Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates †

Joel Troughton,^a Daniel Bryant,^{ac} Konrad Wojciechowski,^b Matthew J. Carnie,^a Henry Snaith,^b David A. Worsley^a and Trystan M. Watson,^{*a}

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXXX 200X DOI: 10.1039/b000000x

Flexible perovskite solar cells with power conversion efficiencies of up to 10.3% have been prepared using titanium foil as an electrode substrate. Our method uses an indium-free transparent counter electrode which allows device performance to remain high despite repeated bending, making it suitable for roll-to-roll processing

During the short time since they were first used to make a functioning photovoltaic device, organic-inorganic lead halide 2 perovskite solar cells have garnered much interest as promis-3 ing light harvesters for highly efficient photovoltaic devices. Kojima *et al.*¹ first presented research into such materials 5 for use in solar cells in 2009 following a liquid electrolyte 6 based dye-sensitised solar cell (DSSC) configuration. Advances followed in 2012 whereby a solid hole transporter was 8 used rather than a liquid electrolyte leading to greater stability 9 and higher overall performance.^{2,3} Since then, perovskite so-10 lar cells have achieved certified power conversion efficiencies 11 (PCEs) in excess of 20%.⁴ In addition to these high efficien-12 cies, the technology has also shown great promise in terms of 13 material availability, cost and ease of processing.^{5,6} Several 14 new methods for depositing the perovskite film have emerged 15 including, vacuum deposition⁷, vapour-assisted processing⁸, 16 sequential deposition of the organic and inorganic compo-17 nents⁹, spray-coating¹⁰ and co-deposition of perovskite and 18 mesoporous scaffold.¹¹ These methods enable many routes 19 to process the perovskite film on a variety of substrates with 20 varying thermal requirements. 21

Typically perovskite solar cells are fabricated on fluorine doped tin oxide (FTO) coated glass as a working electrode substrate. Whilst this material provides excellent thermal and mechanical stability, the bulk and inflexibility associated with

Fig. 1 (a) A schematic representation of a metal mounted perovskite solar cell and associated target layer thicknesses. (b) A photograph of a flexible perovskite solar cell on titanium foil.

glass means roll-to-roll production is not possible. Recently, there have been developments in using ITO (tin doped indium oxide) coated polyethylene terephthalate (PET) as a substrate for perovskite solar cells as well as flexible fibre devices based on carbon nanotubes.^{12–19} Inverted device architectures have demonstrated high efficiencies on ITO/PET substrates where instead of a compact TiO₂ electron acceptor layer, a fully organic PCBM film is used,^{13,18} further enabling lowtemperature fabrication of devices. Devices employing compact TiO₂ layers have reported excellent performance stability after several mechanical bending cycles, with efficiencies dropping as little as 7% below the original value.¹⁷ In fact,

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

^a SPECIFIC - College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP, UK. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX; E-mail: t.m.watson@swansea.ac.uk

^b Photovoltaic and Optoelectronic Device Group, Department of Physics, Oxford University, UK

^c Department of Chemistry, Imperial College London, UK

Energy Environ. Sci., [year], [vol], 1–5 | 1

90

91

Kim et al. showed that the degradation of the device perfor-38 mance by bending was a result of crack formation in the ITO 39 layer rather than the TiO_2 electron selective layer. As an al-40 ternative to ITO/PET metallic foils combine greater mechani-41 cal and thermal stability, low material cost and superior elec-42 trical conductivity. Flexible metal foil based dye-sensitised 43 solar cells (DSCs) were first demonstrated in 2006 by Ito 44 et al.²⁰ and have garnered considerable attention from both 45 academia and industry. These metal foil DSSCs are, in fact, 46 currently manufactured by G24 Power in the UK on a com-47 mercial scale for consumer electronics. In these DCCSs, a 48 PET/ITO counter-electrode above an electrolyte-filled cavity 49 is used, however, the solid-state nature of modern perovskite 50 solar cells requires a different approach. 51

In this work, we present flexible perovskite solar cells using 52 commercially available titanium foil as a substrate onto which 53 the device layers are deposited. For the counter-electrode, we 54 use a transparent, conductive adhesive (TCA) coated laminate 55 prepared ex-situ as demonstrated previously.²¹ This counter-56 electrode eschews the ITO coating in favour of an electrode-57 posited nickel grid which is both cheaper at-scale and more 58 mechanically robust in comparison. We report a PCE of 59 10.3% for a flexible, ITO-free perovskite solar cell using 60 150 µm thick titanium metal foil as a working electrode sub-61 strate. We explore the implications of various conductive in-62 terlayer thicknesses and mechanical bending on device perfor-63 mance. We also examine the implications of thermally grown 64 electron collection layers (TiO₂) produced by heating the tita-65 nium substrate in air. 66

A schematic diagram of the metal foil cell's architecture is shown in Fig. 1(a), with a photograph of a larger device shown in Fig 1(b). The transparent counter-electrode is prepared *exsitu* and laminated to the cell using light finger pressure. The tack quality is provided by an adhesive within the transparent laminate.²¹

Solar cells were prepared on 150 µm thick titanium foil 73 which was polished and cleaned in alcohol before un-74 dergoing an oxygen plasma treatment. A compact layer 75 of TiO₂ was deposited by spin coating and sintered for 76 2 minutes at 50°C. Next, an insulating scaffold of Al₂O₃ 77 nanoparticles was deposited and dried as described else-78 where.²² On top of this, a CH₃NH₃PbI_{3-x}Cl_x precursor 79 solution was deposited by spin-coating and heated for 80 85 minutes at 100°C, followed by 10 minutes at 120°C 81 in order to promote the growth of uniform micron-82 sized perovskite crystal domains. A solution contain-83 ing 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-84 spirobifluorene (spiro-OMeTAD), 4-tert-butylpyridine (tBP), 85 bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) and 86 vanadium pentoxide (V2O5) was spin-coated onto the per-87 ovskite films to form a hole-transport layer (HTL). The addi-88 tion of V₂O₅ in the HTL serves to rapidly oxidise the Li-TFSI 89

in seconds rather than the days normally required in order to reach peak conductivity.²³ An early comparative study of the V₂O₅-doped HTM against Li-TFSI and tBP-only doped HTL is shown in the ESI: Devices were tested within 2 hours of HTL deposition, giving the layer little time to dope in the presence of air. This brief study demonstrated that V₂O₅doped spiro-OMeTAD yields significantly higher fill factors as well as reduces inter-cell variation compared to comparable devices with no V₂O₅. Next, poly(3,4-ethyl- enedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) diluted in 2propanol was spray deposited onto the HTL and dried at 50°C. *Ex-situ*, a flexible counter-electrode laminate was prepared by doctor blading a mixture of PEDOT:PSS and pressure sensitive adhesive onto a PET film embedded with a Ni grid. This film was then cured at 60°C for 15 minutes, followed by 120°C for 5 minutes before consolidation with the metal foil electrodes. Full details of device fabrication and characterisation are provided in the ESI[†].

Fig. 2 Statistical analysis of Current-Voltage data with varying PEDOT:PSS interlayer thicknesses.

We found the largest variations in device performance were as a result of the thickness of the PEDOT:PSS interlayer spraydeposited onto the HTL as illustrated in Fig. 2. This conductive interlayer plays a critical role in transporting charge from the HTL to the small "islands" of PEDOT:PSS within the TCA. Since the TCA contains only around 1.75% PE-DOT:PSS, with the rest being dielectric adhesive material, only a small proportion of the film would be able to transfer charge to the HTL in the absence of a conductive interlayer. These conductive outcrops within the TCA have previously been found to lie 200-300 nm apart²¹, imposing severe current and fill factor limitations when combined directly with spiro-OMeTAD's low conductivity (2×10^{-5} S cm⁻²)²⁴. The PEDOT:PSS interlayer mitigates this issue by providing a conductive lateral pathway to collect charges from the HTL and

^{2 |} Energy Environ. Sci., [year], [vol],–5

Fig. 3 Characterisation of highest performing metal and glass substrate solar cells. (a) Photocurrent density *versus* voltage measurements at 100 mW cm, 0.248 cm² active area. (b) External quantum efficiency spectra of cells. "Forward" measurements indicate illumination through the working electrode whereas "Reverse" indicates illumination through the counter electrode.

transport them to conductive sites within the TCA material, 123 whereupon they are transferred to a highly conductive "high-124 way" in the form of the Ni grid embedded within the PET 125 film. In fact, this conductive interlayer is so effective it can 126 actually draw charge from areas beyond those covered by the 127 counter electrode, making effective active area masking espe-128 cially important in order to obtain accurate photocurrent mea-129 surements. 130

Fig. 2 shows a sharp increase in both J_{SC} and fill factor as 131 the PEDOT:PSS layer is increased from 11 nm to 22 nm, this 132 indicates a critical threshold required to create a continuous 133 layer by spray deposition. It stands to reason that layers be-134 low this thickness threshold are discrete, isolated islands of 135 PEDOT:PSS owing to the small droplets of liquid generated 136 by the spray gun. Low current is a result of this incomplete 137 HTL-to-TCA contact laterally across the cell's surface. Fill 138 factor also suffers as a result of this lower charge extraction 139

capacity. There is also a trend towards decreasing V_{OC} with interlayer thickness which we have attributed to degradation of the Spiro-OMeTAD caused by the small amount of water in the PEDOT:PSS interlayer. The layer thickness is determined by number of spray passes and so a thicker layer is exposed to more water leading to increased degradation. At PEDOT:PSS thicknesses in excess of 22 nm, overall efficiency is reduced on account of dropping J_{SC} : This is a result of light attenuation by a thicker layer of material as the cell is illuminated through the TCA, PEDOT:PSS interlayer and HTL.

Current density versus voltage curves as well as EQE spectra are shown for champion devices in Fig. 3. A control specimen fabricated on FTO glass (7 Ω sq⁻¹, Pilkington) in place of titanium foil is also shown. Since this control device may be illuminated through both the working electrode (glass, denoted as "forward") and counter electrode (PET/TCA, denoted as "reverse"), both illumination directions are shown. It is apparent that both reverse-illuminated glass and metal substrate cells suffer a substantial JSC loss compared to a forward-illuminated glass device, previously observed in reverse illuminated DSSCs.²⁵ The EQE spectra in Fig.3(b) displays a severe cut-off at wavelengths below 400 nm, which is mainly attributed to highly effective ultraviolet filtering by the spiro-OMeTAD layer although the PET/TCA film as well as the PEDOT:PSS interlayer also play roles in this attenuation. A layer-by-layer transmission spectra is shown in the ESI[†] which verifies the origin of these losses as due to light attenuation. There is a slight increase in J_{SC} in the metal substrate device compared to the reverse-illuminated glass control which we attribute to a small degree of back reflection by the metallic substrate, yielding a light harvesting improvement not present in glass devices. A reflectance comparison is shown in the ESI[†] which shows an increase in reflection of up to 80% in the visible region of the spectrum in the case of titanium foil compared to c-TiO₂ coated FTO glass.

Bend cycle testing was also performed on devices: In this test, a cell was repeatedly manually deformed around a circular mould with a radius of 5 cm at a frequency of 1 Hz. The results of this test can be seen in the ESI†; after 200 bend cycles, the device's PCE was found to have dropped by less than 7%, mainly as a result of fill factor degradation which we attribute to cracking and delamination of the PEDOT:PSS/TCA interface within the cell. V_{OC} and J_{SC} remained remarkably consistent over the course of this test, proving that both the compact-TiO₂ and perovskite layers remain intact during mechanical deformation. This performance stability with deformation demonstrates the suitability of perovskite solar cells on metal foils for roll-to-roll production, where the bend radius is likely to be much larger, and so, less severe, than the 5 cm used in this experiment.

A selection of devices were measured using transient photovoltage (TPV) decay experiments, using the apparatus and

Fig. 4 Recombination lifetimes, measured by transient photovoltage decay, of a selection of metal and glass mounted devices

methods outlined by Barnes et al.²⁶ We observed that metal 192 and glass mounted devices incorporating the flexible TCA 193 electrode exhibit different TPV decay behaviours than those 194 devices with evaporated Au contacts. In previous TPV ex-195 periments using Au evaporated counter electrodes we have 196 identified multi-exponential decays indicating the possibility 197 of more than one recombination process²⁷. Conversely we 198 have found that TCA-laminate devices exhibit almost exclu-199 sively mono-exponential decays (see Fig. 4) even though the 200 transient photovoltage, ΔV was of a similar value (~10 mV) 201 when measuring both types of device architectures. This be-202 haviour is as yet, unexplained and is the focus of ongoing re-203 search. The mono-exponential decay however, does have an 204 advantage in that the TPV decays are simple to model us-205 ing a 1st-order exponential decay function delivering a sin-206 gle time-constant. Fig. 4 shows the TPV decay data for two 207 metal mounted devices and a glass mounted devices mea-208 sured in both forward (illuminated through the photoanode) 209 and reverse (illuminated through the laminate counter elec-210 trode) illumination. Metal mounted devices incorporating a 211 spin-coated c-TiO₂ layer exhibit significantly slower recombi-212 nation than their glass counterparts. This is thought to be due 213 to a secondary c-TiO₂ layer forming due to oxidation at the 214 surface of the Ti foil during the thermal treatment of the sub-215 strate after the deposition of the c-TiO₂ precursor. This is re-216 flected in the higher VOC observed in metal-based devices over 217 that of glass devices, fabricated at the same time and using the 218 same materials. Proof that a thermally grown c-TiO₂ can act 219 as an effective electron transport layer has been obtained by 220

fabricating working devices on Ti foil, heat treated without prior deposition of a c-TiO₂ precursor. Although photovoltages are low in these devices due to very fast recombination (Fig. 4), these thermally grown c-TiO₂ layers were not optimised in any way leading to the possibility of effective c-TiO₂ layers being grown in *in situ* on Ti foils prior to deposition of the perovskite precursor solution.

Fig.4 shows recombination data for two efficient metal mounted devices, one with an optimised PEDOT:PSS interlayer, and one with a thicker interlayer. It is interesting to note the increase the rate of recombination of the device with the thicker interlayer reflects the drop in voltage observed in Fig. 2 which we have attributed to degradation of the Spiro-OMeTAD. This degradation appears to have enabled faster recombination resulting in the lower voltages seen in Fig. 2 Since metal mounted devices are illuminated through the counter electrode (effectively in reverse) it is useful to compare with glass devices, also illuminated in reverse. The use of the transparent laminate provides an intriguing opportunity to measure the influence of reverse illumination whereby in a conventional cell architecture, incorporating an opaque Au contact, this is not possible. When comparing the recombination data of the same device illuminated from different sides it is interesting to note that recombination is slightly faster (for a given V_{OC}) when illuminating through the counter electrode side. This could indicate an additional interfacial recombination mechanism at the perovskite/HTM interface as, in reverse illumination, charge carriers are generated closer to the perovskite/HTM interface which could lead to an increased chance of recombination. However, since the TPV decays in these devices show monoexponential behaviour, it is likely that only one recombination mechanism dominates in these devices. Due to the order of magnitude difference in recombination lifetime between the device with the thermally grown c-TiO₂ layer and the device with the spin coated c-TiO₂ layer, it appears that interfacial recombination at the c-TiO₂/perovskite interface is the dominant recombination mechanism and so is a significant contributor to voltage losses in these devices. The small difference in recombination lifetimes observed when illuminating the FTO glass/laminate device from different directions is the subject of continuing research but may be due to the difference in electron and hole diffusion lengths reported elsewhere.28

In summary, we have demonstrated the first solution processed flexible organic-inorganic lead halide perovskite solar cells to be produced on a metallic foil substrate. Such devices have yielded PCEs of 10.3% and exhibit minimal performance degradation in spite of repeated bend cycles. A new PEDOT:PSS interlayer within the device has been optimised and was found to dramatically affect both the J_{SC} and fill factor of solar cells. In addition, we have identified by transient photovoltage decay, that recombination at c-TiO₂/perovskite interface is the dominant recombination mechanisms in these

devices, and have identified sources of optical attenuation as a result of the "reverse" illumination direction employed. Although this communication has focused on devices with a discretely deposited c-TiO₂ layer, there exists an exciting opportunity to optimise Ti foil devices with "self-grown" electron collection layers grown through thermally-induced oxidation of the substrate. Such devices would likely prove far easier

to produce on a large scale due to the removal of a precisionlayer deposition step.

283 References

- 1 A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, *Journal of the Ameri- can Chemical Society*, 2009, **131**, 6050–6051.
- 2 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith,
 Science, 2012, **338**, 643–647.
- 3 H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J.
 Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel and N.-G.
 Park, *Sci. Rep.*, 2012, 2, year.
- 291 4 http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
- 5 Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang,
 J. Wang and S. Yang, *Energy Environ. Sci.*, 2014, 7, 3326–3333.
- 6 P.-Y. Chen, J. Qi, M. T. Klug, X. Dang, P. T. Hammond and A. M. Belcher,
 Energy Environ. Sci., 2014, **7**, 3659–3665.
- 296 7 M. Liu, M. B. Johnston and H. J. Snaith, *Nature*, 2013, **501**, 395–398.
- 8 Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu,
 G. Li and Y. Yang, *Journal of the American Chemical Society*, 2014, 136,
 622–625.
- 9 J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K.
 Nazeeruddin and M. Gratzel, *Nature*, 2013, **499**, 316–319.
- A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley
 and D. G. Lidzey, *Energy Environ. Sci.*, 2014, 7, 2944–2950.
- M. J. Carnie, C. Charbonneau, M. L. Davies, J. Troughton, T. M. Watson,
 K. Wojciechowski, H. Snaith and D. A. Worsley, *Chem. Commun.*, 2013,
 49, 7893–7895.
- P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, *Nat Commun*, 2013, 4, 2761.
- 309 13 J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen,
 S. Lu, Y. Liu, H. Zhou and Y. Yang, *ACS Nano*, 2014, 8, 1674–1680.
- 14 M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P.
 Boix and N. Mathews, *Chem Commun*, 2013, 49, 11089–11091.
- 313 15 D. Liu and T. L. Kelly, Nat Photonics, 2014, 8, 133–138.
- 16 J. W. Jung, S. T. Williams and A. K.-Y. Jen, *RSC Adv.*, 2014, 4, 62971–
 62977.
- B. J. Kim, D. H. Kim, Y.-Y. Lee, H.-W. Shin, G. S. Han, J. S. Hong,
 K. Mahmood, T. K. Ahn, Y.-C. Joo, K. S. Hong, N.-G. Park, S. Lee and
 H. S. Jung, *Energy Environ. Sci.*, 2015.
- 18 C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin and H. J. Bolink, *Energy Environ. Sci.*, 2014, 7, 994–997.
- L. Qiu, J. Deng, X. Lu, Z. Yang and H. Peng, Angewandte Chemie International Edition, 2014, 53, 10425–10428.
- S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeerud din, P. Pechy, M. K. Nazeeruddin and M. Gratzel, *Chem. Commun.*, 2006,
 4004–4006.
- 21 D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M., M. Davies,
 K. Wojciechowski, H. J. Snaith, T. Watson and D. Worsley, *Advanced Materials*, 2014, 26, 7499–7504.
 - This journal is © The Royal Society of Chemistry [year]

- 22 J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, *Energy Environ. Sci.*, 2013, **6**, 1739–1743.
- 23 E. Pat., EP2596509 A2, 2013.
- 24 T. Leijtens, I.-K. Ding, T. Giovenzana, J. T. Bloking, M. D. McGehee and A. Sellinger, *ACS nano*, 2012, **6**, 1455–1462.
- 25 M. Carnie, T. Watson and D. Worsley, *International Journal of Photoenergy*, 2012, 2012, 1–9.
- 26 P. R. F. Barnes, K. Miettunen, X. Li, A. Y. Anderson, T. Bessho, M. Gratzel and B. C. O'Regan, *Advanced Materials*, 2013, 25, 1881– 1922.
- 27 M. J. Carnie, C. Charbonneau, M. L. Davies, B. O. Regan, D. A. Worsley and T. M. Watson, *J. Mater. Chem. A*, 2014, **2**, 17077–17084.
- 28 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, *Science*, 2013, 342, 341–344.