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Predicting differential ion mobility behaviour
in silico using machine learning†

Christian Ieritano, a,b J. Larry Campbella,c,d and W. Scott Hopkins *a,b,c,e

Although there has been a surge in popularity of differential mobi-

lity spectrometry (DMS) within analytical workflows, determining

separation conditions within the DMS parameter space still

requires manual optimization. A means of accurately predicting

differential ion mobility would benefit practitioners by significantly

reducing the time associated with method development. Here, we

report a machine learning (ML) approach that predicts dispersion

curves in an N2 environment, which are the compensation voltages

(CVs) required for optimal ion transmission across a range of separ-

ation voltages (SVs) between 1500 to 4000 V. After training a

random-forest based model using the DMS information of 409 cat-

ionic analytes, dispersion curves were reproduced with a mean

absolute error (MAE) of ≤ 2.4 V, approaching typical experimental

peak FWHMs of ±1.5 V. The predictive ML model was trained using

only m/z and ion-neutral collision cross section (CCS) as inputs,

both of which can be obtained from experimental databases

before being extensively validated. By updating the model via

inclusion of two CV datapoints at lower SVs (1500 V and 2000 V)

accuracy was further improved to MAE ≤ 1.2 V. This improvement

stems from the ability of the “guided” ML routine to accurately

capture Type A and B behaviour, which was exhibited by only 2%

and 17% of ions, respectively, within the dataset. Dispersion curve

predictions of the database’s most common Type C ions (81%)

using the unguided and guided approaches exhibited average

errors of 0.6 V and 0.1 V, respectively.

The orthogonal separations provided by differential mobility
spectrometry (DMS) are becoming an increasingly valuable
technique in the analytical chemist’s toolkit.1,2 Capable of
operation as either standalone device or in tandem with other
separation techniques, the ease with which DMS couples to
mass spectrometers (MS) has been especially useful for the
separation and characterization of isobaric/isomeric
analytes.3–8 However, the current lack of predictability of DMS
behaviour presents a challenge for its seamless implemen-
tation within some analytical workflows. For example, per-
forming complete scans of DMS parameters to identify the
optimal conditions for analyte separation and transmission
may not be possible within narrow-band elution times of
liquid chromatography (LC). Accurate a priori predictions of
optimal DMS conditions would benefit DMS practitioners, par-
ticularly those working in DMS-based proteomics,9–13

lipidomics,14–17 and metabolomics analyses.1,2,18

The separation of ions within any ion mobility spectrometry
(IMS) device depends on the ion’s field-dependent mobility
[K(E)] through a neutral buffer gas,19,20 which is specific to the
identity of the gas as well as the electric field strength (E) as
per eqn (1):

v ¼ KðEÞ � E ð1Þ

where v is the ion’s steady-state drift velocity through the IMS
cell. This relationship is linear when IMS experiments are con-
ducted in the so-called ‘low-field limit’ of 2–10 Td (1 Td =
10–21 V m2),19,21 where field-heating does not perturb the
ion’s thermal velocity. In other words, the internal energy of
the ion (i.e., its thermal energy, 3/2·kb·T ) is significantly larger
than any internal energy increase caused by acceleration in the
electric field. Structural information can be obtained in this
regime by correlating the linear dependence of an ion’s mobi-
lity with the applied electric field using the stepped field
method.22 Linear regression yields the ion’s mobility, which is
assumed to correspond to the zero-field mobility [K(0)] when
the field strengths used fall within the low-field limit.23,24 K(0)

†Electronic supplementary information (ESI) available: Supplementary Fig. S1–
S25, Table S1, and Supplementary sections S1 and S2 (PDF). DMS-MS database
used for model training, MRM transitions, and ClassyFire molecular classifi-
cations (XLSX). See DOI: 10.1039/d1an00557j

aDepartment of Chemistry, University of Waterloo, 200 University Avenue West,

Waterloo, Ontario, N2L 3G1, Canada. E-mail: shopkins@uwaterloo.ca
bWaterloo Institute for Nanotechnology, University of 200 University Avenue West,

Waterloo, Ontario, N2L 3G1, Canada
cWaterMine Innovation, Inc., Waterloo, Ontario, N0B 2T0, Canada
dBedrock Scientific Inc., Milton, Ontario, L6T 6J9, Canada
eCentre for Eye and Vision Research, Hong Kong Science Park, New Territories,

999077, Hong Kong

This journal is © The Royal Society of Chemistry 2021 Analyst, 2021, 146, 4737–4743 | 4737

Pu
bl

is
he

d 
on

 2
9 

cz
er

w
ca

 2
02

1.
 D

ow
nl

oa
de

d 
on

 0
6.

02
.2

02
6 

10
:1

2:
05

. 

View Article Online
View Journal  | View Issue

www.rsc.li/analyst
http://orcid.org/0000-0003-4748-6346
http://orcid.org/0000-0003-1617-9220
http://crossmark.crossref.org/dialog/?doi=10.1039/d1an00557j&domain=pdf&date_stamp=2021-07-23
https://doi.org/10.1039/d1an00557j
https://pubs.rsc.org/en/journals/journal/AN
https://pubs.rsc.org/en/journals/journal/AN?issueid=AN146015


is related to the ion-neutral collision cross section (CCS) by
means of the Mason–Schamp relationship shown in eqn (2):

Kð0Þ ¼
ffiffiffiffiffiffiffiffi
18π

p

16
zeffiffiffiffiffiffiffiffiffiffiffi
μkbT

p 1
Ω

1
N

ð2Þ

where μ is the reduced mass of the ion and drift gas species, z
is the charge, e is the elementary charge, kb is the Boltzmann
constant, T is the temperature, N is the number density of the
gas, and Ω is the CCS (or, more appropriately, the momentum
transfer cross section). CCSs correspond to the orientationally-
averaged collision area between the charged analyte and its
gaseous collision partner, providing insight into the ion’s gas-
phase structure when coupled with theoretical modelling of
CCSs.25,26 Direct CCS measurements above the low-field limit
are not possible without empirical calibration strategies27–30

due to the non-linear dependence of ion mobility on field-
strength (eqn (3)),31,32 where the value of the alpha function
α(E/N) at a specific E/N defines the ratio of an ion’s high- and
low-field mobility (eqn (4)).

K
E
N

� �
¼ K0ð0Þ 1þ α

E
N

� �� �
ð3Þ

α
E
N

� �
¼

K
E
N

� �
� Kð0Þ

Kð0Þ ð4Þ

Separations in DMS,33,34 a term used synonymously with
field asymmetric waveform ion mobility spectrometry
(FAIMS),31,35 harness the field-dependence of ion mobility to
achieve a spatial separation of ions (Fig. S1†). The DMS wave-
form, denoted as the separation voltage (SV), consists of an
electric field that oscillates between its high- and low-field
phases. Due to the non-linear dependence of ion mobility on
field strength, the SV causes the ion to adopt trajectories that
divert from the transmission axis. The field-dependent mobi-
lity of an ion is encoded within the compensation voltage (CV)
required for transmission through the DMS cell, as the CV is
related to the alpha function,34 and by association, the ion’s
CCS.

Based on this first-principles consideration, mapping the
field-dependent mobility should be feasible using only the
intrinsic properties associated with the ion’s mobility (i.e., mass
and CCS). Haack and coworkers made a first step in this regard
by reproducing the DMS behaviour of the tetramethyl-
ammonium36 and tricarbastannatrane ([N(CH2CH2CH2)3Sn]

+)37

cations using only temperature dependent CCS calculations in
the free molecular regime. Given the reasonable accuracy of this
approach, we hypothesized that dispersion plots could be gener-
ated in silico using machine learning (ML) models trained only
with CCS and m/z as inputs. This follows the absence of a
closed-form expression that can relate the ion-neutral inter-
action potential with the ion’s field-dependent mobility. Using
ML to complete this connection would enable predictions of
dispersion plots using only intrinsic ion properties that are
accessible via CCS libraries38–45 or calculation packages.46–48

This would be of tremendous utility for method development

within the various ‘omics realms’, where the CV space occupied
by the desired analytes could be mapped prior to data acqui-
sition with minimal effort. The methodology simply requires a
“reverse-engineering” of the ML-model used to obtain CCSs
from DMS-MS data.49 However, broadly applicable predictions
of an ion’s dispersion behaviour necessitate the use of a cali-
bration set spanning several chemical classes, CCSs, and m/z
ratios. As a first step in our endeavour to globally map differen-
tial ion mobility, we report on the ML-based in silico generation
of dispersion plots in an N2 environment for a compendium
containing 409 molecular cations. Since the interaction poten-
tial between N2 and a protonated analyte differs from cationic
adducts (e.g., [M + Na]+), we chose to model protonated species
([M + H]+), which were present in significantly greater
quantities.

Methods

A SelexION DMS cell (SCIEX, Canada) with a 1 mm gap
between the planar electrodes was mounted in the atmos-
pheric region between the orifice of a QTRAP 5500 hybrid
triple quadrupole linear ion trap mass spectrometer and a
Turbospray (SCIEX) electrospray ionization (ESI) source
(Fig. S2†).34 Analytes were solubilized into mixtures containing
10 ng mL−1 in either a 50 : 50 MeOH : H2O or MeCN : H2O ESI
solvent mixture, both of which contained 0.1% formic acid.
Analyte mixtures were infused into the ESI source (positive
mode) at a flow rate of 10 μL min−1. DMS-MS measurements
were conducted using N2 as both the curtain gas (20 psi) and
as the collision gas (ca. 7 mTorr) for data acquisition in
multiple reaction monitoring (MRM) mode. MRM transitions
(available in the ESI†) were monitored as the SV was stepped
from 1500 to 4000 V in 500 V increments, with additional data
taken at SV = 3250 V and 3750 V to ensure thorough mapping
of the dispersion curves at high field strengths. At each SV, the
ion current was recorded while ramping the CV from −30 V to
30 V in increments of 0.1 V to produce an ionogram. Each
ionogram was fit with a Gaussian distribution, for which the
centroid was taken as the CV required for maximum ion trans-
mission. The m/z and CCS of the parent ion, as calculated
using MobCal-MPI,48 were used as the inputs for training the
ML model to predict SV/CV pairs. Full details of experimental
parameters related to data acquisition are provided in
Table S1.† Details concerning CCS calculations are available in
the ESI in section S1.† The ML source-code, which employs
the Random Forest Regression model as implemented in the
Python Sci-kit Learn package, and associated benchmarking
data is available on the Hopkins Laboratory GitHub repository
(https://github.com/HopkinsLaboratory).

Results and discussion

The field-dependent nature of the interaction potential
between the analyte and DMS carrier gas is an important
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metric to consider when modelling an ion’s field-dependent
mobility. Qualitative insights in this regard can be inferred
from a dispersion curve (i.e., plots of the CV required for
optimal ion transmission as a function of SV)50,51 depending
on the relationship between SV and CV.33,52 For example, three
dispersion curves from the 409 molecules used in this study
are shown in Fig. 1A; these represent the most common beha-
viours observed in DMS experiments. In a dry N2 environment,
dispersion curves are predominantly Type C in nature,
whereby the ion-neutral interaction potential results in a hard-
sphere scattering event upon collision. Type C ions are charac-
terized by increasingly positive CV shifts for optimal ion trans-

mission as the SV increases (e.g., protonated atenolol; black
curve). As the molecular weight of the ion decreases or charge
sites become “exposed”, the interactions between the analyte
and carrier gas become stronger and shift toward behaviour
associated with dynamic clustering. The clustering phenom-
enon can manifest in one of two ways depending on the
binding strength of the adduct formed. Type B behaviour is
characterized by CVs that initially decrease with increasing SV
before reaching a minimum, upon which CVs trend towards
more positive values. This is interpreted as arising from weak
clustering interactions under low-field conditions, which are
eventually overcome at high-field. Dimetridazole (blue trace) is
a representative Type B ion that exhibits weak ion-neutral
interactions with the carrier gas due to greater charge density
within the analyte. Cluster formation can be long-lived in
cases when the ion’s charge is highly localized, resulting in
Type A dispersion curves. In a dry N2 environment, Type A
behaviour is only observed in rare cares for low molecular
weight ions and is characterized by continually decreasing CV
shifts as the SV increases (e.g., Fig. 1A; glycine, red trace).

The range of CVs adopted by the 409 cations are shown in
Fig. 1B. At low SVs, the CVs of Type A, B, and C ions are
similar. However, differential mobilities become more pro-
nounced at higher SVs due to the field-dependence of ion
mobility. At SV = 4000 V, the optimum CV for ion elution
ranges from −26 V for glycine to +20 V for atenolol. Untargeted
analysis would necessitate sampling this entire window to
ensure adequate coverage of the chemical space even though
most ions are Type C and elute within the CV = 0–15 V window
(Fig. 1C). As it stands, there are no “rules” for predicting an
ion’s DMS behaviour, which presents a significant challenge
for coupling DMS-MS to some front-end interfaces (e.g., LC).
Introduction of the desired analytes to the DMS cell within a
short time window precludes a full scan of the CV range,
necessitating predictive technologies to facilitate method
development in tandem separation workflows the incorporate
DMS.

Modelling the dispersion curves (i.e., the DMS behaviour)
of an ion requires metrics that capture the ion-neutral inter-
action potential. This is especially important in the case of the
dataset used here, where 331 ions exhibit Type C behaviour,
but only 72 and 6 ionic species exhibit Type B and A beha-
viours, respectively. The interaction potential is heavily influ-
enced by the charge density and conformation of the ion, both
of which can be reasonably captured through the ion’s m/z
and CCS.36,37 However, the broad distributions of m/z and CCS
within this dataset (Fig. S3†) requires an ML framework to
incorporate these properties in the prediction of an ion’s
differential mobility.53 One must also be cognisant of bias, var-
iance, and overfitting in the chosen ML model, all of which
contribute to poor predictive capabilities for systems outside
of the training set. Random Forest Regression (RFR), an
unbiased decision-tree-based model, has demonstrated low
variance and low susceptibility to overfitting.54,55 The resis-
tance to overfitting stems from the law of large numbers,
which states that the average obtained from many trials will

Fig. 1 (A) Dispersion curves for protonated atenolol (black squares),
protonated dimetridazole (blue triangles), and protonated L-glycine (red
circles). (B) The range of CV values for given SV values for the 409 mole-
cules in our dataset and their distributions (C) at SV = 4000 V according
to their Type A (blue), B (purple) or C (red).
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become closer to the expected (real) value as more trials are
performed. As such, we employed a RFR algorithm to create a
predictive model for DMS dispersion curve data utilizing 200
randomized decision trees as implemented in the scikit-learn
Python package. To train the RFR framework, our DMS-MS
database was randomly split into a training set and an “out-of-
the-bag” external validation set using only analyte m/z and
CCSs as inputs.

The mean absolute error (MAE) of the RFR predictions,
averaged across 100 randomized training/validation set splits,
is plotted as a function of training set size (i.e., a learning
curve) for SV = 4000 V in the top panel of Fig. 2. Since the CV
window occupied by the analytes is largest at SV = 4000 V, the
associated MAE can be thought of as the upper limit of error
for the RFR model. Training the RFR model using 95% of the
database at SV = 4000 V predicts the corresponding CV with a

MAE of 2.4 V. This is an encouraging result considering the
relatively small size of the dataset and the limited number of
parameters used in the ML framework. This model is
especially accuare for the lower SVs, for which optimal CVs can
be predicted with even lower MAEs (Fig. S4†). Moreover, the
MAEs associated with CV predictions typically lie within the
full-width half-maximum (FWHM) range of a DMS peak (±1.5
V). It is also worth noting that the unguided learning curve
shown in the top panel of Fig. 2 does not plateau at large train-
ing set sizes. This implies that more accurate predictions
using the unguided approach are to be expected as the
DMS-MS dataset expands with the addition of information for
more analytes.

Recalling that the proportion of Type A, B, and C ions
within the database are 2%, 17%, and 81%, respectively, it is
necessary to investigate the accuracy of model predictions for
each different DMS behaviour. If a validation set is dispropor-
tionately composed of Type A or B ions, the MAE for the data
set can be especially high. Conversely, if the validation set is
entirely composed of Type C ions, the associated MAE will be
low and not representative of the global accuracy. To ensure
adequate validation, we performed an additional 1000 ran-
domized trials using a 95 : 5 partition of the dataset for train-
ing/validation. The deviations of calculated versus experi-
mental CV values at SV = 4000 V are shown as a boxplot in the
bottom panel of Fig. 2 according to their classification as a
Type A, B, or C ions. For the unguided ML model (i.e., just
using m/z and CCS as input), dispersion curve predictions for
Type A, B, or C ions exhibit average errors of −7.9, −2.3, and
0.6 V, respectively. The low errors for Type C ions from the out-
of-the-bag external validation set demonstrates that the ML
model is accurate to within the day-to-day variance in SV/CV
pairs (typically the peak’s FWHM).

While predictions of Type C curves lie within the FHWM of
the associated ionogram peak, the predictions for Type A and
B ions are consistently at more positive CV values than those
observed experimentally. It should be noted that the RFR-pre-
dicted Type A and B dispersion curves only deviate appreciably
from experiment at SV > 2000 V. Therefore, we hypothesized
that a “guided” ML model supplemented with CV values
measured at SV = 1500 and 2000 V would provide the curvature
required to capture Type A and B behaviour. Indeed, this was
the case as demonstrated by the two-point guided learning
curve and the distribution of errors in Fig. 2. Although this
procedure had only a marginal improvement on Type C curve
predictions (average error 0.1 V), the overall predictive capa-
bility when all species were considered improved by a factor of
two (Fig. 2, top panel; 1.2 V MAE for guided model). This
improvement stems from the considerable error reduction in
predictions of Type A and B behaviour, which exhibit average
errors of −4.4 V and 0.2 V, respectively, for the guided model
(see bottom panel of Fig. 2).

The success of the ML-approach in predicting an ion’s DMS
behaviour is further exemplified by analysis of the experi-
mental and predicted dispersion curves. Fig. 3 shows three
representative Type A, B, and C dispersion plots taken from a

Fig. 2 (Top) Learning curve depicting the mean absolute error (MAE)
for CV predictions as a function of training set size with inputs of m/z
and CCS (unguided; red) and including CV values at SV = 1500, 2000 V
(guided; blue). (Bottom) Boxplot of CV error according to dispersion
plot type for 1000 predictions at SV = 4000 using a randomized 95 : 5
training/validation split. The mean and median are shown as a black
circle/square and solid black line, respectively. Boxes correspond to the
25th and 75th percentile; whiskers extend to the 10th and 90th percen-
tile. The mean CV error and one standard deviation are shown as text.
The green highlighted region corresponds to the typical FWHM of a
peak in a DMS ionogram (±1.5 V).
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single validation set. Predicted dispersion plots for the remain-
ing molecules of the validation set are provided in section S2
of the ESI.† The Type C behaviour of flufenoxuron is captured
almost exactly by both the guided and unguided RFR
approach, which is true for nearly all Type C ions in this study.
Although the unguided ML model captures the shape of the
Type A and B dispersion curves, the predicted CV values are ca.
2 V more positive at the high SV region of the curves. This
shift to more positive CV values is consistently observed for
predictions of the other Type A and B ions, likely arising from
their under-representation in the training set (and thus posi-
tive skewing due to over-representation of Type C). The 2-point
guided approach substantially improves predictions of Type B

ions (e.g., niacin) and, in some instances, produced a near
exact prediction of Type A dispersion curves (e.g., sarcosine).
Overall, the ability of RFR to replicate an ion’s DMS behaviour
is impressive and is expected to improve further with the
addition of more examples to the database.

Conclusions

In this work, we demonstrate how DMS behaviour can be pre-
dicted using machine learning. Using only m/z and CCS as
inputs, random forest regression can accurately predict experi-
mental dispersion curves following training with a set of
409 molecular cations. Prediction of the optimal CV required
for ion elution at SV = 4000 V (i.e., the DMS condition most
difficult to predict) was accomplished with a MAE of 2.4 V. The
accuracy of these predictions is excellent considering the rela-
tively small size of the training set and that the ions within the
dataset exhibit a large CV range (−26 to +22 V) at this separ-
ation field strength. The greatest factor contributing to the
MAE is the under-represented Types A and B species in the
dataset, which account for only 2% and 17% of the data,
respectively, and exhibit respective average errors of −7.9 V
and −2.4 V. Because dispersion curve predictions deviate from
experiment only at SV > 2000, one can adopt a method
whereby CVs at SV = 1500 V and 2000 V are first predicted and
measured, then introduced as input features for a “guided”
ML model. Doing so results in a model with an overall MAE of
1.2 V at SV = 4000 V and average errors of 0.1 V for Type C
ions, 0.2 V for Type B ions, and −4.4 V for Type A ions.

Accurate prediction of DMS behaviour will streamline
method development for practitioners interested in adding an
orthogonal separation dimension to their workflows. The
unguided approach requires only m/z and CCS as input
features, both of which can be found in published
repositories38–45 or determined by calculation.46–48 Since the
MAE for Type C ions (1.6 V) aligns with the typical FWHM of
an ionogram peak (±1.5 V), employing this ML model to
inform experiment will generally result in transmission of the
desired analyte. Targeted approaches, in which the identity of
the analyte is known, will benefit the most from predictions of
DMS behaviour since the ability to set a specific SV/CV pair for
a desired analyte will cut down on the time required for
method development and mitigate redundant data acquisition.
Extension of the predictive capabilities towards other common
MS adducts (e.g., [M + Na]+, [M + NH4]

+) and negative ions
[M − H]− will become possible as more data is acquired. For
untargeted approaches, it would be fruitful to utilize the dis-
persion plot as an additional metric for compound identifi-
cation. Specifically, one could implement a characterization
methodology whereby an ion’s CCS could be inferred from its
dispersion plot to enhance confidence in unknown compound
identifications. The work reported here is intended to serve as
the framework for these future endeavours, which will be
reported on in due course.

Fig. 3 Experimental (black), unguided ML (red) and 2-point guided ML
(blue) dispersion curves for (top) sarcosine, (middle) nicotinamide, and
(bottom) flufenoxuron. The validation data was generated from a ran-
domized 95 : 5 training/validation data split.
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