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Baseline correction of Raman spectral data using
triangular deep convolutional networks
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Raman spectroscopy requires baseline correction to address fluorescence- and instrumentation-related

distortions. The existing baseline correction methods can be broadly classified into traditional mathemat-

ical approaches and deep learning-based techniques. While traditional methods often require manual

parameter tuning for different spectral datasets, deep learning methods offer greater adaptability and

enhance automation. Recent research on deep learning-based baseline correction has primarily focused

on optimizing existing methods or designing new network architectures to improve correction perform-

ance. This study proposes a novel deep learning network architecture to further enhance baseline correc-

tion effectiveness, building upon prior research. Experimental results demonstrate that the proposed

method outperforms existing approaches by achieving superior correction accuracy, reducing compu-

tation time, and more effectively preserving peak intensity and shape.

1. Introduction

Raman spectroscopy technology requires only a small amount of
samples to perform rapid, non-destructive, and repeatable quali-
tative and quantitative analysis. The combination of a diode laser
and a charge-coupled device has enabled the miniaturization of
Raman spectrometers and improved their sensitivity.1,2 As a
result, Raman spectroscopy is widely applied in various fields,
including the determination of drug authenticity,3 poison detec-
tion,4 medical diagnostics,5 and food analysis.6

Raman spectra typically contain two main types of noise:
background noise, also known as baseline, and additional
noise caused by external conditions and auto-fluorescence.7

The presence of these noise affects the accuracy of subsequent
studies and analyses. Consequently, pre-processing steps, par-
ticularly baseline correction, have become essential in most
Raman spectroscopy applications. Over the years, various
methods for baseline correction have been developed, garner-
ing increasing attention from researchers.

Baseline correction methods are generally categorized into two
main approaches: traditional mathematical methods and deep
learning-based methods. Traditional methods include wavelet
transform methods,8–10 polynomial fitting methods,11,12 and
penalized least squares methods.13–15 In contrast, deep learning
methods primarily utilize deep neural networks to perform

regression tasks to predict and correct baselines. Research on
deep learning-based baseline correction has focused on designing
more efficient network structures or improving existing methods
to address their limitations.

Among traditional baseline correction methods, the asym-
metrically reweighted penalized least squares (arPLS)
method13 and the adaptive smoothness parameter penalized
least squares (asPLS) method14 are both based on penalized
least squares. The arPLS method is considered one of the most
effective methods for baseline correction, as it prevents the
overestimation of the baseline and ensures satisfactory curve
fitting in non-peak regions. However, it tends to misinterpret
the tails of peaks as non-peak regions due to their relatively
low intensity. The asPLS method mitigates this limitation by
introducing a coefficient vector, which dynamically adjusts the
arPLS smoothness parameter. This adjustment assigns a
larger value to peak regions and a smaller value to non-peak
regions, thereby improving the accuracy of baseline correction
in areas with low intensity.

These traditional baseline correction methods share a
common characteristic: they require human discretion to obtain
optimal corrected results. In other words, these methods typically
rely on manually selecting appropriate wavelet bases, polynomial
orders, and balance parameters to achieve ideal correction out-
comes. Consequently, practical applications demand significant
time and effort to fine-tune these parameters based on prior
knowledge to enhance correction accuracy.

Deep learning-based baseline correction methods effec-
tively address the limitations of traditional approaches. Once
the deep learning model is trained, it can be applied directly
without additional adjustments, significantly reducing the
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time and effort required. Furthermore, deep learning methods
generally demonstrate superior baseline correction perform-
ance compared to traditional techniques, leading to increased
interest in applying these models to Raman spectroscopy.

However, training deep learning models requires large
amounts of labeled data, posing challenges for the scarce and
often unlabeled Raman spectral data. To address this issue,
Liu manually extracted peak and baseline information from
actual spectral data and generated training data by randomly
combining peaks, baselines, and additive noise.16 However,
this approach cannot always guarantee the quality of the gen-
erated data. In response, Chen et al. proposed an improved
method that uses mathematical models to generate peaks,
baselines, and additive noise separately, and constructing
training data by randomly combining these components to
enhance data quality.17

In this study, we introduce a novel triangular deep convolu-
tional network (TDCN) for baseline correction, which is
trained using synthetically generated spectral data.17 Through
both qualitative and quantitative analyses of simulated and
actual Raman spectra, the proposed model demonstrates
superior baseline correction performance when compared to
traditional methods, while also significantly reducing infer-
ence time, thus enhancing the overall efficiency. Additionally,
to evaluate the effectiveness of our model, we compared it with
an existing deep learning model, confirming the improve-
ments achieved by the proposed model.

2. Simulated training data

A large amount of actual Raman spectral data is difficult to
obtain, while deep learning models typically require a large
volume of data for effective training. Simulating training data
using mathematical methods has become the key to solving
the issue. Therefore, a few studies have begun to train their
deep learning models through data simulation.18,19 In this
study, we employed a method capable of generating more
natural and high quality simulated spectra for training data.

The simulated spectral data contain a pure spectral signal
(peak), baseline, and additive noise, expressed mathematically
as follows:

s½i� ¼ ð1� βÞp½i� þ βb½i� þ n½i�; ð1Þ
where s[i] indicates the raw spectral data, p[i] expresses the
peak and b[i] and n[i] are baseline and additive noise, respect-
ively. Here, s[i] can be regarded as the input to the deep learn-
ing model, while b[i] serves as the target data, i.e., the output.

The peak p[i] is simulated by using the following Hanning
window function:

p½i� ¼ 0:5� 0:5 cos
2πi

N � 1

� �
; 0 � i , N: ð2Þ

The value of peak width, N, was set to a range of 5–21, and
the minimum height of the peak was set to 0.05 in this experi-
ment. The number of spectral peaks was set between 5 and 15.

The baseline was modeled by cubic spline interpolation using
2–7 anchor points generated randomly. Using these anchor
points, various baselines were generated for better prediction
performance. The additive noise was represented by Gaussian
white noise.

The final simulated spectra were generated by mixing the
three elements mentioned above. The baseline mixing ratio, β,
ranges from 0.1 to 0.8, while the peak mixing ratio is 1 − β. To
ensure compatibility with the deep learning model, the data
length was set to 512 and the intensity was normalized to a
range of 0–1 using the min–max normalization method.

Fig. 1 shows an example of a simulated spectrum and its
baseline. Compared to the spectral data generation method
proposed by Liu,16 this method produces more natural and
high-quality spectra. Additionally, the training data generated
by this method are more diverse, enhancing the representative-
ness and applicability of the dataset. In this study, 128 000
training samples and 32 000 validation samples were gener-
ated to train the deep learning model.

3. Proposed deep-learning
architecture

Deep learning technology has been successfully applied across
various research fields, delivering outstanding results. In par-
ticular, convolutional neural networks (CNNs) have gained sig-
nificant attention due to their superior feature extraction capa-
bilities and fewer parameters compared to fully connected
neural networks. As a result, many studies have developed
custom deep learning models based on CNN architectures.20,21

One of the most well-known deep CNN architectures,
ResNet, employs a residual learning framework to address the
vanishing gradient problem that arises from increasing
network depth. This framework enables the extraction of more
representative features from the input data.22 The residual
framework primarily includes two types of shortcut connec-
tions: identity shortcuts and projection shortcuts. The projec-
tion shortcut connection adjusts the output feature size of the

Fig. 1 An example of a simulated spectrum and its baseline.
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previous layer through downsampling, allowing it to be added
to the output features of the subsequent layer.

The UNet architecture was originally designed for medical
image segmentation.23 It consists of two main components: a
contracting path and an expansive path. The contracting path
functions similarly to a conventional deep CNN, extracting fea-
tures from the input data. The expansive path performs
upsampling on the feature maps and integrates them with fea-
tures from the contracting path through skip connections.
This skip connection framework allows UNet to recover lost
pixel information, enhancing the accuracy of segmentation.

In this study, we propose a deep learning network architec-
ture called the Triangular Deep Convolutional Network
(TDCN), which integrates design concepts from both ResNet
and UNet. As illustrated in Fig. 2(a), the network features a tri-
angular-shaped structure composed of multiple convolutional
cells. Each cell can be constructed in different ways, as
depicted in Fig. 2(b), (c) and (d). To distinguish and describe
their characteristics, we refer to these cells as simpleCell,
simpleResCell, and ResCell, respectively. A common feature of
these cells is the fusion of outputs from surrounding cells
through addition, while their primary difference lies in the
implementation of the residual block.

Let xi,j represent the output from the convolutional cell Ci,j

in a deep learning network, where i denotes the row index and
j denotes the column index. The output of each cell xi,j can be
computed using the following formula:

xi;j ¼
CðDðxi�1;jÞÞ; i > 0; j ¼ 0

Cðxi;j�1;Uðxiþ1;j�1ÞÞ; i ¼ 0; j > 0
CðDðxi�1;jÞ; xi;j�1;Uðxiþ1;j�1ÞÞ; i > 0; j > 0:

8<
: ð3Þ

Here, the cell, C(·), is an integrated convolution block
applied to the fused features from the preceding cell’s output.
The functions D(·) and U(·) correspond to down-sampling and
up-sampling operations, which are implemented using a con-
volutional layer (Conv1d) and a transposed convolutional layer
(ConvTranspose1d), respectively. It is important to note that
Fig. 2 only illustrates the structure of the cell outlined by the
red dashed line, while the structures of other cells are adapted
based on their inputs. For instance, the cell, C0,0, receives the
raw spectrum as input, making its structure relatively simple
and consisting of a single-input convolution.

The key distinction between SimpleCell and SimpleResCell
lies in the use of residual connections. SimpleResCell employs
a residual structure, whereas SimpleCell does not. Meanwhile,
the difference between SimpleResCell and ResCell lies in the
scope of the residual structure: SimpleResCell applies the
residual structure only after fusing outputs from different
cells, whereas ResCell applies it throughout the entire cell.

We selected ResUNet17 as the deep learning method for
comparison. This model combines the advantages of ResNet
and UNet. While its overall structure resembles UNet, ResUNet
incorporates residual connections, which enhance the per-
formance compared to both ResNet and UNet. To comprehen-
sively evaluate the effectiveness of the proposed approach, we
used ResUNet as a benchmark model, enabling a direct com-
parison with our method and an indirect comparison with
ResNet and UNet.

A distinctive feature of the proposed model is its simul-
taneous execution of contraction and expansion within each
cell, unlike UNet, which separates the contracting and expand-
ing paths. This architecture allows the model to receive and

Fig. 2 Architecture of the proposed TDCN: (a) overall network structure, (b) SimpleCell unit, (c) SimpleResCell unit, and (d) ResCell unit.
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integrate multi-dimensional outputs from adjacent cells, effec-
tively capturing spatial relationships within the data.

4. Experiments and results

All experiments in this study were conducted using Python
version 3.11.10 and the deep learning model was trained on a
computer equipped with GeForce RTX 3080 GPU using the
PyTorch deep learning framework.

The experimental results are presented in two parts. The
first part utilizes simulated spectra with standard baselines to
assess the efficacy of the proposed method. Specific types of
simulated spectral signals are employed for qualitative ana-
lysis, while a generated test dataset is used for quantitative
analysis. The second part is based on actual Raman spectra to
demonstrate the baseline correction effectiveness of the
proposed method, while its results are compared to those of
traditional methods to highlight the differences between their
approaches.

To comprehensively evaluate the performance of the pro-
posed method, we chose the existing traditional mathematical
method and the deep learning method with proven efficacy for
comparative experiments. In the analysis of results, due to the
absence of significant qualitative differences between deep
learning methods, our focus is on visually illustrating the
differences between deep learning and traditional methods
through qualitative analysis. Additionally, we conducted a
quantitative comparison of the baseline correction perform-
ance of each method to show the superiority of the proposed
approach.

4.1 Data preparation and training strategy

In the experiments, 128 000 training samples were generated
to train the deep learning model, with an additional 32 000
and 20 000 samples generated for validation and quantitative
analysis, respectively. To qualitatively evaluate the feasibility
and superiority of the proposed method for actual Raman
spectra, experiments were conducted using spectra from 10
different substances recorded using two distinct Raman spec-
troscopy systems. The first system was a Renishaw 2000
Raman microscope equipped with a 514.5 nm argon ion laser
and the second was an inVia Inspector portable Raman system
utilizing a 632.8 nm He–Ne laser.

In the experiments, the optimization algorithm for the
deep learning model was the adaptive moment estimation
(Adam) algorithm. The learning rate was set to 5 × 10−4 and
the batch size was set to 500. The root mean square error
(RMSE) was used as the training loss function, while the mean
absolute error (MAE) served as the validation loss function.
The RMSE and MAE are defined as follows:

RMSE ¼
XN�1

i¼0

ðyi � ziÞ2=N
" #1

2

ð4Þ

MAE ¼
XN�1

i¼0

jyi � zij=N ð5Þ

The deep learning model was trained for a total of 1000
epochs. If the validation loss decreased, the current model
weights were saved. The training strategy included a learning
rate decay, where the learning rate was reduced to 4/5 of its
current value if the validation loss value did not change over a
span of 75 epochs. Training was terminated if the learning rate
was reduced to 1/8 of the original value.

4.2 Baseline correction with the synthesized spectra

The baseline correction of Raman spectral data using the deep
learning model involves two steps. The first step is the training
process, in which the deep learning model is trained using
simulated spectral data. The input to the model consists of
simulated spectral data and the output is the target data repre-
senting the baseline. The second step is the inference process,
where the trained model is used to predict the baseline of the
actual Raman spectral data. The desired corrected spectral
data were then obtained by subtracting the predicted baseline
from the measured spectral data.

The effectiveness and superiority of the proposed method
were verified using simulated data. To facilitate qualitative
comparison of the performance of the proposed method and
traditional methods under varying peak and baseline con-
ditions, we generated simulated peaks using a Gaussian func-
tion and constructed baselines using quadratic and cubic poly-
nomials. The simulated pure signals, which consist of three
Gaussian peaks, were constructed as follows:

p½i� ¼ 0:3e�
i�100

5

� �2

þ 1:0e�
i�350
10

� �2

þ 0:5e�
i�370

5

� �2

: ð6Þ
where i = 0, 1, …, 511. The intensities of the three peaks are
0.3, 1.0, and 0.5, respectively. Simulated spectra with varying
signal-to-noise ratios (SNRs) were generated by adding
Gaussian white noise. The SNR can be obtained according to
the following equation:

SNRdB ¼ 10 log10
Ps
Pn

� �
: ð7Þ

where Ps and Pn are the power of the peaks and the noise. The
SNRs for the low-noise and high-noise signals were 30.7 dB
and 18.7 dB, respectively. The simulated pure signal, low-noise
signal, and high-noise signal are shown in Fig. 3(a). To better
approximate real spectra, we generated pure signals containing
both single and overlapping peak types. From the figure, it is
evident that the simulated signal consists of a small single
peak on the left and a larger, overlapping peak on the right.

Fig. 3(b) displays the generated simulated spectral signal
alongside the baseline correction results obtained using both
the traditional method and the proposed method. To compre-
hensively evaluate the performance of the proposed method,
we introduced additive noise and baselines of varying intensi-
ties. The peaks and baselines were combined at different
ratios. As shown in the figure, the height of the peaks varies
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with the combination ratio, even when the same baseline is
used.

The proposed method was compared with the asPLS
method for baseline correction, which has demonstrated excel-
lent performance in its respective domain. Prior to the experi-
ments, optimal parameters for asPLS were selected through
preliminary testing to ensure the best results using the 20 000
test data. The results from all experiments with simulated data
were evaluated using the RMSE and the MAE.

The smoothness parameter λ of asPLS significantly influ-
ences the baseline correction results. If λ is set too large or too
small, it will adversely affect the correction performance. It is
recommended that λ varies on a logarithmic scale24 with
values ranging from 102 to 108 for optimal parameter selection.
As shown in Fig. 3(c), the MAE value is minimized when λ is
set to 104 for baseline correction.

From the four baseline correction results, it is evident that
the traditional method generally overestimates the baseline
compared to the proposed method, particularly in regions
with wider peaks. Moreover, for data with high baseline ratios
and high-intensity additive noise, the overestimation of the
baseline by the traditional method is more pronounced. In the
spectra with high-intensity additive noise, the presence of
noise significantly impacts the baseline correction perform-
ance of the traditional method, particularly in non-peak
regions. Overall, qualitative analysis indicates that the pro-
posed method offers significant advantages over the tra-
ditional method, particularly under complex conditions invol-
ving both additive noise and varying baseline characteristics.

To further evaluate the performance, quantitative compara-
tive experiments were conducted between the proposed
method, traditional methods, and other deep learning

approaches using a test dataset of 20 000 samples. Table 1 pre-
sents the quantitative analysis results for various methods,
including the MAE, RMSE, and MAE variance for the test data.
It is clear from the table that the deep learning-based baseline
correction method outperforms the traditional method in
terms of overall performance. Among the proposed network
architectures, the SimpleCell model demonstrates strong per-
formance in terms of MAE variance. However, the
SimpleResCell model achieves the lowest MAE and RMSE
values, indicating superior baseline correction accuracy. While
ResUNet also performs well overall, the SimpleResCell model
outperforms it across all evaluation metrics.

Deep learning methods are slightly faster than the tra-
ditional method, while the proposed model requires margin-
ally more time than ResUNet due to the integration of outputs
from surrounding cells through element-wise addition.
However, it is important to note that the inference time of the
traditional method can vary depending on the maximum
number of iterations and the adjustment of termination con-
ditions. Similarly, the inference time of the deep learning
methods may vary slightly based on the implementation of the
output stage.

Fig. 3 Examples of simulated spectra. (a) Simulated pure signals with no noise, low noise, and high noise. (b) Baseline correction results for the pro-
posed method and the traditional method applied to the simulated spectra. (c) MAE with varying λ values for the asPLS method.

Table 1 The results of quantitative analysis for various methods

Methods
MAE
(×10−4)

RMSE
(×10−4)

Variance
(×10−7) Param.

SimpleCell 5.145 6.719 1.004 0.877 M
SimpleResCell 4.876 6.342 1.029 0.877 M
ResCell 5.347 7.033 1.196 1.274 M
ResUNet 5.062 6.609 1.097 0.898 M
asPLS 21.22 63.86 22.542 N/A
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Fig. 4 The results of baseline correction for the proposed method and the traditional method using actual Raman spectra recorded using different
instruments at 514.5 nm and 632.8 nm. (a–e): 2,6-dinitrotoluene, 2-methyl-1,3,5-trinitrobenzene, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine,
ammonium dinitramide, and 1,3,5-trinitroperhydro-1,3,5-triazine. (f–j): composition C-4, ethylene glycol, hexane, acetone, and 2-nitrotoluene.
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4.3 Actual Raman spectra

The spectra of a set of 5 substances (2,6-dinitrotoluene,
2-methyl-1,3,5-trinitrobenzene, octahydro-1,3,5,7-tetranitro-
1,3,5,7-tetrazocine, ammonium dinitramide, and 1,3,5-trinitro-
perhydro-1,3,5-triazine) and another set of 5 substances (com-
position C-4, ethylene glycol, hexane, acetone, and 2-nitrotolu-
ene) recorded using different instruments were used for quali-
tative analysis of the proposed method. The Raman spectra of
these materials contain diverse baselines and additive noise,
making them suitable for validating the proposed method.

The baseline correction results are presented in Fig. 4. To
highlight the differences between the deep learning method
and traditional method for baseline correction of real Raman
spectra, we also included the correction results from the tra-
ditional method. Consistent with the analysis of simulated
data, the traditional method tends to overestimate the base-
line, leading to inaccurate preservation of the corrected peak
intensities. In contrast, the corrected spectra obtained using
the proposed method appear more natural and desirable.

The real Raman spectra used in this experiment exhibit
various baselines. The experimental results demonstrate that
the proposed method effectively removes these baselines
across different spectra. Since the proposed method performs
well not only with synthetic spectra but also with real spectra,
it is expected to be a valuable preprocessing technique for a
range of spectra, including FT-IR, FT-NIR, and others, in
addition to Raman spectra.

5. Conclusions

This study presents a novel deep learning network architecture
for baseline correction of Raman spectra. We designed three
distinct cell structures and developed the corresponding deep
learning models. Additionally, to ensure the quality of the
training data, we implemented a data generation method that
produces more natural and high-quality simulated spectra,
thereby enhancing the model’s generalization capability.

Through both qualitative and quantitative analyses of all
methods on simulated spectra, we have verified the overall
superiority of the proposed method. The experimental results
demonstrate that this method accurately estimates the base-
line of spectra with varying baselines and additive noise, par-
ticularly in peak areas with wider amplitudes. Moreover, com-
pared to traditional methods, the inference time of deep learn-
ing methods is significantly reduced. The proposed method
also shows robust performance in the presence of higher levels
of additive noise, with minimal impact on baseline correction
in non-peak regions.

To further validate the effectiveness of the proposed
method in practical applications, we conducted experiments
using various Raman spectra recorded using different instru-
ments. The results show that the baseline correction achieved
by the proposed method is natural and reasonable for real
Raman spectra. The experimental results align with the ana-
lysis of the simulated spectra, further demonstrating the

superiority and broad applicability of the proposed method in
baseline correction tasks for Raman spectra. We anticipate
that the proposed method can be applied not only to Raman
spectra but also to various IR spectra.

However, the proposed model exhibits a higher parameter
growth rate as the network depth increases compared to the
other models. Additionally, the integration of outputs from
surrounding cells through element-wise addition increases the
inference time. In the future, we plan to conduct further
research to alleviate this computational requirement.
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