energy cutoff was set to 500 eV and only gamma-point calculations were carried out due to the relatively large simulation cells. The conjugate gradient method was used for the structural relaxation with a maximum force tolerance of 0.01 eV/Å and the self-consistent field electronic relaxation proceeds until a tolerance of 1x10⁻⁵ eV is reached.

3. ECM simulations: role of dielectric chemistry and structure on
switching

217 3.1 Systems of interest and simulation details

We study ECM cells with Cu as the active electrode and amorphous SiO₂ electrolytes; this 218 system is attractive due to the wide availability of experimental data and compatibility with 219 220 CMOS processing. In order to study the effect of device geometry on switching timescales and filament stability, we focus on three classes of devices, see Figure 2: i) a parallel electrodes 221 setup with an active electrode patterned in a conical shape, as described in our previous 222 study,¹⁰ ii) a nanowire geometry with a shell made of the active electrode and an inactive 223 224 electrode core separated by the dielectric (center panels of Figure 2), and iii) a structure with a 225 fin shaped active electrode (right panels in Figure 2). We impose periodic boundary conditions 226 in two dimensions for the parallel electrodes and fin devices and 1D periodic boundary 227 conditions in the nanowires. For better statistics, we generated an ensemble of structures of 228 each type of devices differing only in the atomic structure of the amorphous dielectric; these

will be denoted C1-C4 (conical electrode), NW1-NW4 (core-shell nanowires) and F1-F4 (for the fins). In order to isolate the effect of device geometry on switching timescales, the nanowire and fin devices both have dielectric thicknesses of 1 nm; this is also the separation between the tip of the cone and the inactive electrode in the parallel plates device. In this way, the distance ions need to migrate to reach the inactive is nominally identical in all cases. For simplicity, the inactive electrode is modeled using Cu interatomic potential but all atoms are kept at fixed positions throughout the simulation.

The number of atoms in the devices range from 20,594 to 47,847 and the MD simulations of switching involve up to 2.5 ns timescales. Such system sizes and timescales are beyond the capabilities of ab initio simulations today and in the near future, highlighting the importance of empirical approaches like EChemDID and reactive force fields. Even with EChemDID/ReaxFF, the simulations presented here are computationally intensive; for example, a 1.5 nanosecond simulation of the NW1 device takes 670 hours of wall clock time running on 32 cores of Purdue University's Conte compute cluster.

243

Figure 2. Geometry of the three types of ECM cells studied: parallel electrodes with patterned
 active electrode, core/shell nanowires, and fin active electrodes. Top panels show relaxed
 geometries and bottom show open representations of the structures.

247

Generating well-relaxed amorphous structures for the dielectric is critical for the reliability and reproducibility of the simulations. We start from an amorphous SiO_2 (a- SiO_2) system with 30,000 atoms generated following a melt and quench procedure as described in our previous work.⁴⁵ The a- SiO_2 is then patterned in the desired shape and inserted between the active and inactive electrodes. Additional Si and O atoms are added to the electrolyte in order to maintain the overall stoichiometry of as SiO_2 . The dielectric is then re-annealed in the presence of the electrodes; we heat the SiO_2 to T=4000 K and maintain this temperature for 50 ps while keeping

255 the atoms in the electrodes as a rigid body. We follow this high-temperature relaxation by an 256 annealing to T=300 K in 370 ps (cooling down at 10 K/ps). The last step in the preparation of the 257 cells for electrochemical switching is thermalization of the entire system (including electrodes) 258 at a temperature of 300 K. The final cells are stress free and the densities of the a-SiO₂ dielectric 259 are consistent with previous work and in good agreement with experiment.

All simulations are performed using the parallel MD simulator LAMMPS³⁵ with atomic interactions described using ReaxFF as described in Ref.10. All simulations use the following EChemDID parameters. The range of the weighting function that describes the equilibration of the electrochemical potential is set to 4Å and the parameter k^{ϕ} that describes the fictitious electrochemical diffusivity is 4 Å²/fs.

265 3.2 Reactive MD simulations of switching

266 Before operation, i.e. the periodic switching of the device to the low-resistance state (SET) and 267 the high-resistance state (RESET) the devices need to be FORMED, i.e. switched for the first 268 time. This initial switching often requires higher voltages and longer times than the subsequent 269 SET processes. In order to simulate the FORMING of the devices described in Section 3.1 we 270 apply an electrochemical potential of 8 V across the cell, setting the electrochemical potential 271 of +4 V to the active electrode and -4 V to the inactive one. The electrochemical potential is 272 externally set for a metallic group of atoms away from the electrochemically active interfaces 273 and EChemDID equilibrates the potential across the two metallic electrodes, see Figure 1.

The top panels of Figure 3 show the EChemDID current (see Eq. 10 in Ref. 11) between the electrodes as a function of time during the FORM simulations. A non-zero value indicates the

presence of the bridging metallic filament between the active and inactive electrode. The results are consistent with our previous simulations on parallel electrode setups with patterned active electrodes.¹¹ These simulations showed switching timescales ranging from approximately 0.5 ns to 5 ns and intermittent switching in many cases caused by metastable single-atomic chain filaments. These switching timescales are consistent with experimental results⁵; we consider this agreement quite remarkable given that none of the model parameters where tuned to describe neither ECM cells nor electrochemical reactions.

283 Interestingly, the simulations reported in Figure 3 show that the nanowire devices tend to 284 switch at shorter times than the FIN ones. Devices NW3 and NW2 switch within ~0.5 and ~1.2 285 ns of the application of the voltage while no FIN device switches before 1.7 ns. Devices NW4 286 and NW1 exhibit intermittent switching before 1.5 ns (denoted by a weak and fluctuating current). We found that the NWs switching timescales are consistent with the geometries 287 288 studied in Ref. [10] composed of conical and triangular patterned active electrodes. As the Cu 289 ions dissolve into the dielectric and move towards the inactive electrode core, their density 290 increases and so does the chance of forming nanoscale Cu clusters that are critical for 291 switching. Figure 3 (bottom panels) shows the time evolution of the density of Cu atoms 292 dissolved in the dielectric. The density of Cu ions in the dielectric increases faster in the NW 293 devices. The EChemDID currents and Cu concentration in Figure 3 indicate that reaching a 294 threshold density of Cu dissolved in the dielectric is a necessary condition for stable switching 295 but it is not sufficient. Consistent with Ref. [10], our results indicate that stable switching 296 requires at least 4% Cu per SiO₂ atoms but that this alone does not guarantee stable switching. 297 We attribute the slower switching timescales of the FIN devices to the large fraction of their

electrode/dielectric interface being atomically flat (perfectly flat interfaces tend to slow the copper dissolution and therefore increase switching time, as will be discussed in Section 4). In addition, the nanowire geometry leads to a convergence of the dissolved ions into smaller areas as they approach the inactive core electrode favoring the formation of Cu clusters and a conductive filament.

Figure 3. Electrical current computed with EChemDID (top) for nanowire (left) and fin shaped
 (right) structures as well as the corresponding concentration of Cu dissolved in the solid
 electrolyte (bottom).

303

Following the FORMING simulations, we RESET one device of each geometry (NW2 and F1) by reversing the voltage. The results are shown as dotted lines in Figure 3. When the voltage is reversed, a large amount of current is detected because the electrochemical potential has to be re-equilibrated in both electrodes, hence the peaks at 1.5 ns and 2.5 ns observed for the NW2 and F1 structures, respectively. Device F1 switches OFF in a short period of time (in approximately 10 ps) whereas it takes an order of magnitude longer time to switch OFF the NW device (~100 ps). This last observation correlates with the high concentration of Cu dissolved in

the electrolyte for the NW case, slowing down the RESET process. As with FORMING, we expect
significant device-to-device variability and study involving several structures and multiple
SET/RESET cycles will be required to draw more rigorous conclusions.

317 3.3 Atomic structure of bridging filaments and dielectric structure

318 We now focus on the atomistic structure of the nanoscale filaments responsible for the low-319 resistance state of the devices and the effect of the metallic ions have on the amorphous 320 dielectrics. Knowledge of the shape of the bridging filament is important to predict its electrical 321 characteristics and can provide insight into the process of their formation as well as stability. 322 Similarly important is to understand the processes that occur in the dielectric as it 323 accommodates the ions during switching. For example, it has been postulated that nanoscale 324 voids or cavities created during the FORMING process contribute to subsequent switching steps⁴⁴. 325

Figure 4 shows snapshots of the bridging filaments of the various devices. For clarity only 326 327 metallic atoms are shown and they are colored according to their partial charges (blue 328 represents positive charge and red negative). The snapshots clearly show the positive charge of 329 the metallic atoms on the surface of the active electrode and ions dissolved into the dielectric. 330 In addition, inspection of atoms that have come into contact with the inactive electrode reveals 331 their electrochemical reduction as described by EChemDID. This chemical reduction stabilizes 332 the atoms in contact with the negative electrode (electro-positive ions in contact with the 333 active electrode are favored to dissolve into the dielectric while dissolution is unfavorable for neutral or negatively charged Cu atoms). As we found for planar geometries, stable switching 334 335 requires filaments a few atoms thick near the active (positive) electrode but chemical reduction

enables thinner (even single atom) shapes near the inactive electrode. This leads to filaments

- 337 with approximately conical shapes, thicker near the active electrode. We stress that this shape
- has its origin in the relative stability of Cu near either electrode and not in the growth process.

Figure 4. Snapshots of the metallic filaments observed in the simulations. The top and bottom
snapshots show filaments observed in NWs and FIN geometries, respectively. The colors
represent partial atomic charges ranging from -0.2e (red) to +0.2e (blue) and the amorphous
silica has been hidden for clarity.

339

We now turn our attention to the atomistic structure of the dielectric during switching. Specifically, we focus on possible defects generated as Cu ions migrate through the amorphous structure. A perfect amorphous SiO_2 network consists of SiO_4 tetrahedra bridged by shared O atoms and deviations from this coordination indicate point defects. Thus, we characterize the local coordination of each Si and O atom in the dielectrics during switching and identify defects as sites that deviate from the perfect network (i.e. Si with coordination other that four O atoms and O atoms with coordination other than two Si). Figure 5 shows the temporal evolution of the

Nanoscale Accepted Manuscript

351 fraction of defective atoms in the simulations. As in all amorphous structures a level of intrinsic defects is present from the outset.⁴⁵ The small device to device variability denotes the 352 353 reproducibility of the structure generation procedure and that of the simulation results in 354 general. Quite surprisingly, the density of defects does not increase during the FORMING 355 process, the amorphous structure is able to accommodate the electrochemically dissolved 356 metallic ions. This is an important result and it indicates that the process of FORMING does not 357 generate permanent defects or channels that could subsequently be used for switching during 358 SET and RESET. In addition, this result indicates that structural changes or defects in the 359 dielectric are not likely to contribute to the electronic transport. This observation applies to the 360 nanoscale devices studied here and it is possible that nanoscale pores or channels form in 361 larger devices.

362

Figure 5. Total point defect density (Silicon and Oxygen) in the a-SiO₂ electrolyte for various ECM

364

cells (left: NWs and right: FIN geometries) as a function of switching time.

365 4. Multiscale modeling of electronic structure during switching

366 4.1 Systems of interest and simulation details

In order to characterize the electronic structure of the electrochemical metallization cells 367 368 during switching we performed DFT calculations of atomic configurations obtained during the 369 switching of a small device as described in Section 2.3. The device, see snapshots in Figure 6 370 consists of parallel, flat electrodes and a 1.3 nm thick dielectric. The cross-sectional area of the 371 simulation cell is 1.05 x 1.05 nm. The generation of the atomistic structure of the smaller 372 devices only differs from the one laid down in Section 3.1 in the selection of electrodes 373 termination and switching voltage. Due to the limited number of atoms, we use atomistically 374 flat terminations for the electrochemically active and inactive electrodes which makes the 375 initial dissolution of ions into the dielectric more difficult. As in Section 3, the switching process 376 is driven by a potential difference of 8 V across the device.

377 The total MD simulation time of the small device is 8.25 ns, and copper ions dissolution is 378 initially observed to take place around 3.5 ns. The insets in Figure 6 show the atomic snapshots 379 of the metal-insulator-metal device at different stages of the switching process and these select 380 structures are used for the DFT calculations. The MD generated structures are fully relaxed with 381 DFT-GGA using the settings and tolerances discussed in Section 2.3. The electronic density of 382 states (Kohn-Sham eigenvalues) of the relaxed structure is calculated and projected on the 383 atomic sites of the dielectric region to study how the addition of Cu ions changes its electronic 384 structure.

386 Figure 6 shows the electronic density of states of the dielectric region (amorphous silicon dioxide and dissolved Cu ions) at several stages of the switching process. We observe a 387 388 relatively small availability of states in the vicinity of the Fermi level (located at zero in all cases) 389 during the first 3.5 ns of the simulation when no copper ions have been dissolved. In these plots, the valence band edge is right below zero and the conduction band starts at near 4eV. As 390 391 expected, intrinsic defects lead to electronic states within the band gap and we attribute the 392 slight variation in the density of states before any copper is embedded in the electrolyte to variations in the amorphous structure.⁴⁶ A detailed analysis of the electronic structure of the 393 394 initial amorphous SiO₂ including the effect of defects and surface states is beyond the scope of this paper where we focus on the effects on the dissolution of Cu. The dissolution of the first 395 396 ion takes place at approximately 3.7 ns and this is followed by the rapid dissolution of several 397 nearby ions and the formation of an ultra-thin filament, see snapshots at 3.75 and 4.0 ns. The 398 presence of these metallic ions leads to a sharp increase in the density of states of the dielectric 399 region around the Fermi energy. Further analysis of the density of states via a projection on Si 400 and O atoms (shown as green lines in the bottom panels or Fig. 6) indicates that their 401 contribution to the states around the Fermi energy is minimal. Thus, the electronic states 402 responsible for electronic transport are contributed by the metallic ions and not by defects induced in the dielectric. This is in agreement with other DFT calculations⁴⁷ on crystalline silicon 403 404 dioxide with copper inclusions where copper derived states show a dominant contribution to 405 the top of the valence band and bottom of the conduction band. Pandey et. al. reports an 406 increase in the number of localized states in the mid-gap with increasing concentration of

Nanoscale Accepted Manuscrip

407 copper and complete metallization for concentrations greater than 3.3×10^{22} cm⁻³. Our 408 simulations at 4 ns have a Cu concentration of 2.0×10^{22} cm⁻³. It is also worth noting that the 409 geometric shape of the copper clusters in the amorphous silicon dioxide is consistent with 410 previous MD/DFT studies⁴⁸ where it is suggested that the most stable clusters adopt an 411 equiaxed geometry, as observed for the copper tetramer shown in the inset of Figure 6 at t=4.0 412 ns.

414 Figure 6. Projected density of states for small electrochemical metallization cell devices
415 and snapshots of the atomic structure throughout the switching process. The density of states
416 has been projected on the atoms of the solid electrolyte region

417

427

Nanoscale

418 Figure 7 provides a measure of the change in electronic conductance of device during 419 switching, we show the density of states integrated in a Fermi window of +/- 0.2 eV as function 420 of simulation time. As described above, there is a sudden increase in the number of states 421 around the Fermi level when copper ions are embedded in the silicon dioxide. The DFT 422 calculation (blue circles) is compared with EChemDID electronic current obtained from Eq. 4. 423 Both methods show very similar trends lending credence to the EChemDID current calculation 424 as an accurate estimator. We note that these simulation cells are smaller than those described 425 in Section 3, which would result in quantum confinement and other size effects that affect the 426 predictions.

Figure 7. Integrated density of states in a Fermi window of +/- 0.2 eV. The variation of the
number of states in the early stages of the simulation is associated to the continuously changing
atomic structure of the amorphous silicon dioxide. The sudden increase in states available for
conduction is attributed to the inclusion of copper ions in the solid electrolyte.

432 5. Conclusions and outlook

433 In summary this paper describes EChemDID, a model to perform large-scale reactive atomistic 434 simulations of electrochemical processes, and its application to simulate resistive switching in 435 nanoscale ECMs. MD simulations provide unparalleled resolution for devices at their scalability 436 limit (nanometer dimensions) and at ultra-fast switching conditions of interest in many 437 applications. The simulations, with no adjustable parameters, predict switching in nanosecond 438 timescales and significant device to device variability, this is consistent with experimental 439 observations. The simulations indicate that nanowire devices consisting of active electrode 440 shells and where ions move in a convergent geometry towards the inactive electrode core 441 switch at shorter timescale than those involving parallel electrodes. Given the significant device 442 to device variability a larger number of simulations would be required to assess the distribution 443 of performance (e.g. switching timescales, filaments stability) of the various devices. The 444 simulations confirm that a threshold density of dissolved ions is necessary for switching (in the 445 case of Cu/SiO₂ systems this value is 4% Cu per silica formula unit); but this condition is not 446 sufficient. The formation of a stable filament required the formation is small Cu clusters that 447 help the stability especially near the active electrode. Electrochemical reduction stabilizes thin 448 filaments near the inactive electrode leading to filaments thinner near the negative electrode.

A detailed characterization of the atomic structure of the dielectric during switching shows no indication of the disruption of the amorphous network during the dissolution of the ions and the formation of a nanoscale conductive bridge. The amorphous network accommodates the ions with little distortions and this is confirmed by electronic structure calculations using

density functional theory that shows that during switching the electronic states near the Fermienergy responsible to conductance are predominantly associated with the Cu ions.

455 We stress that no model parameter was adjusted to describe ECMs or even electrochemistry; in 456 that sense the models described in this paper are predictive. Of course, the simulations make 457 several approximations that need to be taken into account when interpreting the results. The 458 ReaxFF force field (as any other method to compute energies and interatomic forces, including 459 most ab initio ones) provides an approximate description of the interactions. For example, the 460 potential we use slightly underestimates the dissolution energy of Cu into SiO₂; the 461 uncertainties introduced in the simulations due this effect have been discussed in detail in Ref. 462 [10]. The atomic-based charge equilibration method used here has limitations that have been documented in recent papers^{49,50}. Importantly for our specific application is that we neglect 463 464 integer charge transfer processes (a dissolved ion or defect in the dielectric trapping a hole or electron); we consider the Cu ions to carry an *average* charge as they migrate through the 465 dielectric. Müser and collaborators recently proposed an approach to capture such processes⁵¹ 466 and used to simulate a model battery.⁵² Combining this approach with EChemDID would be 467 worthwhile and its parameterization could be performed from first principles calculations.⁴⁶ 468 469 Our simulations also neglect electric transport when a filament forms. Performing a detailed 470 calculation of the possible Joule heating and electromigration on the nanoscale filaments predicted by EChemDID, accounting for possible ballistic effects on electron transport, would 471 472 provide significant insight into their role in switching. This is particularly important to 473 understand the dissolution of the filament during the RESET process and the current is externally limited during filament formation. 474

25

475	Finally we point out that EChemDID is quite generally applicable and could be used in
476	conjunction with reactive force fields to simulate a wide range of devices including pseudo
477	capacitors and batteries in addition to ECMs.
478	Acknowledgements
479	This work was supported by the FAME Center, one of six centers of STARnet, a Semiconductor

480 Research Corporation program sponsored by MARCO and DARPA. Computational resources of

481 nanoHUB.org and Purdue University are gratefully acknowledged.

482 6. References

¹ Dunn, Bruce, Haresh Kamath, and Jean-Marie Tarascon. "Electrical energy storage for the grid: a battery of choices." *Science* 334.6058 (2011): 928-935.

² Lu, Wei, and Charles M. Lieber. "Nanoelectronics from the bottom up." *Nature materials* 6, no. 11 (2007): 841-850.

³ Waser, Rainer, and Masakazu Aono. "Nanoionics-based resistive switching memories." *Nature materials* 6, no. 11 (2007): 833-840.

⁴ Borghetti, Julien, Gregory S. Snider, Philip J. Kuekes, J. Joshua Yang, Duncan R. Stewart, and R. Stanley Williams. "'Memristive'switches enable 'stateful'logic operations via material implication." *Nature* 464, no. 7290 (2010): 873-876.

⁵ Valov, Ilia, et al. "Electrochemical metallization memories—fundamentals, applications, prospects." *Nanotechnology* 22.25 (2011): 254003.

⁶ Jo, Sung Hyun, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki Mazumder, and Wei Lu. "Nanoscale memristor device as synapse in neuromorphic systems." *Nano letters* 10, no. 4 (2010): 1297-1301.

26

⁷ Prezioso, Mirko, Farnood Merrikh-Bayat, B. D. Hoskins, G. C. Adam, Konstantin K. Likharev, and Dmitri B. Strukov. "Training and operation of an integrated neuromorphic network based on metal-oxide memristors." *Nature* 521, no. 7550 (2015): 61-64.

⁸ Yang, Yu Chao, et al. "Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application." *Nano letters* 9.4 (2009): 1636-1643.

⁹ Dapp WB, Müser MH. Redox reactions with empirical potentials: Atomistic battery discharge simulations. The Journal of chemical physics. 2013 Aug 14;139(6):064106.

¹⁰ Onofrio N, Guzman D, Strachan A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nature materials. 2015 Apr 1;14(4):440-6.

¹¹ Onofrio N, Strachan A. Voltage equilibration for reactive atomistic simulations of electrochemical processes. The Journal of chemical physics. 2015 Aug 7;143(5):054109.

¹² Waser, Rainer, Regina Dittmann, Georgi Staikov, and Kristof Szot. "Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges." *Advanced Materials* 21 (2009): 2632-2663.

¹³ Yang, J. Joshua, Dmitri B. Strukov, and Duncan R. Stewart. "Memristive devices for computing." *Nature nanotechnology* 8, no. 1 (2013): 13-24.

¹⁴ Padilla, Alvaro, Burr, G.W.; Shenoy, R.S.; Raman, K.V.; Bethune, D.S.; Shelby, R.M.; Rettner, C.T.; Mohammad, J.; Virwani, K.; Narayanan, P.; Deb, A.K.; Pandey, R.K.; Bajaj, M.; Murali, K.V.R.M.; Kurdi, B.N.; Gopalakrishnan, K. "On the Origin of Steep–Nonlinearity in Mixed-Ionic-Electronic-Conduction-Based Access Devices." *Electron Devices, IEEE Transactions on* 62, no. 3 (2015): 963-971.

¹⁵ Zhirnov, Victor V., Roy Meade, Ralph K. Cavin, and Gurtej Sandhu. "Scaling limits of resistive memories." *Nanotechnology* 22, no. 25 (2011): 254027.

¹⁶ Yang, Yuchao, Peng Gao, Siddharth Gaba, Ting Chang, Xiaoqing Pan, and Wei Lu. "Observation of conducting filament growth in nanoscale resistive memories." *Nature communications* 3 (2012): 732.

¹⁷ Valov, Ilia, Ina Sapezanskaia, Alpana Nayak, Tohru Tsuruoka, Thomas Bredow, Tsuyoshi Hasegawa, Georgi Staikov, Masakazu Aono, and Rainer Waser. "Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces." *Nature materials* 11, no. 6 (2012): 530-535.

¹⁸ Wedig, Anja, Michael Luebben, Deok-Yong Cho, Marco Moors, Katharina Skaja, Vikas Rana, Tsuyoshi Hasegawa, Kiran K. Adepalli, Bilge Yildiz, Rainer Waser and Ilia Valov. "Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems." *Nature nanotechnology* (2015).

¹⁹ Stillinger, Frank H., and Thomas A. Weber. "Computer simulation of local order in condensed phases of silicon." *Physical review B* 31.8 (1985): 5262.

²⁰ Tersoff, J. "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems." *Physical Review B* 39.8 (1989): 5566.

²¹ Rappe, Anthony K., and William A. Goddard III. "Charge equilibration for molecular dynamics simulations." *The Journal of Physical Chemistry* 95, no. 8 (1991): 3358-3363.

²² Mortier, Wilfried J., Swapan K. Ghosh, and S. Shankar. "Electronegativity-equalization method for the calculation of atomic charges in molecules." *Journal of the American Chemical Society* 108, no. 15 (1986): 4315-4320.

²³ Van Duin, Adri CT, et al. "ReaxFF: a reactive force field for hydrocarbons." *The Journal of Physical Chemistry A* 105.41 (2001): 9396-9409.

²⁴ Rick, Steven W., Steven J. Stuart, and Bruce J. Berne. "Dynamical fluctuating charge force fields: Application to liquid water." *The Journal of chemical physics* 101.7 (1994): 6141-6156.

²⁵ Stuart, Steven J., Alan B. Tutein, and Judith A. Harrison. "A reactive potential for hydrocarbons with intermolecular interactions." *The Journal of chemical physics* 112.14 (2000): 6472-6486.

²⁶ Wood MA, Cherukara MJ, Kober EM, Strachan A. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale. The Journal of Physical Chemistry C. 2015 Sep 11;119(38):22008-15.

²⁷ Castro-Marcano F, Kamat AM, Russo MF, van Duin AC, Mathews JP. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame. 2012 Mar 31;159(3):1272-85.

²⁸ Manzano H, Moeini S, Marinelli F, Van Duin AC, Ulm FJ, Pellenq RJ. Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemical Society. 2012 Jan 20;134(4):2208-15.

²⁹ Paupitz R, Autreto PA, Legoas SB, Srinivasan SG, van Duin AC, Galvao DS. Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnology. 2012 Dec 21;24(3):035706.

³⁰ Van Duin, Adri CT, et al. "ReaxFFSiO reactive force field for silicon and silicon oxide systems." *The Journal of Physical Chemistry A* 107.19 (2003): 3803-3811.

³¹ van Duin, Adri CT, et al. "Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases." *The Journal of Physical Chemistry A* 114.35 (2010): 9507-9514.

³² Strachan, Alejandro, and Brad Lee Holian. "Energy exchange between mesoparticles and their internal degrees of freedom." *Physical review letters* 94.1 (2005): 014301.

³³ Lin, Keng-Hua, Brad Lee Holian, Timothy C. Germann, and Alejandro Strachan. "Mesodynamics with implicit degrees of freedom." *The Journal of chemical physics* 141, no. 6 (2014): 064107.

³⁴ Lin, Keng-Hua, and Alejandro Strachan. "Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics." *The Journal of chemical physics* 143, no. 3 (2015): 034703.

³⁵ Plimpton, Steve. "Fast parallel algorithms for short-range molecular dynamics." *Journal of computational physics* 117, no. 1 (1995): 1-19.

³⁶ <u>https://nanohub.org/groups/strachangroup/lammpsmodules</u>. Last visited Nov. 1.

³⁷ Valov, Ilia, and Michael N. Kozicki. "Cation-based resistance change memory." *Journal of Physics D: Applied Physics* 46.7 (2013): 074005.

³⁸ Bernard, Y., et al. "Back-end-of-line compatible conductive bridging RAM based on Cu and SiO
2." *Microelectronic Engineering* 88.5 (2011): 814-816.

³⁹ Menzel, Stephan, Ulrich Böttger, and Rainer Waser. "Simulation of multilevel switching in electrochemical metallization memory cells." *Journal of applied physics* 111.1 (2012): 014501.

⁴⁰ Kresse, Georg, and Jürgen Furthmüller. "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set." *Computational Materials Science* 6.1 (1996): 15-50.

⁴¹ Kresse, Georg, and Jürgen Furthmüller. "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set." *Physical Review B* 54.16 (1996): 11169.

⁴² Kresse, Georg, and D. Joubert. "From ultrasoft pseudopotentials to the projector augmentedwave method." *Physical Review B* 59.3 (1999): 1758.

⁴³ Perdew, John P., Kieron Burke, and Matthias Ernzerhof. "Generalized gradient approximation made simple." *Physical review letters* 77.18 (1996): 3865.

⁴⁴ Tsuruoka, Tohru, et al. "Effects of Moisture on the Switching Characteristics of Oxide-Based, Gapless-Type Atomic Switches." *Advanced Functional Materials* 22.1 (2012): 70-77.

⁴⁵ Anderson NL, Vedula RP, Schultz PA, Van Ginhoven RM, Strachan A. First-principles investigation of low energy E' center precursors in amorphous silica. Physical review letters. 2011 May 17;106(20):206402.

⁴⁶ Anderson, Nathan L., et al. "Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica." *Applied Physics Letters* 100.17 (2012): 172908.

⁴⁷ Pandey, Sumeet C., Roy Meade, and Gurtej S. Sandhu. "Cu impurity in insulators and in metalinsulator-metal structures: Implications for resistance-switching random access memories." *Journal of Applied Physics* 117.5 (2015): 054504.

30

⁴⁸ Guzman, David M., Nicolas Onofrio, and Alejandro Strachan. "Stability and migration of small

copper clusters in amorphous dielectrics." *Journal of Applied Physics* 117.19 (2015): 195702.

⁴⁹ Nistor, Razvan A., et al. "A generalization of the charge equilibration method for nonmetallic materials." *The Journal of chemical physics* 125.9 (2006): 094108.

⁵⁰ Verstraelen, Toon, et al. "ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order." *The Journal of chemical physics* 138.7 (2013): 074108.

⁵¹ Dapp, Wolf B., and Martin H. Müser. "Towards time-dependent, non-equilibrium charge-transfer force fields." *The European Physical Journal B* 86.7 (2013): 1-11.

⁵² Dapp, Wolf B., and Martin H. Müser. "Redox reactions with empirical potentials: Atomistic battery discharge simulations." *The Journal of chemical physics* 139.6 (2013): 064106.