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Smartphones as a platform for molecular analysis:
concepts, methods, devices and future potentialf

Daina V. Baker, @j; Jasmine Bernal-Escalante,f Christine Traaseth,i Yihao Wang,
Michael V. Tran, Seth Keenan and W. Russ Algar@*

Over the past 15 years, smartphones have had a transformative effect on everyday life. These devices also
have the potential to transform molecular analysis over the next 15 years. The cameras of a smartphone,
and its many additional onboard features, support optical detection and other aspects of engineering an
analytical device. This article reviews the development of smartphones as platforms for portable chemical
and biological analysis. It is equal parts conceptual overview, technical tutorial, critical summary of the state
of the art, and outlook on how to advance smartphones as a tool for analysis. It further discusses the
motivations for adopting smartphones as a portable platform, summarizes their enabling features and
relevant optical detection methods, then highlights complementary technologies and materials such as 3D
printing, microfluidics, optoelectronics, microelectronics, and nanoparticles. The broad scope of research
and key advances from the past 7 years are reviewed as a prelude to a perspective on the challenges and
opportunities for translating smartphone-based lab-on-a-chip devices from prototypes to authentic
applications in health, food and water safety, environmental monitoring, and beyond. The convergence of
smartphones with smart assays and smart apps powered by machine learning and artificial intelligence
holds immense promise for realizing a future for molecular analysis that is powerful, versatile,
democratized, and no longer just the stuff of science fiction.

Contemporary “lab on a chip” (LOC) devices'™ hold
promise for a future with portable molecular analyses but are

At their time of first release, many classic works of science
fiction imagined ambitious and powerful technologies:
computers that accepted commands and returned
information verbally; handheld devices that processed reams
of data on demand; wearable devices for long-range wireless
communication; augmented reality eyewear; artificial
intelligence that predicted needs and preferences; and
portable scanners that measured electromagnetic radiation,
vital signs, and molecular composition. Here and now, in the
real world, most of these capabilities are genuine features of
smartphones, smartphone-linked peripherals, and apps and
online tools accessible via smartphone. A notable exception is
the scanning of molecular composition, which is neither a
capability nor a realistic near-future expectation for
smartphones. Nevertheless, smartphones are increasingly
useful as detection and readout platforms for assays and
sensors that do provide molecular information.
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nonetheless more aspirational than realized. Microfluidics
have done much to advance the LOC concept—including
methods for the automation of fluid handling, reduction of
sample and waste volumes, faster analyses, precision in
mixing, and other benefits from miniaturization—but a key
challenge lies beyond the chip, where many microfluidic
systems require peripheral equipment for their operation and
for the detection of analytes. Examples of such equipment
include pumps, pressure generators, power supplies, voltage
sequencers, temperature controllers, light sources,
microscopes, photodetectors, potentiostats, and other
hardware for optical and electrochemical detection. There is
a push toward passive microfluidics that eliminate
pumping,* and rapid progress in microelectronics has helped
to scale down and lower the cost of hardware, but further
reductions in the size, cost, and complexity of off-chip
components are still needed.” LOC systems that require
specialized laboratory equipment for their operation are not
logistically different than a traditional benchtop analysis.
Laboratories and their specialized equipment are
principally located in populous and well-resourced urban
centres. These facilities tend to be poorly accessible or
inaccessible to residents of rural and remote communities,
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who represent an underserved 45% of the current global
population.”” Moreover, laboratory facilities either do not
exist at field sites or, when pop-up infrastructure is possible,
are necessarily limited in their resources. Examples of field
sites where molecular information has high value include
sites suspected of a disease outbreak, sites suspected of
environmental contamination, farms for agriculture and
aquaculture, biomanufacturing plants, workplaces with
potential for unsafe conditions, and frontiers of scientific
exploration such as the ocean depths and outer space. Even
when lab facilities are available in urban centers, restrictions
on budget and throughput may hinder the implementation
of analyses at the desired scale or frequency—something that
is often the case for personalized medicine, environmental
surveillance, food and water testing, and process monitoring
in manufacturing. Although largely beyond the scope of this
review, science education also faces challenges with the costs
and access limitations associated with sophisticated scientific
instruments and facilities.>® In short, there are numerous
unmet needs for LOC technologies that offer rapid and
quantitative chemical and biological analysis, straightforward
and lab-free operation, multitasking between more than one
type of analysis, and democratization in the form of being
able to be built, distributed, maintained, and utilized without
substantial financial or other barriers.

A convergence of microfluidics and many other
technologies will be required to create LOC devices and
assays that translate to society and industry with global
impact. These enabling technologies will originate from
electronics, materials science, biotechnology,
electrochemistry, optics, photonics, data science, and other
fields of research and development. Of course, such a
scope is too broad for a single review. Instead, this review
focuses on the emergence of smartphones as an enabler of
LOC, point-of-care, point-of-need, and other portable
devices for chemical and biological analyses. Smartphones
already integrate numerous technologies and thereby
represent a shortcut to the convergence needed for
translatable LOC systems. The review begins by discussing
the motivation for adopting smartphones as a portable
analysis platform, summarizes their potentially useful
features, and highlights technologies and materials that are
complementary to those features. It then provides a short
tutorial on optical detection methods with a singular focus
on use of the smartphone camera. A meta-analysis is
presented as a preamble to a categorical and critical
summary of the recent literature, including examples of
how microfluidic platforms have been advantageously
paired with smartphone-based devices. The review closes
with a perspective on challenges and opportunities for
research and development that will advance the technology
from prototypes to authentic tools for molecular analysis.
When the global ubiquity and ease of use of smartphones
are achievements that LOC technologies aspire to emulate,
why not leverage the technology of smartphones to help
reach that goal?

This journal is © The Royal Society of Chemistry 2025
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2. Why smartphones?
2.1 A global technology

Smartphones are ubiquitous in many parts of the world and
global penetration is projected to increase. The number of
mobile subscriptions is more than 8B and the number of
smartphone users varies from >80% to <30% between
countries, with greater penetration in wealthier nations.'®"!
An estimated 54% of the world's population owns a
smartphone,'> and this number increases to ~70% when
basic mobile phones (sometimes called “dumbphones”) are
included. Mobile networks of varying technology level are
available to 95% of the world's population, with 5G coverage
available to 45%."% To a large extent, modern society has
reorganized around the capabilities and pocket presence of
smartphones. Middle-income countries are already poised to
adopt and deploy mobile devices as alternatives to
centralized and costly laboratory facilities."* There is a
trajectory, capacity, and motivation for smartphones to be a
truly global technology in the near future.

2.2 Market size

Mobile technologies and services generated 5% of the global
gross domestic product (GDP) in 2022."° One of the reasons
that smartphone technology advances so quickly is its
economy of scale. Annual sales have exceeded 1.3 billion
smartphones since 2015 and represent a $500 billion USD
market.'® This market size enables the cost of innovation to
be amortized across many consumers. Device costs range
from $100 to $1200 USD, which are far lower than would be
possible with a small market size. Although some of the high
purchase price for scientific instruments is attributable to
sophistication, much of the price still arises from the need to
recover development and manufacturing costs (and profit)
from a small customer base. Chemical and biological analysis
technologies that leverage mass-produced consumer
electronics will be able to have lower purchase costs, more
robust supply chains, and more accessible repair options
than bespoke instruments.

2.3 Integrated package

Smartphones are built to be a complete and integrated
technological package (Fig. 1) with seamless and intuitive
utilization of their numerous features by users. That is not
the case for two other technologies adopted for portable
analytical device development: microcontroller units (MCUs;
e.g. Arduino) and single-board computers (SBCs; e.g.
Raspberry Pi).

For a similar set of capabilities, smartphones will better
minimize size and weight than custom MCU or SBC devices.
Of course, the cost for this benefit is a higher purchase price,
a closed hardware system that limits customization, and
barriers to replacing individual components rather than the
whole device. It contrast, MCUs and SBCs are inexpensive
and are designed to be modular and enable custom

Lab Chip, 2025, 25, 884-955 | 885
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Fig. 1 Features of a modern smartphone and the potential utility of

those features for developing devices for chemical and biological analysis.

Aspects of the camera hardware and software-based camera control are also highlighted. The examples of hardware specifications for
smartphones in three price ranges were collected from a sampling of 27 models released between 2022-2024. Specifications were from vendor

websites and online consumer guides. Sensor size is expressed using
equivalent sensor size (i.e. 16 mm diagonal, 4:3 aspect ratio). A smalle

the industry standard notation: a fraction of a one-inch video camera tube
r value for x in 1/x” is a larger sensor size. Pixel size was estimated from the

sensor size and the total number of pixels: the dimension provided is the square root of the maximum possible area of each pixel.

applications. The open-source options for MCUs and SBCs

3. Technical features of smartphones

are also beneficial for democratizing and advancing the

technology,'” >

global ubiquity of smartphones.

The technical features (vide infra) and form factors of

albeit countered by the aforementioned

Smartphones have numerous components and features
(Fig. 1) that are directly useful for measurements or otherwise
support the operation of a portable analytical device.”®*”

smartphones are also unmatched. As such, common trade-
offs for developing analytical devices around MCUs and

SBCs include lower from

components,

performance

curve of reengineering features that are

health insights from machine learning (ML) and artificia
intelligence (AI).
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lower-cost
loss of benefits from the scale of the
smartphone market, the need for external power and user
interfaces, and the time, effort, expense, and learning
already
prepackaged in a smartphone. A smartphone is a more
rugged and user-friendly platform, and its many integrated
sensors are generally superior to the external options for
MCUs and SBCs. Lastly, smartphones will best facilitate
the integration of analytical devices and assay outcomes
with electronic information systems. These systems are, for
example, of ever-growing importance for the delivery of
health care, and are a source of big data for gaining new

3.1 Cameras

Cameras are one of the most heavily marketed and fastest
advancing optoelectronic components of a smartphone.
Contemporary smartphone models feature multiple camera
systems, where each system includes fit-for-purpose lenses,
color filters, a CMOS image sensor, and a processing unit
that amplifies, digitizes, and processes the sensor data into a
digital image (Fig. 2A and B). The specifications that
characterize the cameras are summarized in Fig. 1.

The CMOS image sensor generates data from an array of
millions of photodetector elements, each corresponding to
an individual pixel. More pixels per image sensor improves
the nominal resolution, but does not necessarily improve
1 image quality due to the smaller amount of light per pixel.
Modern smartphones are now compensating with camera

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4lc00966e

Open Access Article. Published on 07 lutego 2025. Downloaded on 12.02.2026 17:32:59.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Lab on a Chip

A Modules B Components

e

£ external
™ lenses
@

& /&/ IR blocking
= ‘ filter

]

microlens
array

color filter
array

CMOSs
sensor

iPhone 15

Fig. 2

View Article Online

Critical review

Image Channels

D

E Camera Sensitivity
[0
12}
| =1
o
Q.
7]
Q
&
[0
2
©
T
&
. 400 560 660 700

quad-Bayer

Wavelength (nm)

Important technical components of a smartphone camera. (A) Examples of the exterior view of smartphone camera modules (marked with

arrows). (B) Simplified general design of the camera module. (C) Typical arrangements of the Bayer and quad-Bayer color filter arrays (CFAs). (D)
An RGB test image decomposed into the corresponding R, G, and B channel images. (E) Typical relative spectral responses of the smartphone
camera's R, G, and B color channels. The solid lines in panel E represent the average response across 13 different models and 4 manufacturers of
smartphones; the shaded regions reflect the highest and lowest responses at a given wavelength. The response data is from Tominaga et al.?®

modules that offer pixel binning and one of the multiple
camera modules having a larger sensor and pixels.

An infrared (IR)-blocking filter and a Bayer mosaic or
similar color filter array (CFA) of red, green (x2), and blue
(RGGB) filters are applied over the image sensor to enable
color imaging (Fig. 2C and D). A few smartphone camera
models were produced with modified CFAs that substituted
yellow (Y) pixels for green pixels (i.e. RYYB), added non-
selective white (W) pixels (i.e. RGBW), or were monochrome
(no CFA), all with the goal of higher light capture in non-
scientific photography. For otherwise similar sensor
specifications, a study found that a monochrome sensor
measured a fluorescence signal that was more than double
the signal measured with a color sensor.”® For many
smartphones, a quad-Bayer array (Fig. 2C) improves
performance at low light levels by supporting pixel binning.
To date, the smartphones adopted for portable analyses
have almost exclusively had RGB color filters. Most
spectroscopists and microscopists would characterize these
filters as poor by scientific standards because the
transmission spectra overlap and lack a flat top (Fig. 2E).
These limitations inform how to optimally use a
smartphone camera for optical detection.

Video rates for smartphone cameras range from 24 fps
(standard video rate) up to 3840 fps (see Fig. 1). Resolution
typically decreases as frame rate increases, but high-end
smartphones will support high-definition resolution (720 p or
1080 p) even at hundreds of frames per second. Light capture
also decreases as frame rate increases.

3.2 Flashlight

The “flashlight” or “torch” associated with the smartphone
camera is another useful component. It is approximately
white-light emitting (Fig. 3) and is most often based on the
combination of a blue-emitting LED and a phosphor.

This journal is © The Royal Society of Chemistry 2025

The flashlight is a wuseful illumination source for
spectroscopic and imaging applications. Peripheral devices
with mirrors, optical fibers, and diffusers have been used to
direct white light from the flashlight for a variety of
brightfield measurements and imaging,*°>’ but direct
illumination from the flashlight has also been satisfactory for
many applications and devices. Other devices have used

A Modules
© Te]
a2 2

o

Flash output spectrum

Relative Intensity

550 650 750

Wavelength (nm)

350 450 850

Fig. 3 Smartphone flashlight (or torch). (A) Examples of the exterior
view of smartphone flashlight modules (marked with arrows). (B)
Typical flashlight output spectrum. The solid line in panel B represents
the average output spectrum from the flash across 18 different models
and 3 manufacturers of smartphones; the shaded regions reflect the
highest and lowest output at a given wavelength. The data in panel B
was measured for this review.
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optical filters to transmit only the blue light from the
flashlight for excitation of fluorescence that is imaged in the
R and G channels of the camera,*®**" and transmit only red
light for SPR measurements."***

3.3 Display

Almost every contemporary smartphone has a touchscreen
display, where each display pixel comprises red, green, and
blue (RGB) sub-pixels that emit that color of light (Fig. 4). As
little as ten years ago, most smartphones had liquid crystal
displays (LCD) displays. This technology is based on a white
back light and each sub-pixel utilizes polarizers and a color
filter to transmit only R, G, or B wavelengths with intensities
controlled by voltage actuation of liquid crystals. At present
and for the foreseeable future, organic light-emitting diode
(OLED) displays are the predominant technology. Each pixel
is made up of R, G, and B sub-pixels (i.e. OLEDs) that emit
that color of light directly (Fig. 4B and C). Until recently,
OLED displays also incorporated linear polarizers and
quarter-wave plates to eliminate reflection of ambient light,
but some contemporary displays no longer require these
components and thus have better efficiency and higher
maximum brightness.

In principle, the smartphone display is another source of
light for spectroscopy and imaging experiments. The display

A L Display RGB output spectra
?- E play put sp
W= > B G R
02 |3
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I o
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Wavelength (nm)
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Google Pixel 6 Samsung Galaxy S22 Ultra Apple iPhone 13

Fig. 4 Smartphone OLED displays. (A) Example of the exterior view
of a smartphone display. (B) Typical output spectra of the R, G, and
B sub-pixels of smartphone displays, and the combined “white
light” output. The solid lines in panel C represents the average
display output spectra across 18 different models and 3
manufacturers of smartphones. The shaded regions reflect the
highest and lowest output at a given wavelength. (C) Micrographs
of displays showing diamond sub-pixel patterns that are common
with contemporary smartphone models. The dashed line marks one
full pixel. The scale bar is 3.5 um. The data in panels B and C were
measured for this review.
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has, for example, been used as a source of red light for surface
plasmon resonance (SPR) measurements,*® a source of blue
light for excitation of fluorescence (albeit still in combination
with a bandpass filter),”” and as a source of white light for
brightfield,*® phase contrast,” and darkfield imaging.”” A
non-smartphone OLED display unit has also been used for
multimodal imaging with a smartphone camera, suggesting
similar capability for a smartphone display.’® Potential
drawbacks of the smartphone display as a light source include
a lower intensity than other options and only three pseudo-
monochromatic color choices. The spectrum of white light is
also non-uniform, although this limitation equally applies to
an external white-light LED. Benefits of the display as a light
source include the elimination of a component external to the
smartphone and the configurability of illumination, the latter
of which has been leveraged to enable photochemistry in an
array format.>"

3.4 Other light-based sensors

Most smartphones have proximity sensors, biometric sensors,
and ambient light sensors (ALS), among other sensor types.
Proximity sensors use reflected IR light to measure the
distance from an object. This feature is used, for example, to
turn off the smartphone display when held to a user's ear
during a call. Some smartphones include sensors for light
detection and ranging (LiDAR) or other time-of-flight (ToF)
measurements based on reflected IR light. These features are
for the purposes of facial recognition, distance
measurements, and supporting augmented reality apps.
Although largely untapped for molecular analysis, a study has
shown that a smartphone LiDAR sensor is able to measure
the viscosity of a liquid droplet, with the potential to analyze
blood coagulation and the fat content in milk.*> Smartphone
LiDAR has also been proposed for monitoring patient
movements.>®

For biometrics, many smartphone-integrated fingerprint
scanners operate based on capacitance or ultrasound
imaging, whereas others use a combination of capacitive and
optical readout via reflected IR light. Imaging reflected IR
light is also the basis for iris recognition on some
smartphones. These sensors are not anticipated to be directly
useful for molecular analyses, but are a potential means of
linking measurement data to relevant identifiers (e.g. patient,
analyst) and for data security.

ALS have spectral responses that approximate the
photopic response of the human eye. The sensor response is
often used to automatically adjust display brightness and
apps are available to measure light intensity quantitatively
via the ALS. Although this sensor has some latent ability for
imaging,” the capability is far from practical for molecular
analyses. To date, the main analytical application of the ALS
is non-imaging smartphone-based photometry, where the
ALS has a larger dynamic range and bit depth than the
smartphone camera. Cuvette-accommodating smartphone
attachments have been developed to use the ALS to assess

This journal is © The Royal Society of Chemistry 2025
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bacterial growth via measurements of turbidity,”® to measure
enzyme activity and inhibition by heavy metals through a pH
indicator dye,* and to quantify Cr®" (aq) in water samples
through a chromogenic chelator.”® Smartphone ALS-based
devices have also been developed for quantitative analysis of
colorimetric ~ dipstick®” and lateral flow assays®® for
organophosphate pesticides, and for lateral flow tests of wild-
type pseudorabies virus infection,” blood bilirubin levels,*
prostate-specific antigen (PSA) in patient blood,*" and
ampicillin residue in animal milk.®*

Multi-channel sensors that measure both the color and
intensity of ambient light are the latest generation of ALS
technology. These sensors enable automatic adjustment of
color temperature for smartphone photography and device
displays. This capability will support more robust
colorimetric assays under ambient light and help minimize
the number of peripheral components (e.g. box, specific
light source) needed for reliable smartphone-based
measurements.

3.5 Non-optical sensors

Most smartphones include non-optical sensors such as an
accelerometer, gyroscope, other orientation and motion
sensors, and a magnetometer/geomagnetic field sensor.
Collectively, these components provide information about
position and movement of a smartphone, and have roles in
image stabilization, but are otherwise not anticipated to have
direct application to molecular analyses. Every smartphone
also has at least one built-in microphone, which is potentially
useful for attaching verbal notes to measurement data,
monitoring breathing,>** and, speculatively, has latent
potential for photoacoustic detection for assays. A database
of smartphone sensors has been established to support the
physical phone experiments (phyphox) education project.®®

3.6 Battery

Smartphone batteries are lithium-ion technology and store
up to 4000-6000 mAh of rechargeable energy. The batteries
can power not only the phone but also peripheral
components and devices. In most cases, up to 10 W of power
(5.0 V DC potential and a current up to 2.0 A) can be drawn
from the nominal charging port (e.g USB-C) of the
smartphone. This power is sufficient to operate many LEDs,
laser diodes, and electric motors, meaning that smartphone-
based devices do not necessarily need a separate power
supply for components external to the phone. In principle,
voltage and current can also be drawn from audio jacks (e.g.
tip-ring-ring-sleeve, TRRS). These connectors are increasingly
scarce with smartphones and may not reach the same voltage
and current levels as a USB-C port. In addition, consumer
demand for on-the-go charging of smartphones has led to
the mass commercialization of portable power banks that are
also useful as a power source in a portable device. Power
banks have the potential to provide higher voltages (5-20 V)

This journal is © The Royal Society of Chemistry 2025
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and currents (up to 5 A), and have longer operating capacities
(=10 000 mAh) than the batteries built into smartphones.

Despite the capability of the smartphone battery to power
external components, most smartphone-based analytical
devices still incorporate separate batteries (e.g. 1.5 V AA size,
9 V PP3 size) for this purpose. In some cases, these external
batteries provide more direct access to a higher voltage (no
need for a voltage converter in a circuit) or current, or might
usefully extend the operating time of the smartphone device
between recharges (i.e. less drain on the smartphone battery).
In other cases, the use of external batteries is a preference for
prototyping with no significant functional advantage over the
smartphone battery. In both cases, downstream circuit
components can modify the electrical output to what is
required for an application.

3.7 Wireless connectivity

Most smartphones include technologies for medium-range
and short-range (e.g. Bluetooth, near-field communication/
NFC) connections and data transmission with other enabled
devices in close proximity. These modalities have utility for
connecting to and controlling device components external to
the smartphone, helping to mitigate any limitations
associated with the single physical port on a smartphone.

Smartphones also transmit data globally through Wi-Fi
and cellular networks based on LTE (long term evolution)
and other standards categorized as 3G, 4G, and 5G. For
applications in some low resource settings, smartphone-
based analytical devices will need to be fully functional in the
absence of a network connection (although satellite
connectivity for data transmission is reasonably anticipated
for smartphones in the future). Connectivity adds processing
and storage capacity via cloud services and makes support
from human expertise accessible around the globe.

An on-board global positioning system (GPS) and other
location services are available to tag data with geographical
and temporal information—features that are especially useful
for documenting field-based  measurements. Most
smartphones use assisted (or augmented) GPS (A-GPS) in
normal operation, but do contain GPS receivers that function
in the absence of cellular service or network connectivity.

3.8 Computation, memory and operating systems

Most contemporary smartphones have tens or hundreds of
gigabytes of storage, gigabytes of memory (i.e. RAM), and
gigahertz processors—technical specifications that are on par
with or better than the minimum requirements that have
operated laboratory instruments for decades. Even without
considering opportunities for cloud computing, smartphone
technology is capable of handling the data acquisition and
processing needed for many spectroscopic and imaging
applications, and some modest implementations of ML and
AT algorithms for data analysis.

Smartphones run operating systems (OS) to connect
hardware with apps. The two dominant OS are Android
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(~71% of the global market) and iOS (~28%).°® Most
researchers adopt Android devices due to the larger market
share, and for the more open and flexible ecosystem for app
development and distribution. Nonetheless, there are concerns
that Android is moving toward a more closed system with
increasing reliance on proprietary software and a closed-source
version of Android from Google. A closed system like iOS has
potential advantages in terms of security and privacy, seamless
integration with other devices (e.g. desktop and notebook
computers, tablets), and a smaller number of smartphone
models with which an app needs to be compatible. Although
some researchers code their own apps for smartphone-based
measurements, there are pre-existing apps that support
research and development. Examples include native and third-
party apps that provide users with substantial manual control
over camera settings for photography (vide infra), mobile
development apps for MATLAB and Python, and support for
integration of these codes into custom Android or iOS apps
written in Android Studio or Apple Xcode integrated
development environments (IDEs).

4. Complementary technologies

On its own, a smartphone is sufficient hardware for only
some assays—colorimetric detection being the most frequent
example. For other assays, such as those based on
fluorescence, a smartphone needs support from external
components. There are several technologies that have a
recurring role in supporting smartphone-based devices and

assays.

4.1 3D printing

Three-dimensional (3D) printing fabricates objects through
successive deposition of layers of material.®”*® This rapidly
proliferating technology is democratizing prototyping via
simple-to-operate and consumer-affordable desktop printers.
Although there are many classes of 3D printing, the two most
relevant classes are fused deposition modelling (FDM)/fused
filament fabrication (FFF) printers and photopolymerizable
resin-based printers.

FDM/FFF printers are available at low to modest cost
($200-5000) and offer print resolution >0.2 mm, reasonable
print speeds, potentially large build areas, and printing
materials such as acrylonitrile butadiene styrene (ABS) and
polylactic acid (PLA). These printers have been widely
adopted for fabricating the housing of smartphone-based
devices, as well as holders, mounts, and supports for optical
components, circuit boards, and other peripheral
components.

Photopolymerizable resin-based 3D printers are available
in stereolithography (SLA), digital light processing (DLP), and
masked stereolithography (MSLA; also known as LCD)
varieties that use epoxy, acrylic and methacrylic monomers.
The purchase prices are similar to FDM/FFF printers.
Although post-processing such as UV curing and solvent
washes are sometimes needed, the prints are macroscopically
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smooth, watertight, robust, and (for colorless resins) semi-
transparent. The technology is suitable for the fabrication of
watertight flow cells and making molds for the soft-
lithographic preparation of microfluidic chips.”””’* Lenses
can also be fabricated but will tend to require post-print
smoothing by sanding or coating procedures to obtain
sufficient transparency for practical use.”*”*

Collectively, a smartphone, an FDM/FFF 3D printer and
filament, a photopolymerization 3D printer and resin, and
some basic tools (e.g. sandpaper, knife, rotary tool and bits)
have the potential to function as a near-complete kit for
prototyping or maintaining a smartphone-based analytical
device. Depending on the measurement modality and assay
designs, some additional kit may also be warranted: light
sources (e.g. LEDs), electronic components (e.g. wire,
resistors, connectors, solder, soldering iron), simple optical
components (e.g. lenses, mirrors, colored filters), mild
solvents (e.g. isopropyl alcohol), and simple plasticware (e.g
tubing, syringes). Although these resources are not household
items and not without cost, they are realistic and common
for professional and at-home workshops to stock and utilize.
Examples of LEGO®-based smartphone devices,”®””
including with deep-learning-based computer vision, further
show that analytical function is not predicated on
sophisticated hardware external to the smartphone.

4.2 LEDs and laser diodes

Light-emitting diodes (LEDs) are ubiquitous in consumer
electronic devices and have small sizes, low cost ($0.25-100
USD), and long operating lifetimes (>10* h), making them an
ideal peripheral light source for many smartphone-based
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Fig. 5 LEDs and laser diodes. Examples of emission spectra of LEDs
(top) and laser diodes (bottom) superimposed on the average spectral
responses of the smartphone camera RGB color channels (dotted
lines). The insets show images of LEDs and beams from laser diodes.
Some digital adjustment of color was made to these images to mimic
the appearance to the human eye. LED and laser diode spectra were
plotted from publicly available vendor data (ThorLabs) for commercial
products.
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devices. LEDs with broad-spectrum “white light” emission
(similar to a smartphone flashlight) and with nominally
monochrome emission (FWHM of 20-70 nm; Fig. 5) from the
UV through near-IR regions of the spectrum are available
with milliwatt scale powers. With the exception of UV and
some violet LEDs, the frequent trade-off for the lower cost of
an LED is the loss of access to some or all of the bandwidth
of an imaging RGB color channel due to the long-pass optical
filter needed to block stray LED light. The inclusion of a
narrow bandpass excitation filter in a design mitigates this
disadvantage at the cost of lower excitation intensity.”®%°

Laser diodes are also components in consumer devices
(e.g. optical drives, laser pointers, barcode readers, 3D
printers, laser printers) and are available at low to high cost
($10-1000) with small size, milliwatt powers, and wavelengths
from the UV to the near-infrared. Although cost will generally
favor the use of LEDs, the monochromatic output of laser
diodes (FWHM < 1 nmj; Fig. 5) can be a technical advantage
for photoluminescence (PL) measurements—the application
where a majority of laser diodes*”* "¢ and non-white LEDs
have been utilized—because a greater fraction of a
smartphone camera RGB channel remains accessible.

Many LEDs and laser diodes are operable with the voltage
and current output available from a smartphone USB-C
connector, power bank, or common consumer batteries. A
simple circuit can step voltage up or down as needed. LED
wavelengths have ranged between 285 nm (UVB) and 625 nm
(red). Laser diode wavelengths have ranged from 365 nm
(UVA) to 638 nm (red), with powers ranging from 20 mW up
to 180 mW. The notable exception has been measurements
with upconversion materials, which utilize 808 nm or 980 nm
wavelengths. For applications with non-trivial illumination
requirements (e.g. PL  measurements, microscopy,
spectroscopy), laser diodes have been adopted as the
excitation source about 15% of the time, whereas LEDs have
been adopted about 65% of the time (or 70% when including
the smartphone flashlight, vide infra).

4.3 Microcontrollers

SBCs such as Raspberry Pi compete with smartphones as a
technology for operating portable analytical instruments.
Certain models of SBC have some similar technical capability
(GHz processors, up to 8 GB RAM, Bluetooth, Wi-Fi, Linux
0S) but lack the display, user input, power, and sensor (e.g.
camera) components that are built into a smartphone.
Potential advantages of these SBCs over smartphones are
their lower cost ($50-100 USD) and on-board pins for digital
input/output (GPIO; 3.3 V, 16 mA) and power out (5 V, 1A),
albeit that similarly functioning USB-C-connected external
modules for GPIO can be connected to a smartphone. High-
end external camera modules ($50 USD) for Raspberry Pi are
available with adequate specifications and RAW support. The
overall capabilities and features for smartphones and SBCs
are generally too similar for both technologies to be logically
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used in tandem, and smartphones have an edge in several
categories (Fig. 6).

In contrast to SBCs, MCUs have the potential to
complement smartphones as a technology for operating
portable analytical instruments. The open-source Arduino
boards are popular for rapid prototyping,”” and their
combination with 3D printing has been reported to reduce
costs by an order of magnitude for scientific technology.®®
Arduinos integrate features like a modest central processing
unit (8-84 MHz), memory (up to 8 MB RAM), wireless
communication (e.g. Wi-Fi, Bluetooth), and 5 V pins for
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Fig. 6 Radar charts highlighting our perspective on some of the
advantages and disadvantages of SBCs, MCUs, and smartphones as
platforms for developing analytical devices. A further distance from the
center indicates a more favorable rating. Ranges of ratings are shown
in an effort to accommodate different specifications between different
models and different application contexts.
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digital input/output, analog output, and pulse-width
modulation output (a digital means of mimicking analog
output). These devices require external power, do not have
built-in user interfaces, and do not utilize an OS, but there is
software for writing and uploading code (e.g. Arduino IDE,
based on C++, or MicroPython). The Arduino hardware
catalog also includes external “shields” that interface with
the main boards to provide additional features (e.g. motor
drivers). Some non-Arduino MCUs, such as ESP32 and Teensy
models, have higher processing power (up to 240 MHz and
more RAM) but lower output voltage (3.3 V). With prices that
range from $10-100 USD and minimal duplication of
smartphone capability and features, MCUs add versatility by
supplementing smartphone-to-peripheral connections with
smartphone-to-MCU-to-peripheral ~ connections. Several
devices reported in the literature have paired smartphones
with MCUSs.*™”

4.4 Microfluidics

Microfluidic and nanofluidic devices manipulate small
volumes (uL to pL) of fluid as continuous flows in channels
and as discrete droplets in multiple formats. Fluid is
transported via the application of pressure,
electrowetting,”®°® capillary forces, light,"® and more.'**"%*
Smartphone devices have the potential to interface with
microfluidic devices as optical detectors, power supplies,
controllers, data handlers, and user interfaces.'® Ideally, the
smartphone replaces a laboratory instrument for detection
and the microfluidic chip replaces the benchtop sample
preparation and assay steps done by a lab technician.

Common materials for microfluidic chips include glass,
polymers, and even paper.'®® Although long associated with
fabrication in clean rooms, channel microfluidics are now
broadly accessible through commercially available glass
capillaries, 3D printing of molds for polydimethylsiloxane
(PDMS)-based soft lithography, and 3D printing of complete
chips.”®”7? Do-it-yourself hardware is increasingly common:
syringe pumps and peristaltic pumps that drive fluid flow
have been built using 3D-printed components and low-cost
motors that can be powered by batteries or spring
loading,"® "> and a low-cost 3D printer kit has been
transformed into multiple syringe pumps.'*® Alternatively,
microfluidic paper analytical devices (uPADs)''* and
capillaric chips™® do not need pumps because flow is driven
by capillary action—an operational simplicity that is ideal for
portability. Paper also has the advantages of being
lightweight, inexpensive, biodegradable, incinerable (e.g. if
samples are biohazardous), and capable of sample cleanup
via filtering action. Despite the discontinuation of
commercial wax ink office printers, wax printing remains the
most common method for patterning channels and zones on
paper, but alternative methods of creating hydrophobic
barriers have been developed.''®'"”

Beyond channels, digital microfluidics based on
electrowetting are promising because of the complex
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operations that are possible in this format, and the potential
to miniaturize the driving electronics and wuse optical
actuation,"#7%?

For smartphone-based analyses, a microfluidic chip must
have optical characteristics and a design that are suitable for
the desired type of measurement. For example, reflection
colorimetry often needs a white background, such as from a
paper substrate or pPAD. PL detection benefits from
transparent optical paths for emission and excitation light,
avoidance of strong camera-directed reflections of excitation
light, and low autofluorescence from the chip material.

Nominally transparent polymers such as poly(methyl
methacrylate),'>* polycarbonate, polyethylene
terephthalate,’*™**’ cyclic olefin copolymer,'**'** and PDMS

are useful materials for microfluidic chips.'** These polymers

transmit wavelengths longer than 400 nm, but transmission
is usually lost between 300-400 nm, which has implications
for excitation in PL measurements. The nominally
transparent resins for photopolymerization 3D printing have
a narrower range of transmission, with short-wavelength cut-
offs nearer to ca. 430 nm, and often require polishing to be
more transparent than translucent. Microfluidic chips made
entirely of glass or with a glass face (e.g. PDMS-on-glass
chips) typically provide the widest range of wavelength
transmission. Autofluorescence and the scattering and
reflection of light are sometimes challenging to address with
smartphone-based devices, where considerations such as
cost, robustness, and compact design may restrict the
practical range of solutions to these problems.

5. Complementary materials

Smartphone cameras are capable imagers but nonetheless
have technical limitations intrinsic to their design and
intended use. The analytical performance of a smartphone-
based device will almost always be less than what is possible
with in-lab sample handling and a modern laboratory
instrument, making it advantageous to adopt materials that
help mitigate these limitations or otherwise simplify
detection.

5.1 Indicator dyes

Indicator dyes undergo a spontaneous change or restriction
in their molecular structure or conformation in response to
an analyte, with a concomitant change in their visible color
or fluorescence properties (e.g. brightness). Numerous
indicator dyes exist for pH and the detection of ions, single-
stranded DNA, double-stranded DNA, RNA, and more. These
materials facilitate “mix-and-measure” assays that do not
require washes or other signal development steps, and
produce signals that can be followed in real time. The
simplicity is ideal for a portable diagnostic test with
smartphone-based readout. A potential drawback is that the
typical absorption coefficients and fluorescence brightness
for molecular dyes (10"-10°> M™' e¢m™) are often modest
compared to those for some nanomaterial chromophores and
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fluorophores, potentially resulting in less favourable
detection limits and sensitivity.">" The excitation and

emission spectra of many fluorescent dyes will also tend to
restrict usage of one or more smartphone camera RGB color
channels.
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Fig. 7 Normalized extinction spectra of selected materials. (A)
Examples of common dyes: oxidized TMB,**? phenol red,*** eosin Y,***
bromocresol green (BCG). (B) Different diameters of AuNPs. (C)
Dispersed and aggregated AuNPs. The spectra are superimposed on
the typical RGB channel responses of a smartphone camera (dotted
lines). Note: the spectrum for oxidized TMB is for its charge transfer
complex with TMB, which is usually the first colored product from the
catalyzed oxidation of TMB. Uncomplexed oxidized TMB has an
absorption maximum at 450 nm (not shown) and is usually isolated by
the addition of acid. The source data for dye spectra are cited. AuNP
and BCG spectra were measured for this review.
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Under approximate white-light illumination, molecular
dyes produce color in smartphone images based on the
wavelengths of light absorbed relative to the RGB color
channel responses (Fig. 7A). In the dark, the imaged color
of a fluorescent dye corresponds to the wavelengths of
light emitted relative to the RGB channel responses

(Fig. 8A).
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Fig. 8 PL emission spectra of selected materials: (A) common
fluorescent dyes (DAPI = 4',6-diamidino-2-phenylindole, fluorescein,
TAMRA = carboxytetramethylrhodamine, Alexa Fluor 647, and the
emissive product from turnover of furimazine by NanoLuc (dye
spectral data from http://FPbase.org); (B) different sizes of QDs; and
(C) some trivalent lanthanide ions (data replotted form ref. 134). These
spectra are superimposed on the typical RGB channel responses of a
smartphone camera (dotted lines).

Lab Chip, 2025, 25, 884-955 | 893


http://fpbase.org/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4lc00966e

Open Access Article. Published on 07 lutego 2025. Downloaded on 12.02.2026 17:32:59.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Critical review

5.2 Nanozymes

When sufficiently robust and selective, catalysts that are
organic, inorganic, or biomolecular in nature are a useful
means of producing amplified signals from individual
binding events. Enzymatic amplification in molecular
analysis is well-established in the form of enzyme-linked
immunosorbent assays (ELISAs) and real-time polymerase
chain reaction (PCR) to enhance detection limits with
laboratory instruments. The catalytic amplification of
chromogenic and fluorogenic reactions (typically using
molecular dyes) has equal or greater value in mitigating the
modest sensitivity of smartphone cameras compared to
research-grade cameras and photodetectors. The potential
trade-off is that these reactions add washing and signal
development steps to assays, which conflicts with the
oft-desired minimization of user actions.

Borrowing directly from classic ELISA methods, the
enzyme-catalyzed (e.g. horseradish peroxidase, HRP) and
nanomaterial-catalyzed oxidation of 3,3',5,5"-
tetramethylbenzidine (TMB) to yield a blue color has been
the most widely adopted chromogenic reaction for
smartphone-based assays. Peroxidase mimics and other
nanoparticle (NP) catalysts that are able to turnover a
chromogenic substrate under ambient conditions (a.k.a.
nanozymes) are of interest because of their potentially greater
robustness and shelf life, lower manufacturing cost, and ease
of modification  versus  conventional 135,136
Analogous to enzymes, nanozymes are not immune to
inhibition by components of a sample matrix, and inhibitory
effects are sometimes useful for the detection of certain
analytes. Nanozyme-based amplification will benefit from the
microfluidic automation of fluid handling to reduce multiple
assay steps to a single user step.

enzymes.

5.3 Metal NPs

Gold nanoparticles (AuNPs; ca. 10-100 nm diameter) are a
popular choice as a colorimetric label for smartphone-based
assays. The plasmon resonance of these materials (Fig. 7B)
generates a deep red color with very large per-particle
extinction coefficients (10’-10'* M™ ecm™), and there is a
substantial spectral change in optical extinction between
dispersed and aggregated states, with color turning from red
(strong green absorption) to blue/purple (broad absorption
from yellow to red; Fig. 7C). AuNPs are most frequently
paired with smartphone cameras for brightfield imaging, and
occasionally for darkfield imaging. The main advantage in
both cases is the sensitivity boost from a high optical
contrast per small amount of material. Unlike many other
NPs, where light absorption is the dominant contribution to
extinction, light scattering is also very strong for metal NPs.
Moreover, metal NPs can be leveraged for metal-enhanced
fluorescence. The robust chemical stability of AuNPs is why
these materials are much more prevalent in assays than other
metal NPs with similar plasmonic properties.
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In most applications, AuNPs are adopted as a label for
generating contrast in binding assays. Silver enhancement—
the reductive growth of a thick layer of silver on AuNPs—has
been used to generate even greater optical contrast, but the
post-assay development steps are not ideal for a portable
analysis without on-chip automation. The aggregative
behavior of AuNPs also functions as a “mix-and-measure”
sensor, but ensuring robust selectivity sometimes requires
more careful and challenging design than for molecular
indicator dyes.

5.4 Quantum dots

Quantum dots (QDs) are colloidal semiconductor
nanocrystals (2-10 nm diameter'®’) that are brightly
photoluminescent when prepared as high-quality core/shell
materials.”*® The emission wavelength is tunable across the
visible spectrum via nanocrystal size and composition. For
monodisperse CdSe/ZnS, CdTe/ZnS and related QD materials,
the emission is also symmetric and spectrally narrow (FWHM
25-35 nm; Fig. 8B). Other QD materials, such as InP/ZnS,
have visible emission that is less narrow (FWHM 35-50 nm)
but still symmetric. QDs are also characterized by spectrally
broad absorption and higher brightness versus organic
fluorophores. The latter arises from larger molar absorption
coefficients (10°-10” M™ em™), competitive emission
quantum yields, and superior resistance to photobleaching.
QDs have been shown to have a clear brightness advantage
over fluorescent dyes and proteins, especially when blue light
filtered from the smartphone flash is used for excitation.*®
The PL properties of QDs are an ideal match to
smartphone cameras: high brightness mitigates the modest
sensitivity of the image sensor versus research-grade cameras
and photodetectors; the resistance to photobleaching enables
longer image exposure times to further enhance signals; the
narrow PL emission can be aligned to one of the RGB color
channels to maximize sensitivity while minimizing crosstalk
with other channels; and the broad absorption enables all
colors of QD to be optimally excited with violet or UV light,
leaving all of the camera RGB channels available for PL
emission measurements. Most organic fluorescent dyes do
not offer the same capability. At present, QDs are the
material that most readily enables up to three-color
multiplexed detection with a smartphone camera.”*® QDs
also function as “mix-and-measure” sensors for smartphone-
based analyses through processes such as Forster resonance
energy transfer (FRET),"*>'*° where these sensors can be
sufficiently bright for detection directly in whole blood.***
The main drawback of QDs is the frequent inclusion of
cadmium in the best-in-class materials. This inclusion is
often framed as a toxicity issue, but such framing is an
oversimplification.’**™** Toxicity has limited relevance to
in vitro analyses, where measurements of biological samples
are ex vivo, minute quantities of material are needed per test,
and some assay formats will already include some level of
containment for the sample. Rather, the more relevant
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challenge is one of environmentally conscious or regulated
disposal in settings and, ultimately,
sustainability for use at a global scale.

low-resource

5.5 Semiconducting polymer dots

Semiconducting polymer dots (Pdots) and conjugated
polymer NPs are two classes of NP (20-100 nm diameter)
with a high mass percentage (>50% w/w) of fluorescent
semiconducting polymer in their composition. These
materials have very large molar absorption coefficients for
UV and blue light (10°-10° M™ cm™), competitive emission
quantum yields, and photobleaching rates that are often
slower than for fluorescent dyes. The semiconducting
polymer emission is spectrally broad (FWHM 40-100 nm)
but can be narrowed by incorporating suitable fluorophores
into the polymer structure. The substantial advantage of
Pdots is brightness that tends to be the highest per particle
among the different types of fluorescent NPs. For example,
Pdots have been shown to provide much lower detection
limits than QDs in lateral flow-style binding assays, albeit
outperformed by QDs for two-color multiplexing between
the R and G smartphone camera channels."” The
brightness was even sufficient to measure subcutaneous
glucose and NADH in mouse models using red-fluorescent
Pdot-based sensors with smartphone-based imaging under
a UV lamp.146’147

5.6 Upconversion nanoparticles

Lanthanide-doped upconversion NPs (UCNPs; 20-150 nm
diameter) leverage the electronic transitions that are
possible within the 4f electron shells of lanthanide ions to
generate visible luminescence from infrared
excitation."*®'*? As is characteristic of trivalent lanthanide
ions, the PL emission consists of narrow lines (FWHM 15—
30 nm) at specific wavelengths and with relative intensities
that depend on the composition of the UCNPs. Several
lanthanide emitters have emission lines in the visible
spectrum (Fig. 8C). Excitation of UCNP PL is via sequential
two-photon  absorption, typically using laser diode
wavelengths of either 808 nm or 980 nm.

The main advantage of UCNPs with smartphone cameras
is the near-IR excitation, which is a spectral region that is
already blocked by the IR filter in the smartphone camera
assembly and induces negligible autofluorescence from most
samples and materials. UCNPs thereby enable imaging
without an emission filter, with very low background, and
with potentially less pre-processing of crude samples. For
assay formats with short optical path lengths through
samples, there is significant potential for the suppression of
autofluorescence background from the assay vehicle (e.g.
lateral flow membranes, paper test strips, microfluidic chips)
to be a greater benefit than the suppression of
autofluorescence from the sample itself.

A potential disadvantage of UCNPs is their modest
brightness from relatively low absorption coefficients,
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modest upconversion quantum yields, and low emission
rates. The emerging technology of organic-based triplet-
triplet annihilation (TTA) upconversion NPs has the
potential to provide higher brightness, but color
multiplexing will typically be limited by the broad emission
spectra.”®® Although some UCNP compositions have an
narrow emission line that is well aligned with an RGB color
channel, other compositions have lines that are detected in
multiple color channels. Results with smartphone-based
imaging of luminescent lanthanide complexes (LLCs)
suggest that the combination of Tb(m) and Eu(m) emitters
is effective for two-color multiplexing between the G and R
channels,"” and there is potential for Tm(m) to leverage
the blue channel as well. With their typical UV excitation,
molecular luminescent lanthanide complexes are arguably
less appealing for smartphone imaging than UCNPs
because of the technical need for a time-gated imaging
mechanism to supress autofluorescence, which is more
demanding than simple inclusion of a NIR laser diode.
Otherwise, LLCs are expected to perform similarly to
lanthanide-based UCNPs, with the possible added benefit
of being directly substitutable for fluorescent dyes in
assays.

5.7 Persistent-luminescence NPs

Persistent-luminescent NPs (PLNPs), also known as
“afterglow” NPs, are materials that transiently trap and store
energy from the absorption of UV-visible light or X-rays. This
energy is gradually released as luminescence over a period of
minutes, hours, or even days after the excitation source is
turned off."”" The emission centers tend to be lanthanide
ions, transition metal ions, or main group/post-transition
metal ions, with peak emission wavelength and bandwidths
that correspond to these origins.

The primary advantage of PLNPs is the temporal
separation of excitation and detection. An imaging camera
is able to be turned off when the excitation light is turned
on, and vice versa. This capability eliminates background
from stray excitation light and sample autofluorescence.
Persistent it possible for device
designs to omit an optical filter (something that is essential
for conventional fluorescence measurements) and to avoid
background from autofluorescence. The potential drawbacks
of PLNPs are concerns related to some of their metal-based
compositions, the lower brightness that is an outcome of
their slow emission rate, and additional parameters to keep
constant for intensity-based calibration (e.g. excitation
duration, time between the end of excitation and the start
of imaging). In principle, the most suitable applications for
PLNPs are those where the decrease in background more
than offsets the decrease in signal compared to another
type of luminescent material. In practice, it is difficult to
fully benchmark the advantages and disadvantages of
PLNPs because of the few studies with smartphone-based
detection.

luminescence makes
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6. Measurement modalities and
technical approaches
6.1 Role of the smartphone

Smartphones are utilized as components of portable
analytical devices in three main ways: linked, dongle, and
integrated (Fig. 9). Smartphone-linked devices are standalone
devices in every way other than a wireless connection to a
smartphone. Dongle devices require a physical connection to

A Linked Device

Wireless communication with smartphone
Device powered by its own battery

B Dongle Device

Wired communication with smartphone
Draws power from smartphone

C Integrated Device

Utilizes smartphone camera

May utilize other smartphone components (e.g. flashlight)
Wired or wireless communication with smartphone
Draws power from smartphone or from its own battery

Fig. 9 Conceptualization and characteristic features of (A) linked, (B)
dongle, and (C) integrated devices that utilize smartphones.
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a smartphone, which is principally a user interface and
power supply but is not directly active in analyte detection.
Smartphone-integrated devices make direct use of the
smartphone camera or another on-board feature (e.g. ALS,
flashlight) for analyte detection. Integrated devices will
frequently assemble dongle-like, wirelessly connected, and
unconnected peripheral components around the smartphone
to provide the full technical capability needed for a
measurement.

Linked and dongle devices are often bespoke and
therefore adopt designs and components that are optimized
for the analytical measurement and user context. The
smartphone functions as a user interface and as a platform
for data processing, storage, and sharing. Compared to other
benchtop and portable instrument systems, linked and
dongle devices benefit from offloading bulkier components
(e.g. power, display, user input) to the phone. This approach
decreases the size and cost of the analytical device when an
analyst already has access to a smartphone. The anticipated
worldwide standardization of smartphone charging ports to
USB-C (already implemented in European Union'*?) will also
enable linked and dongle devices to function independent of
the make and model of smartphone. Indeed, dongle devices
are an inevitable future for portable electrochemical analysis.
The future for optical analysis is less certain because cameras
and light sources are built into smartphones.

Given their bespoke designs and mere “connected” role
for the smartphone, linked and dongle devices for molecular
analysis are not discussed further in this review. Rather, the
focus is on integrated devices that adopt, at minimum, the
smartphone camera as an essential component. This
approach requires fewer external components and less
secondary engineering than linked and dongle devices,
leading to simpler device prototyping (especially by non-
engineers) and greater potential for democratization. The
highly competitive consumer market also ensures that
smartphones provide access to best-in-class image sensors,
regularly upgraded technology, and opportunities to utilize
non-imaging features to enhance measurements or data
collection.

6.2 Colorimetry

This detection modality uses a smartphone camera to
identify and quantitate changes in color, where both
transmitted- and reflected-light configurations are useful for
these measurements. Most measurements are under white
light and the observed color is best predicted by subtractive
color theory (Fig. 10A), with cyan (red absorbing), magenta
(green absorbing), and yellow (blue absorbing) primary
colors. Common signaling motifs include analyte-induced
transitions between colorless and colored states, transitions
between two different colors, and analyte-induced changes in
color patterns for an array of chromophores. These signals
most frequently originate from changes in the efficiency or
dominant wavelength of light absorption associated with

This journal is © The Royal Society of Chemistry 2025
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brightfield
subtractive color
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B Photoluminescence
darkfield
additive color

color

color

WYY Ze meom
tint | Geh. V|V |V v intensity (shade)

tint

All

Fig. 10 Common designs and color relations for smartphone-based (A) colorimetry and (B) PL measurements. CL, BL, and ECL measurements are
analogous to PL, notwithstanding the absence of excitation light. The color chart applies to both colorimetric and luminescence measurements—
the difference is whether absorbance (brightfield) or emission (darkfield) is most relevant. Color abbreviations: R, red; Y, yellow; G, green; C, cyan;
B, blue; M, magenta; W, white; Bk, black. Check marks indicate the light will be detected in the specified camera color channel. In panel A, the
length and weight of the line indicates the relative intensity of the light. Examples of specific designs and configurations of smartphone-based

devices are shown later in this review.

indicator dyes and chromogenic reactions, and from the
retention of chromophores in binding assays (vide infra for
examples). Changes in Bragg diffraction (e.g. photonic crystal
sensors'>®) or thin film interference (e.g. etalon-based
sensors would also produce analytically useful color
changes but, to our knowledge, remain mostly unexplored
with smartphone-based detection.

Potential advantages of colorimetric methods include
operation in ambient light, simplification or elimination of
hardware peripheral to the smartphone, and human vision as
a redundancy and quality control measure for camera-
obtained results—all of which contribute to the status of
colorimetry as the most popular detection modality with
smartphone-based devices. Potential disadvantages include
less favorable detection limits than luminescence methods,
interference from samples that are naturally colored, and a
functional dependence on the color temperature or spectrum
of the illumination. Approaches that have been used to
address the last challenge are the use of a box'*>**° or an
attachment'®® that excludes ambient light and provides
reproducible and optimized illumination from a built-in
source, and the use of color standards to calibrate ambient
lighting.'®* %3

Most devices for colorimetric detection have been
designed for use with cuvettes, lateral flow membranes,
WPADs, and other test strips. Additionally, some devices for
absorbance measurements have been designed for 96-well
plates. One technical approach is to use an array of 96 optical
fibers to deliver light transmitted through each well to a
defined spatial position on the smartphone camera image.

154)

This journal is © The Royal Society of Chemistry 2025

Examples of light sources for this type of configuration
include an array of blue LEDs'®® and an electroluminescent
plate as a white light source."®” An alternate approach is to
use a large-diameter convex lens for concurrent imaging of
an 8 x 8 array of wells without significant optical
distortion."®®

6.3 Light scattering

Elastic light scattering assays measure light intensity at a
position that is not along the optical axis of sample
illumination or its reflection, with a dark field of view in the
absence of scatter. The necessary optical arrangement is
detection at an orthogonal or large oblique angle to a light
beam through a cuvette or glass capillary. In practice, light
scattering measurements also tend to differ from colorimetric
measurements in their use of a light source that is
monochromatic (e.g. laser diode) or pseudo-monochromatic
(e.g. single-color LED) rather than white. Nonetheless, there
are analyses that utilize AuNPs with white-light illumination
and analyze the scattered light via a color ratio.'®® Light
scattering assays require very efficient scatters and large
analyte-induced changes in scattering efficiency to be
practical and robust, such as in the case of analyte-
dependent dissolution of NPs,"”*'"*

6.4 Luminescence

This detection modality uses the smartphone camera to
measure the intensity or color of light emitted against a dark
background (Fig. 10B). The observed color is best predicted
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by additive color theory, with blue, green, and red primary
colors. Relevant mechanisms include photoluminescence
(PL), chemiluminescence (CL), bioluminescence (BL), and
electrochemiluminescence (ECL). The main advantages of
luminescence detection are higher sensitivity and lower
detection limits than other modalities, and capacity for color-
based multiplexed detection within the same measurement
volume. In some cases, luminescence methods will also
better tolerate strong sample coloration.

The main drawback of luminescence detection is the
additional components that are required for a functional
device. A box or compartment is needed to exclude ambient
light and provide a dark imaging environment. An excitation
light source is also needed for PL measurements, along with
an emission filter to prevent reflected or scattered excitation
light from reaching the smartphone camera. External single-
color LEDs and laser diodes are common excitation light
sources. Violet and UV wavelengths enable full utilization of
the camera's RGB channels, whereas longer wavelengths
preclude imaging in one or more color channels. Excitation
filters are needed to isolate a band of wavelengths when the
smartphone flash or another white-light source is used for PL
excitation.*®*"*4>172 Although infrequent, narrow bandpass
filters have also been used with single-color LEDs to
minimize the leakage of excitation light into the camera color
channel to be used for detection."”*'”* This approach avoids
reducing the range of wavelengths useful for PL detection,
which can sometimes be a consequence of using an emission
filter that blocks the full spectrum of an excitation LED. Such
filtering also has the side-effect of reducing the excitation
intensity. Monochromatic laser diodes do not pose the same
challenge because long-pass and notch filters are able to
block the excitation light from reaching the camera while
maximizing the remaining wavelength range for PL
detection.

Although of minimal importance for brightfield
colorimetric imaging, the distance between the sample and
the smartphone camera (or another primary imaging lens) is
a relevant design consideration because PL, CL and BL
exhibit isotropic emission. The measured intensity thus
scales as the inverse square of this distance and greatly
impacts assay sensitivity.

An additional consideration for PL detection is that
components in the path of the excitation light and in the
field of view of the camera must not be autofluorescent, and
should be transparent to the excitation wavelength to
maximize sensitivity. These requirements are sometimes
more challenging than anticipated when working with violet
and ultraviolet excitation: some paper,*”® plastic,'”®*”” and
(more rarely) glass materials generate significant levels of
autofluorescence. Some low-cost colored glass filters will also
exhibit autofluorescence when incident excitation light (e.g.
from a reflection) is too intense.'’® Common clear plastics
and glasses are transparent to NIR light (at 808 nm and 980
nm) and, as noted earlier, the use of UCNPs and PLNPs will
avoid autofluorescence from samples and device materials
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alike. Nonetheless, UCNP users should also be cognizant of
materials that could burn from extended exposure to the IR
laser. UV light sources and NIR lasers suitable for
upconversion PL both pose safety risks to skin and eyes that
will need to be mitigated by suitable engineering of any
device.

In contrast to PL detection, CL, BL, and ECL detection do
not need an excitation and optical filters.
Nevertheless, there is intricacy associated with the temporal
decay of CL and BL signals as a reaction progresses. In many
cases, a greater number of reagents and assay steps are
needed to generate signal. ECL provides a greater level of
spatial and temporal control because the luminescence is
restricted to an electrode interface and requires an applied

source

A
(I) Smanghije platform
MC fiber
RC fiber
Sensor |
Thermometer
(") Lens Filter Jon = bl CMoOS

T
LED @ - Gold film — |
| )

Lens
D

Lery
Bandpass

Filter

Optical Fiber

Fig. 11 Examples of the two main optical approaches for SPR with a
smartphone. (A) An optical fiber format: () measurement setup; (ii)
optical axis; (iii) examples of smartphone images of the reference (RC)
and measurement (MC) fibers. Other abbreviations: TR, transition
region; FR, flat region. Figure adapted with permission from ref. 44
Copyright 2019 Optical Society of America. (B) A Kretschmann
configuration with a planar gold film on a chip in a flow cell (left) and
an example of a smartphone-captured SPR image of the chip. Figure
adapted from ref. 45 Copyright 2022 Royal Society of Chemistry.
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voltage to be initiated.””*'®® ECL emitters can sometimes
also be regenerated on the fly. In general, the emission rates
for CL, BL, and ECL have a lower ceiling than with
fluorescence, such that competitive detection limits are
predicated on the background being darker than what is
possible with PL, whether due to technical considerations or
sample autofluorescence.

6.5 Surface Plasmon resonance

Two main optical approaches have been used to implement
surface plasmon resonance (SPR) measurements with a
smartphone camera. In an optical fiber format (Fig. 11A), one
end of the fiber is coupled to a light source and the other
end of the fiber is imaged by the camera. A segment along
the length of the fiber is coated with a gold film and
integrated into a flow cell, where the plasmon is excited by
light coupled into the fiber by total internal reflection. The
light source has been the flash on a smartphone (filtered to
select red light)**™** or a standalone red LED.**'®" The other
common format is to use a non-fiber waveguide with a planar
gold film in a flow cell. Examples have included a 3D-printed
clear-plastic optical coupler that totally internally reflects red
light from the phone display to the front-facing smartphone
camera;"'>"®? Kretschmann configurations that use the rear
camera and a polarizer with either a red LED'® or the phone
flash (plus a red bandpass filter; Fig. 11B);*> and a reverse

FL [

EP

Camera

Screen

C

Intensity measurements

Fourier spectrum
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Kretschmann configuration for SPR-coupled emission with a
hemispherical prism."®*"®” Although a niche measurement
modality at present, SPR has the prospective advantages of
label-free and indicator-free detection of binding.

6.6 Microscopy

Devices for smartphone microscopy typically incorporate
lenses that are external to the camera to achieve micron-scale
image resolution. In practice, these external lenses are low-
cost objective lenses or bespoke combinations of individual
lenses that serve the same purpose. Magnification has also
been increased with attachment of the lens from the laser
pickup head of a CD player over the smartphone camera.'®®
Ball lenses have also proven useful for magnification with
simple and compact designs.'®*'°® With some smartphone
cameras now offering up to 10X optical zoom, some low-
magnification applications may bypass the need for an
external lens. Multiple camera units on the back of the
smartphone will also support optics for stereomicroscopy.'**
Beyond external magnification lenses, the components
utilized for smartphone-based microscopy are similar to the
components utilized for non-microscopy measurements.
Devices for brightfield microscopy will incorporate a
peripheral white LED source or redirect the smartphone flash
for sample illumination because ambient light is not
sufficiently intense for high magnification."®* Although most

Reconstructed.
Phase

Fig. 12 A smartphone-based Fourier ptychographic microscope using the display screen for illumination. (A) Optical layout and (B) rendering
and photograph of the microscope. Diagram abbreviations: OL, objective lens; TL, tube lens; M, mirror; FL, field lens, EP, eyepiece lens. (C)
Working principle of the microscope. (D) Full field-of-view color reconstruction result of cross-section of a Tilia stem. (The blue and red boxes
indicate image regions that are enlarged in the original publication). Figure adapted with permission from ref. 195 Copyright 2021 American

Chemical Society.
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microscope devices have been built around a single
smartphone, there have been instances of using two
smartphones—one for the flashlight to illuminate the sample
and one for the camera to image the sample—to simplify
optical design and avoid any circuits."*?

Although uncommon, the smartphone display has been
used as a light source for microscopy. Examples include the
use of a liquid light guide to collect light from the display for
downstream modulation by a digital micromirror device for
hybrid illumination (HiLo) optical sectioning with 12 pum
axial resolution,'* and the use of the display as a dynamic
and programmable light source to replace the typical two-
dimensional LED array for Fourier ptychographic microscopy
to obtain half-pitch resolution of 0.87 um with a field of view
of 3 mm? (Fig. 12)."”> An arguably simpler design used a
separate OLED display, operated by a microcontroller, to act
as a programmable light source for smartphone microscopy,
demonstrating six different imaging modes: bright-field,
dark-field, oblique illumination, Rheinberg, differential
phase contrast, and fluorescence.’® More commonly, single-
color LEDs and laser diodes are used with appropriate optical
filters for PL microscopy. Theater stage lighting gel films and
acrylic films have been used as a low-cost alternative to
conventional scientific-grade emission filters.'®'” A related
advance has been the development of colored polymer lenses
that mount directly on a smartphone camera to concurrently
magnify and block excitation light in PL imaging.'*® Another
example of custom imaging is a tunable optofluidic design,
based on hydraulic deformation of an elastomeric
membrane, that offers an adjustable focus."”® Simple
mechanical approaches to focus adjustment have included
spring-loaded screws to attach a phone cradle as the lid of a
dark box,* and a screw-actuated 3D-printed seesaw
mechanism that offers as small as 5 um adjustments.>*

6.7 Spectroscopy

Smartphone-based spectroscopy comprises absorbance, light
scattering, luminescence, and SPR measurements with
wavelength resolution. It is defined by the introduction of a
dispersive element (e.g. prism, grating) as a peripheral
component to the smartphone. The camera images the
dispersion of the incoming light, obtaining wavelength-
resolved intensity information (i.e. spectra) as a function of
pixel address. The RGB color channels are inherent to the
analysis but are secondary to the spatial encoding of
wavelength. That said, the increasingly common presence of
multiple rear cameras on smartphones may provide a
technical solution to parallel spectral measurements and
conventional imaging of the same sample.

Most smartphone-based absorption spectrometry devices
have been designed to utilize cuvettes. A plurality of designs
use a piece of a DVD**'7?% or CD***** as a proxy for a
made-for-purpose diffraction grating. The grating is typically
used in a transmission format, although some reflection
designs have been reported. Low-cost thin film gratings
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designed for classroom education have also been
adopted,”*®°® as have research-grade transmission®”® and
reflection gratings.”’ When reported, spectral resolutions
have been <1 nm per pixel.?***°**'* Although most devices
have 3D-printed housing, some devices have been made with
laminated paper,”** cardboard and wood,**® and Plexiglas.**
The most common light source is a white LED external to the
smartphone,”®" although some designs have utilized a
tungsten halogen lamp (ie. incandescent bulb),>**?% a
flashlight-sized xenon bulb,>'* and redirection of the phone
flash via a light guide.*’*"® Two versatile designs
implemented a bifurcated optical fiber to deliver light from
the flash to the sample and to send reflected light back to
the grating assembly and smartphone camera.*>*°® Other
interesting device designs have included a double-beam
system,”” an eight-channel spectrometer based on a prism
array for working with 96-well plates®** and 8-well strips,**
and endoscope designs.”"**'> Two designs have also omitted
a light source, once for flexibility in source selection®'® and
once for use with the Sun.>** The Sun offers the advantage of
a broader and more uniform spectrum than an LED or lamp,
but poses challenges with ensuring consistent incident light
intensity between samples and blanks, and with weather-
dependent utility.

Regarding the smartphone, a study evaluated more than
60 models for spectral measurements and highlighted the
importance of manual control over image acquisition and
processing settings, the trade-off between higher signal-to-
noise ratios from larger camera pixel sizes and higher
wavelength resolution from more pixels, and the generally
superior analytical performance of newer phones versus older
phones.*'!

The advantage of smartphone-based spectroscopy over
imaging is wavelength-resolved data that is more analogous
to lab-based spectrometers. In principle, this resolution will
support more robust or higher levels of spectral multiplexing
and facilitate differentiation of analytical signals from
background. In practice, smartphone spectrometers are often
better suited to education and citizen science than for
chemical and biomolecular analyses. The built-in RGB
channels of the smartphone camera intrinsically provide
some wavelength-related information, and few studies to date
have demonstrated an application where the extra resolution
from a grating provides essential new information.

6.8 Image processing and analysis

6.8.1 Processing and formats. Smartphone camera images
are a three-dimensional array of pixel values: the first two
dimensions are the horizontal and vertical spatial
coordinates; the third dimension is the color data. Videos are
image stacks, which add frame number (in practice, a time
increment) as a fourth dimension to the array. In terms of
the memory requirement, a picture (ca. 2-50 MB) is not
actually worth a thousand words, but rather more than one
hundred thousand words. To conserve memory and be more

This journal is © The Royal Society of Chemistry 2025
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efficient with processing power, the default for most
smartphone users is storage of images in a compressed
format such as HEIC (high efficiency image container) or
JPEG (Joint Photographic Experts Group). These formats do
not store the original image sensor data.

A full discussion of image compression algorithms are
beyond the scope of the review and can be found
elsewhere.?’”?" 1In brief, JPEG is a lossy format that
simplifies the pixel data in the original image based, in part,
on the limits of human vision and color perception.
Nominally redundant data in the form of less perceivable
detail is eliminated to conserve memory. Pixels in JPEG
images can, in principle, adopt 2® = 256 different (i.e. 8-bit)
levels of red, green, and blue (R, G, and B), for a total of 2** =
16777216 (i.e. 24-bit) colors. Compared to the JPEG format,
the HEIC format uses less memory to store higher quality
images, with the potential for up to 16-bit depth for each
RGB color channel.

For both JPEG and HEIC images, an acquired raw image
is first processed by demosaicing. This process uses pixel
interpolation and correlation algorithms to assign a full
triplet of R, G, and B values to an image pixel, even though
each image sensor pixel was sensitive to only one of these
colors. Subsequent processing includes color space
conversion, white balance or color temperature adjustment,
and file compression steps. Notably, the color processing
steps alter the quantitative data from the image sensor. Most
image sensors have a linear response to light intensity and
the pixel signals are typically digitized on 10-bit up to 14-bit
scales. In addition to reducing the bit depth in a stored
image, standard JPEG or HEIC conversion will also apply a
gamma correction that transforms the original linear
correlation between pixel value and light intensity to a non-
linear one that better mimics human vision. Increasingly,
there are also other behind-the-scenes actions by the
smartphone camera app: various computational methods are
used to further enhance and optimize image quality, thereby
better mitigating the hardware compromises necessary for a
small form factor, user friendliness, and versatility. Although

these operations add value to the popular uses of
smartphone cameras, autonomous image processing
algorithms may not be well calibrated to scenarios

encountered in scientific imaging and measurements. For
example, many smartphone cameras and their default apps
will attempt to make dim light brighter by altering both the
hardware parameters for image capture and the downstream
digital image processing. Such processing risks a low
luminescence signal from a low concentration of analyte
falsely appearing to be high signal from a high concentration
of analyte. In short, undefined image processing algorithms
are anathema to quantitative analysis and are to be avoided.
One strategy for avoiding non-quantitative data is to use
smartphone camera apps that offer control over important
settings used for image capture and processing. Examples of
such settings include the focus, exposure, ISO level, and
white balance/color temperature. Manual control provides a

This journal is © The Royal Society of Chemistry 2025
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level of consistency between images and is sometimes
adequate for quantitative analysis even when storing images
or videos in compressed formats. An alternative to JPEG and
HEIC is to store images in RAW format. The RAW format
provides a digital image with the highest fidelity to what the
image sensor recorded, including greater bit depth, with the
trade-off of requiring more memory. RAW files ideally retain
the linear response of the image sensor and are minimally
processed. Acquiring RAW images will thus be the best
approach to any quantitative analysis that is based on the
light intensity measured in one or more of the camera's RGB
color channels. Numerous apps are available to enable RAW
image acquisition with manual control over the
aforementioned camera settings, including the advanced or
“pro” modes of some default camera apps for newer
smartphones. Examples of non-default apps include Adobe
Lightroom, OpenCamera, Camera FV5, Halide Mark II, and
several apps that have “Pro Camera” (or similar) in their
name. Apps capable of RAW video acquisition have been rare
but do exist (e.g. MotionCam). There are also tools available
for researchers to code their own custom camera apps using
application programming interfaces (APIs) and software
development kits (SDKs) that are available for smartphone
operating systems such as Android, i0S, and HarmonyOS.

With smartphones, the precise details of the processing
applied to the exported RAW image (e.g. digital negative,
DNG, file format) depends on the device and app, but
typically includes a demosaicing (a.k.a. debayering) process
to obtain a full color image. Note that some image processing
and analysis programs may require that the bit depth of an
imported RAW image (e.g. 10-bit) be downscaled or upscaled
to a supported value (e.g. 8-, 16-, 32-bit). Downscaling will
reduce image detail and dynamic range, and add
quantization noise. Upscaling will add gaps in the pixel
intensity histogram of an image but otherwise retains the
original quality of the data. Upscaling cannot undo the
effects of a prior downscaling.

Color Spaces. The additive RBG color space is the natural
default for smartphone camera images because both the
camera and the smartphone display model color as a
combination of red, green, and blue values. These primary
colors combine in pairs to make yellow, cyan, and magenta.
A full contribution from all three primary colors
approximates white light and the full absence of all three
colors produces black. When each primary color is plotted on
an orthogonal axis, the result is a cubic color space
(Fig. 13A). For data analysis, the RGB color space is intuitive
in how it mimics the operational principles of the
smartphone camera. It is arguably non-intuitive in that, from
a visual perspective, the identity of a color (i.e. hue) and its
tint (for brightfield imaging with a white background) or
shade (for darkfield imaging) are not independent
parameters. This aspect of the RGB model sometimes
motivates the use of other color models.

The hue-saturation-value color space (HSV; also called
hue-saturation-brightness, HSB; Fig. 13B) is an alternative

tH)
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Fig. 13 Color spaces. (A) RGB color space at two different bit depths. Low bit depths are shown to illustrate the effect of bit depth on the number
of possible colors. The R, G, and B coordinate values are plotted on orthogonal axes. Front and back views are shown for the 4-bit RGB cube. (B)
The HSV/HSB color space represented as a cone and a cylinder. The vertical and radial coordinates are V and S, and the angular coordinate is H.
(C) Two-dimensional projections of the CIE1931 (xy) and CIE1976 (u'v') color spaces, and the RGB-compatible three-dimensional representation of
the CIE Lab color space. All three spaces are derived from the XYZ tristimulus values. The triangles qualitatively illustrate the color gamut
accessible to spectrally narrow RGB emitters (dashed triangles) and spectrally broad emitters (dotted triangles).

model to the RGB color space. HSV space uses a single
coordinate, hue (H), to identify colors, where H is expressed
in degrees (0-360°) on a cone or cylinder. For example, the
RGB hues of red (255, 0, 0; 8-bit RGB coordinates), yellow
(255, 255, 0), green (0, 255, 0), cyan (0, 255, 255), blue (0, 0,
255), and magenta (255, 0, 255) are at 60° intervals starting at
0° for red and ending at 300° for magenta, with brightness
and saturation at 100%. The saturation (S) is expressed as a
radial coordinate (0-100%) and quantifies the amount of a
given hue versus a neutral white. The value (V) is expressed as
the axial coordinate (0-100%) and is a measure of the
perceived brightness of the hue. White has 8-bit RGB
coordinates of (255, 255, 255) and HSV coordinates of (H,
0%, 100%). The corresponding coordinates for black are (0,
0, 0) and (H, S, 0%). There are defined equations for
converting between the RGB and HSV color spaces.

Other examples of color spaces are the International
Commission on Ilumination (CIE) Lab model, its still-
common predecessor, the CIE XYZ model, and two-
dimensional representations commonly referred to as CIE
1931 (xy) and CIE 1976 (u"') (Fig. 13C). These models are
perhaps less intuitive than the HSV color space, but are
better mimics of the human perception of color. The CIE XYZ
model defines X, Y, and Z coordinates as tristimulus values
that nominally reflect the degree to which different
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wavelengths of light stimulate the three types of cone cells in
an average human eye. Equations are defined to convert RGB
coordinates to XYZ coordinates. In turn, equations are
defined to convert the XYZ coordinates to the (x, y) and («/,
V') coordinates for two-dimensional representation, and to
convert XYZ to the L*a*b* coordinates of the CIE Lab model.
This latter and newer model aligns with how the average
human actually experiences four pure color stimuli (red,
green, blue, yellow) due to cone-opponent neurons that
combine signals from the three types of cone cells. The L*
coordinate is the lightness of a color. The a* and b*
coordinates reflect the redness-greenness and yellowness-
blueness of a color, respectively, where a positive value
indicates a predominance of the first color in a pair and a
negative value indicates a predominance of the second color.

6.8.2 Data analysis. Once smartphone images are
acquired, the next step is extraction of the relevant data.
Many analyses will fall into the categories of quantifying a
transition between low and high contrast states, quantifying
a transition between two extremes of color, and color
matching. The question is then how to best utilize the data
to correlate optical signal with analyte.

RGB is the natural color space for smartphone image
analysis and has been adopted in close to half of published
studies (vide infra). Many studies have also used HSV and