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The search for suitable materials for solid-state stationary storage of green hydrogen is pushing the
implementation of efficient renewable energy systems. This involves rational design and modification of
cheap alloys for effective storage in mild conditions of temperature and pressure. Among many
intermetallic compounds described in the literature, TiFe-based systems have recently regained vivid
interest as materials for practical applications since they are low-cost and they can be tuned to match
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required pressure and operation conditions. This work aims to provide a comprehensive review of
publications involving chemical substitution in TiFe-based compounds for guiding compound design
DOI: 10.1039/d1ma00101a and materials selection in current and future hydrogen storage applications. Mono- and multi-

substituted compounds modify TiFe thermodynamics and are beneficial for many hydrogenation
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Introduction

The hydrogen energy chain is foreseen as one of the key
technologies to face the issues of climate change and scarce
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properties. They will be reviewed and deeply discussed, with a focus on manganese substitution.

oil resources. Hydrogen can be worldwide and cleanly produced
through electrolysis of water using renewable primary energies.
If not consumed on-site, it can be transported by gas pipelines,
trucks and ships. Finally, hydrogen can be used to feed fuel cells
and generate electricity (and heat) on demand, releasing only
water as a by-product and then closing the hydrogen cycle. Such
an electricity-hydrogen-electricity conversion process is only
sustainable if electricity is produced from renewable energies
and cannot be directly injected in the grid, then it can be used
later on with a fuel cell. Therefore, it is mandatory to add a
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storage step in the hydrogen chain for the time-management
of hydrogen production and use. The intrinsic intermittency
of most renewable energy sources makes unavoidable the
implementation of efficient hydrogen storage systems.

Efficient hydrogen storage can be achieved as dihydrogen
molecules in high-pressure tanks (typically 350 or 700 bar) or in
liquid state (at temperature lower than —252 °C [21 K])."”
In addition, dihydrogen can be physically adsorbed in high-
surface-area solids such as MOFs and activated carbons,
typically at liquid nitrogen temperature (—196 °C [77 K]).*®
As an alternative, hydrogen molecules can be chemisorbed at
the surface of solid compounds and diffused in atomic form to
form hydrogen-containing compounds.’™" In some cases, after
suitable activation, these compounds can reversibly absorb and
desorb hydrogen close to normal conditions of pressure and
temperature (i.e. 1 bar, 25 °C).">"'® These materials are typically
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intermetallic compounds of general formula AB,, which are
commonly named metallic hydrides, from the facts that both
hydrogen-metal bonding and electronic conductivity have a
metallic character.'”” A is an element that forms very stable
metallic hydrides (e.g. rare earths and early transition metals)
and B an element that only forms hydrides at very high
pressure (e.g. late transition metals), as reported in Fig. 1. Their
combination in stoichiometric ratio n = B/A allows for the
formation of hydrides with intermediate stability. Representative
intermetallic compounds suitable for hydrogen storage are
LaNis, CeNiz, TiMn, and TiFe for n = 5, 3, 2 and 1, respectively.

Intermetallic compounds, being formed by heavy elements,
offer modest mass storage capacities (i.e. 1-2 wt%). Hydrogen
systems based on this technology have low gravimetric capacities,
due to the weight of the reservoir and ancillary equipment.’
When compared to classical molecular methods (5-6 wt% system
basis, for both pressurized and liquid storage), their typical
operation conditions (0-80 °C, 1-50 bar) guarantee higher safety
conditions. This is a key property when hydrogen tanks must be
installed close to domestic facilities or in confined space.
Moreover, in the case of stationary applications, footprint instead
of mass capacity is the most relevant performance indicator for
the hydrogen storage system. The volumetric capacity of
intermetallic compounds, i.e. 100-120 kg, m 3, is significantly
higher than that of pressurized or liquid hydrogen: 39 (at 700 bar)
and 70 kg, m 2, respectively. Furthermore, if the required tank is
considered, the system volumetric density decreases significantly
in the case of gas and liquid storage.

Finally, yet importantly, intermetallic compounds are highly
versatile materials as their operation temperature and pressure
can be tuned at will, through suitable chemical substitutions of
both A and B-type elements. As an example, the EU-funded
HyCARE (Hydrogen CArrier for Renewable Energy storage)
project, kicked off in January 2019, aims to develop a prototype
large-scale hydrogen storage tank using a solid-state hydrogen
carrier based on metal powder, operating at low pressure and
temperature.'®* The project involves the production of almost
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Fig. 1 Periodic table of the elements showing the formation enthalpy of binary M—H metal hydrides, and the relative classification of A (in red) or B-type
(in blue) M elements. Formation enthalpy was chosen from literature values.60-206:207.234.235

4 tons of metal powder, which will be placed in stainless steel
containers. The thermal management of the plant will follow
an innovative approach, making use of phase-change materials,
significantly increasing the efficiency of the process. The aim is
to store about 50 kg of hydrogen, which is a rather high
quantity to be stored using this technique.

Among many intermetallic compounds described in the
literature for reversible hydrogen storage at room temperature
(RT), TiFe-based systems have recently regained vivid interest.
With a mass and volumetric capacity for the binary compound
of 1.87 wt% and 105 kgy;, m™°, respectively,”” the relevance of
this system is mainly driven by its low cost, as compared to
other intermetallics. However, in 2020, the European Union’s
(EU) has updated a list of 30 critical raw materials (CRMs),
including titanium, considering their supply risk and economical
importance.”® In fact, titanium is widely exploited in aeronautics
and medical applications, and its processing is making EU
strongly dependent on import from main global producers (45%
China, 22% Russia, 22% Japan).”" Titanium End of Life Recycling
Input Rate (EoL-RIR) is still limited (reported as 19%),>" however,
for applications as solid state hydrogen storage material, it could
be recycled and reused effectively. Fig. 2 shows the CRMs, high-
lighted with an orange frame, which should thus be avoided or
limited in alloy formulation towards large-scale production.
Economic and supply indicators demonstrate that TiFe-based
compounds are today target materials for practical applications,
as shown by the implementation of R&D projects worldwide, and
especially in Japan. Intermetallic TiFe compound is promising for
hydrogen storage tanks thank to its high volumetric density, good
sorption kinetic, reversibility and because it can work in mild
temperature and pressure conditions. Moreover, the hydrogenation
thermodynamics of TiFe must be tuned to the required conditions

2526 | Mater. Adv, 2021, 2, 2524-2560

of pressure and temperature imposed by each specific hydrogen
storage application. As stated above, this can be achieved through
suitable atomic substitutions. Indeed, titanium (Ti) and iron (Fe)
can be substituted by other elements within certain homogeneity
composition ranges, as reported in ternary phase diagrams.>?
Numerous mono and multi-substituted alloys have been explored
in the literature as highlighted in green in Fig. 2. These substitu-
tions have not only a noticeable effect on hydrogen sorption
thermodynamics, but also on other key properties, such as alloy
activation, reaction kinetics and cycle life.

Recently, Sujan et al. provided a review focused on binary TiFe
compound and its hydrogenation properties,® while Lys et al.
reported in a short review the effect of substitution on the
hydrogenation properties of A,B, alloys.>* Here, after a short
overview of binary TiFe, we focus our attention on reviewing the
literature on substitutional effects, which are fundamental for
practical applications, aiming at extending the previous reviews
work in a comprehensive manner. Mono-substituted compounds
are discussed with a focus on manganese substitution, which has
been proved to be a key element. Some examples of prominent
multi-substituted alloys are also reported here. This work aims to
provide a comprehensive analysis of the many publications
involving chemical substitution in TiFe-based compounds. As a
conclusion, some correlations between compositions and hydrogen
sorption properties are drawn, for guiding compound design and
selection in current and future hydrogen storage applications.

TiFe
Synthesis and crystal structures of TiFe and its hydrides

TiFe exhibits a narrow homogeneity range, with the largest
domain extending from 49.7 to 52.5 at% Ti at the eutectic

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Periodic table showing the investigated substituting elements (highlighted in green) in TiFe (highlighted in blue). Orange frame highlight the

critical raw materials for Europe.?

temperature of 1085 °C.>>?°, TiFe neighbouring phases are

TiFe,, at the Fe-rich side, and B-Ti with a maximum solubility
of 21 at% Fe, at the Ti-rich one. The hydrogen storage properties
of this intermetallic compound are strictly linked to the
composition and to the presence of secondary phases. In fact,
due to the composition range in which TiFe phase can be
formed, different properties can be observed for stoichiometric
TiFe, Fe-rich (TiFe, o1,) or Ti-rich (TiFe, o95) alloys. In addition,
for Ti-rich alloys, the formation of B-Ti precipitates enables the
hydrogen sorption at RT without activation. The TiFe heat of
formation measured at 1167 °C is A¢H = —31.0 k] mol %%’

TiFe is usually produced by melting the elements in a high
temperature furnace.”® As shown in the titanium-iron phase
diagram (Fig. 3), the binary compound is obtained from the
melt through a liquid + TiFe, — TiFe peritectic reaction at
1317 °C. As an alternative to melting, TiFe can also be obtained
and processed by Severe Plastic Deformation (SPD) techniques,
such as ball milling®™** and high pressure torsion**°, as
well as by self-ignition.”’ 3, SPD techniques lead to fresh
and defective surfaces, that help alloy activation and also
nanostructuration, but reducing nominal capacity.*">*>°

The crystal structure of TiFe was first identified as CsCl-type
(B2, space group Pm3m) by Laves et al°®. Further studies
confirmed a cubic lattice, but contrary to bcc alloys, with
distinct ordered atoms at the cube vertices, 1a sites (0,0,0),
and its center, 1b sites (1/2,1/2,1/2).>” The lattice constant of the
stoichiometric compound is reported to be 2.9763 A.>® As stated
before, the phase diagram exhibits a small homogeneity
domain showing that the crystal structure of TiFe can

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Fe-Ti phase diagram. Reproduced with permission from ref. 25
and 26.

accommodate some defects, such as partial substitution of Ti
on the Fe sites.>*

Regarding the hydrides, four different phases have been
reported for the TiFe-H system: o-solid solution, two mono-
hydrides (B, and B,) and y-dihydride. The solid solution retains
the CsCl-type structure with minor changes in the lattice
parameters.®’ Neutron diffraction experiments showed that H
atoms occupy the octahedral 3d sites (1/2,0,0) along the cube
edges with TisFe, coordination, exhibiting a shorter distance
from Fe atoms than Ti atoms (1.49 A vs. 2.11 A). Even though Ti
is known for its stronger hydrogen affinity compared to iron,

Mater. Adv,, 2021, 2, 2524-2560 | 2527


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ma00101a

Open Access Article. Published on 18 marca 2021. Downloaded on 17.10.2025 16:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Materials Advances

this feature is common for all phases in the TiFe-H system.®* %>
The maximum solubility of hydrogen in the a-solid solution is
TiFeH, ;. Both B-phases crystallize in an orthorhombic structure,
with minor structural differences between them except for
hydrogen content, being TiFeH and TiFeH,, for B; and f,,
respectively. The most advanced studies by neutron diffraction
suggest a P222, space group,”® though Pmc2, cannot be com-
pletely ruled out.®” In both monohydrides, H atoms partially
occupy the octahedral sites H1 and H2, both with coordination
Ti,sFe,, whereas Fe is found at site 2¢ (0,0.294,1/4) and Ti at site
2d (1/2,0.757,1/4). In the B;-phase, hydrogen shows occupancies
of 88% and 12% for sites H1 and H2, respectively, whereas in
B,-phase, it exhibits occupancies of 92% and 45%, respectively.
Due to the difficulties in achieving the fully hydrogenated phase,
and the broadening of diffraction peaks because of strains, the
crystal structure of the y-phase has been subject of debate. In a
first study of Reilly et al,®® a cubic structure was suggested.
Subsequent analyses proposed a monoclinic structure,®*%%%%7°
Later, Fischer et al.®* found an orthorhombic structure (space
group Cmmm), which was confirmed by both experimental works
and theoretical calculations.”"”*> Here, Ti atoms occupy site 4h
(0.223,0,1/2), Fe site 4i (0,0.2887,0), while H atoms occupy three
different octahedral sites, two of them fully occupied with Ti,Fe,
coordination and the third one, with Ti,Fe, coordination,
partially occupied at 91%.

Activation

The main drawback for practical application of TiFe is probably
the laborious treatment required after synthesis to promote the
first hydrogen absorption. This treatment, usually named
“activation”, has been the subject of extensive work and con-
troversy. The fact that TiFe does not readily absorb hydrogen at
RT has been attributed to a native passivating layer, which
forms at its surface. Indeed, TiFe is sensitive to air moisture
and might react with it, forming oxides and hydroxides and
then hindering the reaction with hydrogen. Consequently,
one needs to apply harsh conditions to induce hydrogen
penetration, to break the passivating surface layer or to avoid
its formation at the alloy surface.

The first description of an activation process for TiFe was
reported in the pioneering work of Reilly et al.°®. The authors
performed a sequence of absorption (up to 65 bar) and
desorption (under vacuum) cycles at both high (400-450 °C)
and room temperatures. Upon triggering hydrogen absorption/
desorption cycles, TiFe undergoes expansion and contraction,
respectively, leading to volume changes and inducing the crack
of the passivating layer. Since TiFe is a brittle material, fresh
and clean TiFe surfaces are uncovered, where hydrogen can
promptly be absorbed.

Subsequently, several authors tried to identify the species
formed during the oxidation and after activation, with the
purpose of better understanding the mechanisms involved in
this treatment. Pande et al. investigated the surface of oxidized
TiFe by means of electron microscopy.” In the electron diffraction
patterns, they found a phase claimed to be TizFe;0, because this
oxide was found unable to absorb hydrogen, making it a relevant

2528 | Mater. Adv,, 2021, 2, 2524-2560
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candidate as passivating layer.”* Blésius et al. studied the surface
of activated TiFe by Mossbauer spectroscopy, revealing the
presence of small Fe clusters.”” Because the signal of iron oxide
was not detected, they inferred that only titanium was oxidized. Fe
precipitates at the alloy surface were also found by other authors,
and this free Fe was claimed to play a catalytic role in the
dissociation of hydrogen.”®”® However, Schober et al. studied
the activation process by TEM and detected TiO,, TiFe, and
suboxide TiFeO, as surface species.®® They did not observe any
elemental Fe and concluded that Fe clusters are only formed after
severe oxygen contamination, following the TiFe, + O, — TiO, +
2Fe reaction. Hiebl et al. demonstrated that Ti,FeO, can absorb
hydrogen®" and other authors detected this compound during
annealing of oxidized TiFe,**® casting doubts on the catalytic
effect of Fe. Later on, Schlapbach et al. identified an oxide layer
mainly consisting of Fe™ and Ti<" on the surface of passivated
TiFe.®* After heating, they noticed the formation of Fe and TiO,,
suggesting that TiO, is not an effective catalyst for the reaction,
but rather a support for Fe clusters which might split hydrogen
molecules.

Reilly et al.”>® showed that the composition of the surface
layer strongly depends on the annealing conditions and the
quantity of oxygen that could be present in the raw materials,
synthesis atmosphere or thermal treatment atmosphere. This
observation partially explains the controversies in the literature,
where each research group followed different treatments.
Nonetheless, the procedure suggested by Reilly et al. to ensure
TiFe activation remained highly laborious for practical activation.

To simplify the activation, Chu et al.®> synthesized TiFe by
means of mechanical alloying, starting from elemental powders
of Ti and Fe. The authors prepared an equiatomic TiFe mixture,
ball-milled for different duration times. They got amorphous
materials that required one hour annealing at 300 °C under
7 bar H, for activation. Hotta et al.> also produced TiFe by ball
milling pure Ti and Fe, which required an activation at 300 °C
and 150 bar of H,. However, compared to the work of Chu et al.,
Hotta et al. obtained crystalline TiFe that absorbed ~ 1 wt% H,.
Zaluski et al.** ball milled Ti and Fe, noticing that the final
structure of the composite strongly depends on oxygen
contamination. For an oxygen content below 3 at%, TiFe
crystallized in the expected CsCl-type structure, whereas at
higher oxygen content it became amorphous. Still, both
samples required a high temperature to get activated: 300
and 400 °C in vacuum for 0.5 hour for amorphous and crystal-
line materials, respectively.

Instead of synthesizing TiFe from elemental powders,
Emami et al.*’ crushed and then ball milled a commercial TiFe
ingot. Then, they exposed the powder sample to air for one month
and before PCI analysis, activated it in vacuum at 150 °C for 2
hours. Readily, the sample absorbed 1.5 wt% H,. In comparison,
the same crushed ingot exposed to air and only annealed did not
absorb hydrogen, clearly showing the activation effect induced by
ball milling.

Instead of ball milling, Edalati et al.”® used mechanically
activated TiFe by high pressure torsion. Small TiFe disks were
pressed under 60 kbar in air, and then annealed in vacuum at

1'58

Z. 46
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150 °C, for 2 hours. The resulting sample stored 1.7 wt%
H, during the first hydrogenation. Later, the same group
investigated the effect of groove rolling on TiFe previously
activated by high pressure torsion.”® This latter sample
required a few absorption/desorption cycles before reaching a
capacity of 1.7 wt% H,. However, after air exposure for one day,
it remains activated showing the same hydrogen uptake
characteristics in the subsequent cycling.

In conclusion, easy activation in TiFe intermetallic compound
can be promoted by a mechanical treatment or by the formation
of secondary phases. The latter can be attained varying the Ti/Fe
ratio with the precipitation of B-Ti or TiFe, for Ti-rich and Fe-rich
alloys, respectively.®¢%°

Thermodynamics of hydrogen sorption

The first Pressure Composition Isotherm (PCI) curves of the
TiFe-H system were monitored by Reilly et al.°®. An example of
absorption/desorption PCI isotherm at 40 °C is displayed in
Fig. 4. Three different regions were observed during the absorption
of hydrogen: a steep pressure increase at low H-content
(<TiFeH, ), followed by two pressure plateaus located at
Py, = 1.5 and ~40 bar and extending from 0.1 < H fu ! <
1, and 1 < H fu.”' < 2, respectively. The initial branch
(0.1< H f.u.”") was associated with the formation of the a-solid
solution. The first plateau was attributed to the phase transition
from the a-phase into the f-monohydrides. The second plateau,
which is rather sloppy, was ascribed to the vy-dihydride
formation.

In Fig. 4, the length of the first plateau differs between
absorption and desorption, suggesting different hydrogen con-
tents for the intermediate B-phases. As mentioned above,
Schefer et al.®® proposed the existence of two different p; and
B, phases, with similar crystal structures, except for small
differences in the occupancy of the octahedral sites. The
occurrence of these phases has been further investigated with
volumetric measurements by Reidinger et al.’°. On absorption,
only B,-TiFeH; , was observed, while during desorption both
B1-TiFeH;, and [,-TiFeH;, were detected. Based on these

100

—e— Absorption
—o— Desorption

10 |

Pressure (bar)

1 " 1 "
0.5 1.0 1.5

0.0 2.0

Hydrogen content (H f.u.”)

Fig. 4 Pressure-composition-isotherm of TiFe performed at 40 °C.
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results, they suggested that the formation of the B-phases is
related to the presence of strains induced by the absorption of
hydrogen. This assumption was later confirmed by Reilly et al.’",
who, after activation, obtained a free-strain sample by annealing
overnight at 800 °C under helium, and they achieved the full
hydrogenation state in a single o — v step, without detecting any
B-phase during absorption. However, after the formation of the
v-phase, which induces a volume expansion and thus lattice
strains, f-phases appeared again during desorption. In addition,
they demonstrated the strain effect on the overall performance
of TiFe while cycling. They observed a decrease of the quantity of
absorbed hydrogen with the increase of cycle number, mainly
due to the disappearance of the upper y-phase plateau, which
shifts to higher pressures. On the other hand, the lower B-phase
plateau seems unaffected. After several cycles, the quantity of
hydrogen reaches a steady state value, suggesting a saturation of
the internal strain. By annealing the samples for 2 days at
various temperatures (from 230 to 350 °C), thus reducing
the strain, some capacity was recovered, observing again the
formation of the y-phase.

Hydrogenation of amorphous TiFe showed no plateau
pressure and low quantity of absorbed H, (0.3 wt%) while
nanocrystalline (5 nm size) TiFe displayed a single plateau with
higher hydrogen content (0.9 wt%).>> Haraki et al. prepared
TiFe from the elements by two different techniques: mechanical
alloying and radio frequency melting.*® After synthesis, the
melted sample was later ball milled for 5 hours, and both TiFe
specimens were annealed in vacuum for 2 hours at 300 °C before
hydrogen absorption analysis. Interestingly, both samples
exhibited absorption/desorption plateaus at lower pressures
compared to TiFe produced by conventional arc melting.
However, the PCI curves differ in shape and quantity of absorbed
H,. TiFe prepared by ball milling absorbed 1.3 wt% exhibiting a
single plateau, whereas the one prepared by radio frequency
melting clearly showed two plateaus, reaching a content of
1.7 wt% H,, and suggesting the formation of both B and y
phases. The disappearance of the y-phase formation in ball
milled TiFe was confirmed by Zadorozhnyy et al®>. After an
activation at 400 °C under 10 bar H, for 0.5 hour, a single plateau
was found for absorption. X-ray diffraction analysis after hydro-
genation (at 1.1 wt% H,) showed that only the monohydride
was formed.

By monitoring PCI curves at different temperatures, thermo-
dynamic parameters can be determined thanks to the Van’t

Hoff equation:
n(5p) <4z
PO RT R
where: P,, is the equilibrium plateau pressure (atm), P’ the standard
pressure (1 atm), R the gas constant (8.314 ] mol ' K %), T the
temperature (K), AH the enthalpy change (J moly;, '), and AS the
entropy change (J mol;; ' K %). It is worth to note that, due to
hysteresis effects, enthalpy and entropy values evaluated by the
Van't Hoff plot can differ on absorption and desorption.
The first thermodynamic data for hydrogen sorption in
TiFe were reported by Reilly et al.,*® providing values of
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AHL, =281 K] moly, " and ASL, =106 ] moly, " K™, during
B — aand AHS =337 IN] moIHZ*1 and ASS .4 = 132] molH;1 K
during Y — [ desorption reactions, respectively.

Later, a more detailed investigation of the thermodynamics
of both hydrogen absorption and desorption reactions in TiFe
was performed by Wenzl et al.®* Slight differences were found
between absorption/desorption due to hysteresis loop. It is
interesting to notice that, during the hydrogen absorption,
the transformation o to § for the first plateau is less exothermic
than that of B to y for the second plateau (i.e. —25.4 k] moly;, "
and —29.8 k] moly ', respectively),”® which is unusual in
multi-plateau systems.>*°>®? In fact, if the entropy change
is assumed to be constant (typically 130 ] moly; ~* K as result
of the entropy change of hydrogen from the gas phase into the
solid state of the hydride). However, enthalpy evaluation from
PCI data were confirmed by calorimetric analyses, which allow
a direct measurement of the heat of reaction (Q), hence the
enthalpy changes (AH = —AQ).**** Results of thermodynamic
analyses of hydrogen sorption reactions in TiFe, performed by
both PCI measurements and calorimetric experiments, are
summarized in Table 1. It is observed that the entropy change
in TiFe is anomalously low (99 J moly,~* K™') for the first
plateau. Likely, this is linked to the high strains that stabilize
the beta phase as mentioned above.

Kinetics of hydrogen sorption

The kinetics of hydrogen sorption in TiFe was first investigated
by Park et al.,’* to determine reaction rates, mechanisms and
rate-limiting steps. As shown in Fig. 5, hydrogen absorption
rates were determined as a function of the reacted fraction,

View Article Online

Review

rate (frac..-sec) x 420

Hydrogen absorption

I A "

04 06
fraction

o]

&) 0.2

Reacted
Fig. 5 Hydrogen absorption rate as a function of reacted fraction at
20 °C. The curve with black dots was obtain under 20 bar of hydrogen,
whereas the one with white dots under 24 bar. Reproduced with permis-
sion from ref. 94.

showing a maximum at ~25% of reaction that evidences two
different mechanisms. They were initially ascribed to nuclea-
tion and growth, at the start of reaction, followed by hydrogen
diffusion through an enveloping hydride layer after the rate
maximum. However, the authors doubted about the first step
assignment due to too fast absorption rates. Through a careful

Table 1 Thermodynamic properties of TiFe during hydrogen absorption/desorption obtained from Van't Hoff equation and direct calorimetric

measurements
7AHabsy 7ASabsy AI_Idesy ASdesy
Plateau kImol™* Jmol ™' K™™' KkImol™" Jmol™* K ' T,°C References and notes, technique: van’t Hoff
First 28.1 106 Ref. 68, prepared from zone-refined melting of Ti and Fe in an
Second 33.7 132 arc furnace
First 25.4 104 25.6 97 Ref. 93, prepared by induction melting of Ti and Fe
Second 33.2 137 31.6 125
First 26.4 113 27.8 107 Ref. 54, nanocrystalline TiFe prepared by mechanical alloying of
Second Ti and Fe powders
First 31.0 118 Ref. 66, prepared by arc melting of Ti and Fe and loaded with deuterium
Second
First 24.3 100 27.4 103 Ref. 178, prepared by induction melting of Ti and Fe, annealed at
Second 1000 °C for 1 week
_AHabsy _Asabsy AI_Idesy ASdesy
Plateau kJmol™' Jmol ' K' kjmol' Jmol "K' T,°C References and notes, technique: calorimetry
First 24.6 92 24.8 85 1 Ref. 93, prepared by induction melting of Ti and Fe
Second 29.4 114 30.6 111 1
First 24.2 99 24.2 90 25
Second 29.8 128 32.0 126 25
First 23.4 100 23.4 92 41
Second 26.6 122 27.8 117 41
First 22.8 104 23.4 98 71
Second 28.4 134 28.0 126 71
First 24.9 27.4 35 Ref. 43, prepared by mechanical alloying of Ti and Fe powders
Second 35
First 23.0 27.2 35 Ref. 43, as received commercial TiFe powder
Second 33.9 35.2 35
2530 | Mater. Adv., 2021, 2, 2524-2560 © 2021 The Author(s). Published by the Royal Society of Chemistry
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analysis of the absorption rate as a function of the gas pressure,
they noticed that, before the maximum, it increases linearly,
suggesting a step controlled either by H, mass transfer through
cracks or surface chemisorption. SEM images of activated
TiFe showed very large cracks facilitating hydrogen transport;
therefore, chemisorption was suggested as initial rate-
controlling step. Park et al.°* proposed a core-shell model to
explain observed kinetics, where the hydrogenation reaction
proceeds as follows: hydrogen is chemisorbed on TiFe surface,
from which the nucleation and growth of the hydride occurs,
and then hydrogen slowly diffuses through the hydride layer in
the last step of hydrogenation. Furthermore, Bowman et al.
studied hydrogen sorption kinetics by NMR measurement to
determine hydrogen diffusivites and activation energies at a
local (microscopic) scale.””®® Compared to other metallic
hydrides, which generally exhibit at room temperature a hydrogen
diffusion coefficient in the range 107°-10"® cm® s*°
Bowman et al. found a value of the order of 10~ > cm? s™1,*, for
B-TiFeH. This slow diffusion was attributed to the ordered structure
restricting possible diffusion path, since H1 sites are almost fully
occupied, while only a few H atoms are located in H2 sites.

Cycling and resistance to poisoning

One major fact to consider for practical application is the alloy
degradation when cycled for long periods. Changes in the PCI
curves of TiFe after cycling were reported by Goodell et al.'®.
Freshly activated TiFe exhibited two plateaus for the formation
of B-monohydrides and vy-dihydride, with large hysteresis
between absorption and desorption. However, with the increase
of cycle numbers, the hysteresis gap decreases, but the y-phase
plateau shifted towards higher-pressure values, until it
disappeared. Similar results were found also by Reilly et al.,”
who showed that the PCI curves change in shape during several
cycles, until they stabilize becoming almost independent on the
cycle number. The authors supposed that, until lattice strain
and defects do not reach saturation, the isotherms keep
changing. This implies that the disappearance of the y-phase
is due to the presence of internal stress and defects, due to an
expansion and shrinking of the unit cell during hydrogenation
and dehydrogenation, respectively. Further analysis performed
by Ahn et al.'®" confirmed the reduction of hydrogen stored due
to the disappearance of y-dihydride because of stress.
Moreover, they observed a decrease also in the hydrogenation
rate with the number of cycles. The authors suggested that,
besides lattice distortion, also the formation of stable hydrides
(TiH,) due to alloy disproportionation during cycling could be a
cause of the degradation. Indeed, stable hydrides do not release
hydrogen, and their formation hinders hydrogenation on the
TiFe surface due to rearrangements of neighbour atoms and
the introduction of lattice strain.

Besides cycling-induced degradation, contaminants in the
hydrogen gas such as H,0, O,, CO, and CO have a prominent
influence. Adsorption of impurities at active sites on TiFe
surface will prevent hydrogen molecules to dissociate during
the chemisorption step. As demonstrated by Sandrock et al.'®?,
this passivation is generally manifested as a decrease in the

© 2021 The Author(s). Published by the Royal Society of Chemistry
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reaction rate or a reduction in the storage capacity. These
authors have investigated the effect of H, containing 300 ppm
of H,0, O, and CO on the cycling of TiFe. H,O and O, split on
the surface, forming a thick passivating layer composed by
complex oxides. The effect of this layer is similar in both cases,
exhibiting a continuous decrease in the quantity of hydrogen
stored during cycling. The main observed difference is that O,
reacts faster than H,O at the surface. In both cases, TiFe could be
partially reactivated cycling at moderate temperature (80 °C)
with pure H,. On the other hand, CO has shown to be more
detrimental than H,O and O,. It is adsorbed in less than one
minute, completely deactivating TiFe in a few cycles. However,
TiFe poisoned by CO was easily reactivated by simply cycling at
room temperature under pure H,. Additional information was
provided by Block et al,'® who investigated also the effect of
CO,, CH, and H,S in various concentrations. The presence of
10 vol% CH, showed a stable and slight decrease in the capacity
and reaction rate of TiFe. Surprisingly, when pure H, was
provided again, the active material exhibited a reaction rate even
faster than before, restoring also its hydrogen absorption
capacity. The authors suggested that CH, does not passivate
TiFe, and the decrease during cycling was probably due to the
lower H, partial pressure in presence of methane. In the
presence of CO, there is a constant decrease in the storage
capacity during cycling and, moreover, the absorption rate
decreases with the increase of impurity concentration into H,.
A concentration of 1 vol% CO, in the gas stream was enough to
fully passivate TiFe after two cycles. The sample was reactivated
by cycling with pure hydrogen at 127 °C. Introducing 0.2 vol%
H,S did not affect the reaction rate, but it strongly reduced the
quantity of hydrogen absorbed upon cycling, so that few cycles
were enough to completely deactivate TiFe. Even performing
intensive heat treatments, the authors were not able to reactivate
the sample due to the presence of a stable sulphur layer on the
surface of TiFe, which inhibited the absorption of hydrogen.

From these results, it can be concluded that TiFe hydrogenation
properties easily deteriorate in the presence of contaminants.
To face this issue, two main strategies were suggested: the
design and implementation of reactivation systems or the
enhancement of TiFe resistance to poisoning. Resistance to
passivation reaction might be induced by adding a secondary
phase, but still no complete resistance to contamination has
been reported in the literature for TiFe. Hence, leaks and gas
purity must be carefully checked for long-cycling applications
for hydrogen storage.

All properties mentioned above for binary TiFe can be tailored
by chemical substitutions and this topic will be discussed in detail
in the following sections.

Modifications of TiFe properties by
substitutions

Extensive studies have been performed to synthetize and char-
acterize substituted TiFe intermetallic compounds with many
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elements, as it can be visualized in the periodic table reported
in Fig. 2.

The substitution of Fe or of Ti has been the subject of recent
papers that evidence the role of Ti-substitution or Fe-
substitution and their effect on hydrogen storage
properties.'®* Substitution can include either or both A-type
(Ti) or B-type (Fe) site substitution, as it will be discussed later
on, depending on each element. Optimization of operational
pressure range, a theoretical understanding of alloy thermo-
dynamics, the role of secondary phases’ formation or TiFe
single phase domain compositional stretching need to be
better considered in a full picture of available studies.
Substitution can significantly lower plateau pressure or make
full hydrogenation more difficult, decreasing the usable capacity.
On the other hand, for example, Mn can change equilibrium
pressure introducing a smoothing effect, levering plateau pressure
in a narrow pressure range and maximizing the reversible
capacity.

Vivid literature studies on substitutional effects have been
carried out aiming to tailor hydrogenation properties of TiFe,
indicating that substitution for Fe is dominant. In the following,
mono-substituted system will be considered first, then we will
specifically focus on the manganese-substituted system and
finally prominent examples of Ti(Fe,Mn) multi-substituted alloys
will be presented. Throughout the description of literature
results, when studied, quaternary alloy are reported as well,
while a focus on substitutional effect and Ti or Fe substitution
are commented in detail in the discussion section. Few examples
of reported additives or catalysts (as nanoparticles or oxides) will
be cited and discussed too when relevant.

Substitutional elements are classified according to their
location in the periodic table. Investigated TiFe-M systems,
their hydrogen storage properties and thermodynamics are
summarized in Table 2.

In the case of single elemental substitution, an empirical
geometric model was proposed by Lundin et al.'® and Achard
et al.'®, reporting that by enlarging the unit-cell volume of
TiFe, interstitial holes size increases and plateau pressures in
PCI curves shift to lower values. This empirical law, to which
many intermetallic systems obey, can differ from that observed
for some substitutions, therefore, electronic band structure
should be considered and implemented with ab initio studies,
as demonstrated by Jung et al.'%*

Alkaline earths (Mg, Be)

Magnesium (Mg, g = 0.16013 nm, radius values reported from
ref. 107, for comparison 7r; = 0.14615 nm and 7g. = 0.12412 nm)
can be substituted up to 2 at% by ball milling, while up to 6 at%
the precipitation of Fe as secondary phase is observed.'®®
It induces an easier activation compared to pure TiFe, an
enlargement of the cell parameter and a concomitant decrease
of equilibrium pressure in the PCI, which presents a single
plateau related to the formation of the monohydride.'°® So, in
the case of Mg substitution, the formation of the y phase is
suppressed thus reducing the reversible capacity of the
material.'*®
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The substitution of Fe with beryllium (Be, 5. = 0.1128 nm), a
smaller element with respect to Fe (rge = 0.12412 nm), up to
15 at%, evidences that geometrical factors alone fail to explain
the variation of hydride stability. Although the TiFe unit-cell
shrinks with Be substitution, the plateau pressures decrease as
reported by Bruzzone et al.'®°. Furthermore, lower capacity
but narrower hysteresis and sufficiently good kinetic were
evidenced.'” Besides, the thermodynamics are modified,
evidencing higher values of AH introducing Be."*°

Early transition metals (Zr, Hf, V, Nb, Ta)

Zirconium (Zr, r, = 0.16025 nm) substitution for Ti (rp =
0.14615 nm) has a positive effect on activation."""""*> Following
the geometric model, it increases the cell parameter of TiFe and
decreases the plateau pressures.'”*''” However, a decrease of
reversible capacity was observed and related to the enlarged
solubility of hydrogen in the solid solution (o phase) at high Zr
content.'™ Zr substitution leads to slopping plateaus, no
variation in hysteresis and fast kinetics."*® Jain et al. studied
the effect of 4 wt% Zr addition to TiFe, which confirms the
positive effect of this substitution for activation (no need of
thermal treatment), fast kinetics, a good maximum capacity of
1.60 wt% at 20 bar and 40 °C, and a good resistance to air.'*’
However, an increase in hysteresis was observed as well, in
contrast with previous findings."'® Mechanical treatment
(i.e. ball milling and cold rolling) can easily recover hydrogen
capacity of this material after air exposure.'*°

Hafnium (Hf, ryg¢ = 0.15775 nm) can be introduced into TiFe
up to 2 at%, causing an increase of the cell parameter and a
subsequent decrease of plateau pressures. The formation of
secondary phases have also been observed, improving activation
(possible at room temperature and 20 bar) and kinetics, but
slightly reducing the hydrogen capacity of the material.'*!

Vanadium (V, , = 0.1316 nm) can substitute both Ti and F